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A P R O B L E M FOR THE HYPERBOLIC SYSTEM 
OF DIFFERENTIAL EQUATIONS WITHOUT 

INITIAL CONDITIONS 

Abstract . In the present paper we consider a problem for the system of hyperbolic 
equations of the first order with periodic conditions and without initial conditions. Some 
conditions for uniqueness and existence of solution for this problem are given. 

Mixed problems for the system of hyperbolic equations of the first or-
der have been considered in many papers. We can mention some papers 
which refer to the linear and semilinear systems [2-3], [9-17], In particular 
in the papers [4-6], [8], some problems without initial conditions under as-
sumption that solutions are bounded have been considered. In this paper we 
consider uniqueness and existence of solution of the problem without initial 
conditions for the system of hyperbolic equations without conditions on the 
solution when t —• — oo. 

Let fi = {x e Rn; 0 < Xi < 27r; i = 1 , . . . , n}, Qtx,t2 = ^ x (¿li ¿2) where 
i i < ¿2, t i , ¿2 € ( - 0 0 , T), T < + 0 0 and Q? = Q-OO,T-

We shall consider the system of hyperbolic equations of the form 

in the domain QT-
For this system we put the following boundary conditions 

(2 ) u(x 1 , . . . , 0, xi+l, ...,xn,t) = u(x\,... x^ 1,27r, X j + i , ...xn, t) 

for i = 1 , . . . , n, where Ak, C are matrices of the order m, k = 1 , . . . n , and 

71 

(1) 

+ C(x, t)u(x, t) + G(t, u) = F(x, t) 

G= (gi, • • •,gm)T, u = (tii, • • -,um)T 

F = (/l, • • • , fm) ) ® = • • • > 
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Now, we fix the notation. Put Lr
s(D) = YU^L^D), where D is a domain 

in R". We have 

LRS,IOC(QI) = ^ ( Q r , r ) V T e ( _ 0 0 > T ) } 
and r G [1, +00]. By (•, •) we denote the scalar product in Rn. 

For equation (1) we consider the following conditions: 

(A) Ak{x, t) = Al(x, t), V ( x > t ) e Q T , 

Ak(xi,.. . X i _ i , 0 , X i + i , . . . ,xn,t) = Ak(xi,.. .Xj_i, 27r,Xj+i, ...,xn,t) 

for k = 1 , . . . , n, i = 1 , . . . , n, 
M 

(Akxk(x,t)£,£) < afc|£|2, and ^ a f c : = a 0 , 
¿=1 

for almost all (x, T) € QT and for every £ € RM 

AK, AKXI G L™2{QT), for k = 1 , . . . , n, i = 1 , . . . , m; 

(C) C,CXieL%2(QT), for i = 1 , . . . , n, 
C satisfies (2), (C(x, 0 > 

where Co = const, for every £ € Rn and almost all (x,t) G QT\ 

(G) the functions gj(t, £) are continous in Rm for almost all t G (—00, T) 
and measurable with respect to t for every £ € Rm, j = 1 , . . . , m and satisfies 
the following assumptions: 

(i) (G(x, f ) - G(x, y), £ - ¿1) > - Ailp, where g0 = const, g0 > 0, 

(ii) < 9° t l ^ r 1 . 9° = const, i = l,...mforp>2, 
J=1 

(iii) ( J ( t , u), i, 0 > 0, Vf, v G Rm, where 

J{t,u) = 

( DGI(T,U) DGI(T,V) \ 
OUI DUM 

9GM(T,W) DGM(T,V) 
\ OU 1 9LLM / 

First, we consider the system (1) in the domain Qo,r with the boundary 
conditions (2) and with the following initial conditions 

(3) u(x ,0) = 0 ( x ) , 

where © = ( © 1 , . . . , © T n ) r . 

