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INITIAL VALUE PROBLEMS FOR
SECOND-ORDER INTEGRO-DIFFERENTIAL EQUATIONS
ON UNBOUNDED DOMAINS IN A BANACH SPACE

Abstract. In this paper, the Ménch fixed point theorem is used to investigate the
existence of solutions of initial value problem(IVP, for short) for second order nonlinear
integro-differential equations on infinite intervals in a Banach space. At the same time,
the uniqueness of solution for IVP is obtained also.

1. Introduction

Nonlinear integro-differential equations arise from many nonlinear prob-
lems in science (see [1]). In [2, Section 3.3], Dajun Guo had discussed the
initial value problems (IVP, for short) for first order integro-differential equa-
tions of Volterra type on infinite interval J = [0, +00) in a real Banach space
by using the Banach contraction principle. He assumed that the nonlinear
term satisfies Lipschitz condition. In the recent papers [3], [4], D. Guo has in-
vestigated the IVP for second-order integro-differential equations in ordered
Banach space by using the upper and lower solutions and monotone iterative
technique on finite and infinite interval, respectively. It can be mentioned
use such method, a Lipschitz condition or one-sided Lipschitz condition and
upper-lower solutions are needed. Unfortunately, to find upper-lower solu-
tions is as difficult as well as to find a solution in most cases.

In present paper, we investigate the existence of IVP for second-order
such equations similar to [3], [4] by means of completely different method.
We propose an use of H. Monch fixed point theorem, where the Lipschitz
condition and upper-lower solutions are not needed. In addition, the unique-
ness result is obtained.

1991 Mathematics Subject Classification: 34G20.
Key words and phrases: Initial value problem, integro-differential equation, fixed point
theorem, relatively compact.



350 Y. Liu

Consider the IVP for second-order integro-differential equations of mixed
type in Banach space E:

1) z"(t) = f(t,z,2',Tz,Sz), Vt € J;
z(0) = zo, 2'(0) = z3,
where f € C[J x Ex E x E x E,E],J = [0,4+00), z9,z; € E, and

t +o0
(2) Sk(t s)z(s)ds, (Sz)(t) = S h(t,s)z(s)ds, Vte J,
0

ke C[D,R],D={(t,s) e JxJ:t>s}; he C[Jx J;R], R = (—00,+00).

Let

FC[J,E] = {z € C|J, E] : sup “1 0l < +oo}
teJ
and
117 Bl — 1 =@l /
DC'[J,El =3z € C'[J,E]:s —<+oo and sup||z'(t)] < oo .
ey T+t teJ

Evidently, C[J, E] C C|J, E], DC'[J,E] C FC|J,E}. It is easy to see

that FC[J, E] is a Banach space with norm

=@l
3 —_
© ol = sup 1501
and DC!'[J, E] is Banach space with norm
4) lzllp = max{liz|F, l'llc},

where ||z||F is defined by (3) and
I='llc = sup |z’ (#)]l-
teJ

The basic space using in this paper is DC![J, E]. A mapping = € C%[J, E]
is called a solution of IVP(1) if it satisfies Eq. (1).

For a bounded subset V' of Banach space E let a(V) be the Kuratowski
noncompactness measure of V (for detail, please see [2][5][6]). In this paper,
the Kuratowski measures of noncompactness of bounded set in E, VC[J, E],
FC[J,E), and DC*[J, E] are denoted by «(-), ac(-), ar(:), and ap(-), re-
spectively.

At the end of this section we state some lemmas which will be used in
Section 2.

LEMMA 1.1 [2] If H C C|[l, E] is bounded and equicontinuous, then a(H(t))
is continuous on I and

ac(H) = maxa(H(?)) o({ gm(t)dt zeH}) < a(H(t))dt

where I = [a,b], H(t) = {z(t) : z € H}, tel.
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LEMMA 1.2 [2] Let H be a countable set of strongly measurable function
z : I — E such that there ezists a function M € L{I, R*] such that ||z(¢)| <
M(t) a.e. t €I for allz € H. Then a(H(t)) € LI, R*] and

({§ a(t)dt:z € H}) <2§ H(t)dt,

where I = {a, b)].

LEMMA 1.3 [2] (H. Monch fixed point theorem). Let D be a closed and convez
subset of E and u € D. Assume that the continuous operator A : D — D
has the following property:

C C D countable, C C eo({u} U A(C)) — C is relatively compact.
Then A has a fized point in D.

2. Main result
For convenience, let us list some conditions.
H;) There exist nonnegative functions a, b, ¢, d, e € C[J, J] such that
It 2,9, z, w)| < a(@)llzll + byl + c@)llz]| + d(E)||w]| + e(t)
vte J,z,y,z,w€eE

and
+§°[(1 +t)