DEFINITION 1. A function u is called a solution of problem (l)-(3) if 

u G uXi G £™(Qo,r); » = 1, • • •, n, 

UTELL(Q0,T) + LUQO,T) 
and u satisfies ( l ) - (3 ) for almost all (x, t) G QO,T, where ^ + ^ = 1. 
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THEOREM 1. If the conditions ( A ) , ( C ) , ( G ) hold, F,FXi € 
© € i = 1,... ,n and F, © satysfying (2 ) , then there exists a solution 
u = (tij, • • • i um) of the problem ( l ) - (3 ) . 

P r o o f . Denote by Hper (fi) the space of the functions which belong to Hl(£l) 
and satysfying (2). Analogously to [7] we can consider the special basis {4>k} 
in /i^er(ii) which is composed with eigenfunctions of the following problem 

(4) A u = \u, 

&>u(xi,.. .,Xj-i,0, X j + i , . . . ,xn) _ diu(x i , . . .,Xj-i,27r,g,+i, ...,xn) 

dxj ~ dxj 

3 = 0,1; i = l , . . . , n . 
Let us consider a sequence of functions of the form 

N 
(6) uN(x, t) = Y, Cj?(t)Mx), N = 1 , 2 , . . . , 

fc=i 

where { C f , . . . , are solutions of the following Cauchy problems: 

(7) J (u?(x, t), </>k(x)) + ¿ ( 4 (x, t ) < ( x , t), & ( x ) ) 
CI L 2 = 1 

+ (C(x, t)uN(x, t), & ( x ) ) + (G(i, ^ fc(x)) ATn 

-(F(x,t),<frk(x)) dx- 0, fc = 1,..., N, 

(8) 

(9) 
fc=l 

where GN(x) 0 ( x ) in ^ ( f i ) . 
From Caratheodory's Theorem we can observe that this problem has a 

solution. Multiplying (5) by the functions Ck respectively, then summing 
them up by k from 1 to N and integrating with respect to t G [0, r], r < T 
we obtain 

(10) j I k " (* , t), UN(X, t)) + ¿ ( 4 t ( x , t ) < (x, t), U*(x, 0 ) 
Q0,r fc=l 
+ (C(x, t ) u * ( x , i), i )) + (G(i, tiN), t iN(x, i)) 

~(F(x,t),uN(x, t)) dxdt — 0. 
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If we consider the respective components of the last equality we have 

H = \ (U?{X,T),UN{X,T))DXDT=L- J |UN{X,T)\2DX- \ J LO^X-)!2^ 

and 

2 j i 2 
QO,T FIR IIO 

H = J ¿2(AK(X,T)U»K(X,T),UN(X,T))DXDT 

QO,T K= 1 

1 n 
= 2 \ AK(X,T)UN(X,T),UN(X,T))XKDXDT 

1 U 

QO,R fc=l 

Let 
1 n 

z q0iT fc=l 

1 n 

72 = - 2 5 ¿2(AKXK(X,T)UN(X,T),UN(X,T))DXDT. 

QO,T K=1 

Using the assumption of Theorem 1 and (A) we obtain 

2 T n 

0 fc=l 

5 i ¿ ( A f c ( x , T)UN(X, T), UN(X, t))U fc=0dt = o. 
0fc=l 

Moreover /22 > J 
Qo,r 

Prom (C), (G) and the assumption of Theorem 1 we have 

H = \ (C(X,T)UN(X,T),UN(X,T))DXDT>C0 \ \UN(X,T)\2DXDT, 

Qo,t Qo,T ' 

H = J (G(T,UN)UN(X,T),UN(X,T))DXDT > J G0\UN\PDXDT 

QO,T QO,T 

and 
J5 = \ (F(X,T),UN(X,T))DXDT 

QO,T 

<7TF" \ \F(X,T)\2DXDT+ ^ I \UN(XYT)\2DXDT, for 50 > 0. 
2 5 0 QO.r 2 Qo,t 
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Thus (10) will be of the form 

(11) 5 \uN(x,T)\2dx + 2 5 go\uN{x,t)\Pdxdt 
FIR QO,T 

< \ (a0-2cQ + 50)\uN(x,t)\2dxdt + J- J \F{x, t)\2dxdt+ \ l © ^ ) ! 2 ^ . 
Q0,r 0 Q0,r fio 

Hence from Gronwall-Bellman Lemma we have 

(12) \ \uN(x,t)\2dx < no( \ \@\2dx+ \ {F(x,t)\2dxdt\= noFo 
nT ^fio Qo,t ' 

and 
( 1 3 ) \ \uN\pdxdt < mFo. 

Q0,r 

Using in (7) the fact, that 

A<f>k(x) = Ak<f>k{x), fc = 1 , 2 , . . . 

and multiplying (7) by the functions —AkCĵ  respectively, then summing 
them up by i from 1 to N and integrating with respect to t from 0 to r we 
obtain 

n m 
(14) £ J ( « ? ( : + 

S=l<3o,r »=1 
+ (C(x,t)uN(x,t),u»x (x,t)) 

+ (G(t, uN), (x, t)) - (F(x, t), (x, t)) dxdt = 0. 

If we consider the respective components of the equality (14) we will 
have the following estimates 

h = ~ \ (u?(x,t),u^Xa(x,t))dxdt 
QO,T 

= - \ (u?{x,t),u%3(x,t))X3dxdt+ 5 (u?Xa{x,t),u^{x,t))dxdt 
Q 0,T Qo,r 

QO,T fir f2o 
and 

I7= J (Ak(x,t)u^(x,t),u^Xa(x,t))dxdt 
QO,T 

= \ (Ak(x,t)u^k(x,t),u^(x,t))Xsdxdt 
QO,T 
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- \ (AkXs(x,t)u%k(x,t),u^(x,t))dxdt 
Qo,r 

- J (Ak(x,t)u»Xs(x,t),u%a(x,t))dxdt 

Qo,r 

- T1 - T2 - T3 
— 1 7 1 7 1 7 • 

From (A) and (5) we get 
T 

I\ = J\(Ak(x,t)u^k(x,t),ul(x,t))Xsdxdt = 0 , 
on 
T 

I7 = S \(Akx3(x,t)u?k(x,t),u£(x,t))dxdt 
on 

< 5 S II Afe«. (x, t) II K (x, t) I K (x, t)\dxdt 
on 

< \ sup II Ate. (x, É)|| S \ ( K ( x , t) I2 + |t£(x, t)\2)dxdt 
2 Qt 6n 

and 
T 

J73 = J \(Ak(x,t)u?kXs(x,t),u£(x,t))dxdt 
no 
1 T 1 T 

= 2 SS É)«x,(®i *)» «x,(®. t))Xkdxdt - - J 5 (AkXku^s,u%s)dxdt. 
on on 

Hence /f < J afc|u^(x, í)|2dxdí. Thus 
Q0,r 

/ I \ m 

/ r < a0 + -sup||Afcls(x,i)ll J ]T|u£ s0M)| 2¿rdt 
V /Qo,r¿=l 

-. m 
+ ~ s u p l i d O M ) I l S ^\UiXk{x,t)\2dxdt. 

¿ Qt Q O , T ¿ = 1 

Prom (G) we get 

h = - \ (G(t,uN)iU»Xs(x,t))dxdt 

QO,T 

= - \ (G(t, uN), (x, t))Xadxdt + \ (GX3(t,uN),u»(x,t))dxdt 

Q 0,r Qo,t 

= J ( J ( t , u N ) u » ( x , t ) , u » ( x , t ) ) d x d t 

Qo,r 



A problem for the hyperbolic system 393 

and hence 1$ > 0. From (C) we have 

h = J (C(x,t)uN(x,t),u£Xa(x,t))dxdt 

Qo,r 

= J (C(x,t)uN(x,t),u%a(x,t))Xsdxdt 

QO,T 

- J (CXa(x,t)uN(x,t),u?s(x,t))dxdt 

QO,T 

< 5 ||CX# (x, t) II lu^i®, t) I |u£ (x, t)\dxdt 

QO,T 

- I f " 1 \uN(x,t)\2dxdt + ^ J \u£(x,t)\2dxdt, 51 > 0 , 

QO,T 2 Qo,r 

where C2 depends on the matrix CXa, s = 1 ,2 , . . . , n. 

J i o = 5 (F(x,t))U^Xa(x,t))dxdt 

Qo,r 

= \ (F(x,t),v£t(x,t))Xtdxdt- J {Fx.(x,t),u£(x,t))dxdt 

Qo,t Qo,T 

- T1 - T2 
—MO 110-

From the assumption = 0 we thus obtain 

/ io = - / ! 2 o < ^ i \FXs(x,t)\2dxdt+6-± \ \u^(x,t)\2dxdt. 

z 0 3 Qo.r
 Z

 Qo,r 

Using (14) we obtain the following inequality 

( 1 5 ) 2 d x - h J j^\ul{x,t)\2dxdt 

fir S=1 Qo,r «=1 

^JT \ E\fXa(x,t)\2dxdt+ \ ¿|©£(:r)|2dz 
3 Qo,r a=1 0« 0=1 

+ f i fl^N(^)\2dxdt-sup \\AkXs(x, t)|| i ¿ | < ( r r , i ) | W i , 
01 Q0,r S=1 Q0,T Q0 t ,= 1 

where h = 2ao — 5\C2 + . Therefore 
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( 1 6 ) ¡ ¿ | ul(x,t)\ 2dx-k i j2\u»s(x,t)\ 2dxdt 

nT s=i Qo,t S=I 
c 2 

1 Qo,r S=1 

- sup ||ilfcx.(®,i)ll i 
QO,t Q0 t S=1 

and thus 
.N („ +\|| . , |\„.N 

( 1 7 ) \\<(x,t)\\LUQ0,T) + II" ( * » t ) \ \ l & { Q0 , T ) 

< \\F\\LUQO,t) + l l © l l ^ ( n ) + \\F*A\LUQO,T) + II©.. 1 1 ^ ( 0 ) -

Hence, there exist subsequences {u'}, {u'Xs} of sequences {uf(x,t)}, 

t)} such that 

u\ —* Ui weakly in L2(Qo,r), 
ULS

 u i x , weakly in L2(Q0j), 

u\ —• Ui weakly in Lp(QO,T)-

Since \gj{t,u?,...,u%)\ < c £ j = l , 2 . . . , m then from (13) 

¿=1 

(18) \\ui\Pdx < ^ F o , 

and Holder-Young inequality we obtain 

III = \ (IUi&t^r-^dxdt < ( \ ( M M ) r V H 1 / 9 ( !  d x d t) 1 / P  

Hence In < ^ \qq t \ui(x,t)\ pdxdt+^ J dxdt, and $Q 0 t \G(t, u k)\dxdt < /¿2, 
Qo,t 

where /¿2 is a constant independent on U{. So G(-, . . . , u£) —» u> weakly 
i n L*M(QT). 

From (G), analogously to [7], it is easy to prove that uj = G(t,u). 

Using (7) and the Galerkin's system it is easy to prove, that for all 
v ^ the following equality is satisfied 

- j (u(x,t),vt(x,t))+ J [ ¿ ( A f c ( x , i ) < ( M ) X M ) ) 
QO.T Qo.t  Lfc=1 

+ (C{x, t)uN(x, t), v(x, t)) + (G(t, uN), v(x, t)) - ( F ( x , t), v(x, t)) dxdt — 0. 
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Hence ut = Z, where 
n 

z(x, t) = - J 2 M x i 0«*« - c(x> ~ G(t>u) + F(x>t)• 
t=i 

Thus ut G ¿^(Qo.r ) + ¿^(Qo.t ) , which completes the proof of Theorem 1. 

Now, we shall consider the problem (1), (2) in the domain Qt without 
initial conditions. 

DEFINITION 2. A function u is called a weak solution of problem (1),(3) if 

ue Llc(QT)nC((-™,T}-,L\{i)), 

and u satisfies the following integral equality 

( 1 9 ) \ (u(x, t2),v(x, t2)) - {u(x, ¿ i ) , v(x, ti)) 
o L 

dx 

+ \ - (u(x,t),vt(x,t)) - Y^(Ak(x)u(x,t),vXk{x,t)) 
Qtvt2 L fc=l 

n 

- ^2(u(x,t), AXk(x)v(x,t)) + (C(x,t)u(x,t),v(x,t)) 
k=1 

+ (G(t, u), v(x, t)) - (F(x, t), v{x, t)) dxdt — 0 

for all i i , ¿2 € (—oo,T], ii < t2, where v satisfies (3) and v G Cl(QT). 

Let (C(x, t) - i A^ (x, t)£, f ) > /i0|£|2 for almost all (x, t) G and 
all £ G Rm. 

THEOREM 2. 7/i/ie conditions (A ) , (C) , (G ) hold, h0 > 0, F , E 
i = l , . . . n and F satisfies (2), then the problem (1), (2) has ai most one 

weak solution. 

P roo f . Let Q_ i > r = O x ( - i , T ) for all l G AT and 

p(0r-r rt - / ^ f o r É) 6 Q~ l 'T> 
f o r (x,t) G Q-oo-i-

From Theorem 1 we see that for every positive integer I the problem (1),(3) 
has a solution ul(x,t) of the class LPj(<5-î,t) rï H^Q-^t) with the initial 
condition 

u(x, —I) = 0. 
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We extend the function ul(x,t) on fl-oo,-i assuming that ul(x,t) = 0 on 
this domain. Let i i , £2 be such that t\, £2 € R, t\ < < T. 

Define 

' ( £ 2 - £ i ) a if t > t2, 

W) = (t ~ h)a if h < t < i2, 

.0 if £ < *i 

for a > 1. Notice that each function ul satisfies the system A(u) = F^ 
in Q T . Thus 

(20) \ \ \ul - us\2^{r)dx + \ \{C(ul - us), ul - u")^{t) 
uT Qti.r 

~ \ m E(AjXj (Ul - u3), ul - us) + U'(t)(ul - ul - us) 2 J 3 K " ' 2 j=i 

+ (G(x, ul) - G(x, u"), ul - us)iP(t) - (Fl(x, £) - Fs{x, t), ul - us)ip(t) 

- i \ ip(t)\ul(x,0) - us(x,0)\2dx = 0 
2 n0 

for —I < ii, — s < ¿i, where t\ < t <T. 
Prom the assumption of Theorem 2 we have 

I\2 — \ (C(x,t)(ul(x,t) -us(x,t)),ul(x,t) -us(x,t))i(;(t)dxdt 
Qt !,r 

> c0 \ i>(t)\ul(x,t) - us(x,t)\2dxdt, 
Qh, t 

113 = \ (G(x, ul) - G(x, u3), ul(x, t) - us(x, t))^(t)dxdt 
Qti, t 

> 90 \ ip(t)\ul{x, £) - us(x, t)\pdxdt 
Qh, t 

and 

Iu= j if>'(t)\ul(x,t)-us(x,t)\2dxdt 
Qt , , T 

dxdt 

Z tl il 

m 
2 

•0P 

p - 2 
d£, 

where n(p,go) is a constant. 
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By assumption we have 

J 1 5 = $ ((F l(x,t) - Fs(x,t),u l(x,t)-us(x,t))i/>(t)dxdt = 0. 
Qt !,t 

From the estimates I\2 — /15, and (20) we obtain 

(21 ) j \ul(x,T)-us(x,T)\2ip(T)dx + ^ J \ul{x,t)-us(x,t)\fiP{t)dxdt 
fir Qtur 

+ h0 \ il){t)\ul(x,t)-us(x,t)\2dxdt < n 4 ( t 2 - i i ) a + 1 ~ ^ , 

Qtl.r 

and from (21) we have 

( 2 2 ) J | t i ' ( x , r ) - u s ( x , r ) \ 2 d x + ^ J | u ' ( x , i ) - us(x,t)\pdxdt 
nT gtl,r 

+ /i0 J \ul(x,t) -us(x,t)\2dxdt < /j,A(t2 - i i ) 1 - ^ . 

Qtl.r 
Since 1 — < 0 and ¿1 is arbitrary then (22) implies, that the sequence 
{ul(x, i)} satisfies the Cauchy condition in the domain Qt2,T, T > t2. Hence 
we obtain 

Ve>0 5 | U l ( x , t ) - us(x,t)\2dx < c for i 6 {t2,T) and l,s > N0, 
n 

V£>o \ | u l ( x , t ) - us(x, t)\2dx < e for t € (t2) T) and l , s > N0 

Qt0,r 

and 

V£>0 J |«'(®, i) - u'(x, t)\pdxdt < e for t € (t2l T) and l , s > N0. 
Qt2,T 

Therefore 

u'-^ti in C((—oo,T]; L2(Q)), 

ul->u i n L^i^Qt) 

and ul —> u in l?m loc(QT) when I —> 00. 
Hence we have 

G(x, v!) -* G(x, u) weakly in 
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Consequently 

(23) J (u'(x, t2), v{x, t2)) ~ (u\x, i i) , v(x, i i ) ) dx 

+ \ - (ul(x,t),vt(x,t)) - Y^(Ak(x)ul(x,t),vXk(x,t)) 
<3t1,t2 L k=1 

n 
- Y^(ul(x,t),AXk(x)v{x,t)) + (C(x,t)u'(x,t),v{x,t)) 

k=1 

+ (G(t, it'), u(z, 0 ) - (F(X, t), v(x, t)) dxdt = 0. 

Passing to the limits in (23) with Z —> oo we obtain that there exists solution 
of the problem (1), (2). 

Now we prove that this problem has at most one solution. 
By theorem from [1], it is easy to show that the equality (20) holds for 

v = uip(t). If we put v = uip in (20) then we obtain 

t2 
(24) J \-Uu2(x,t)m 

Qtltt2 a 
dx 

1 1 " 
+ i -^(u(x,t),u{x,t)ip'{t))--Y^(u(x,t),AXk(x)u(x,t)ij(t)) 

Qt1,t2 k=l 

+ (C(x, t)u(x, t), u(x, t)tp(t)) + (G(t, u), u{x, t)ip(t)) 
-(F(z,t),u(z,tW(t)) dxdt — 0. 

To obtain a contradiction, suppose that there exist two solutions it1, it2 of 
the problem (1),(2) such that it1 / it2. Denote it = it1 — it2. From (24) it is 
easy to show that for every r < T the following equality is satisfied 

(25) \ \ lit1 - u2\2i>{T)dx + j [(C^1 - ix2), u1 - u2)i>{t) 
fiT Qt !,r 

- - « 2 ) ) + - « V 1 -

+ (G(x, it1) - G(x, it2), it1 - u 2 ) ^ ) ] dxdt = 0. 
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Analogously to the estimates of components of equality of (20) we can show 
that 

Ve>o \ \ul(x,t) - u2(x,t)\2dxdt < e 

QH,T 

for every e. Hence ul = v? in ( t \ , T ) . Since t\ is arbitrary, then we have 
u1 = u2 in (—oo, T) . This completes the proof of Theorem 2. 
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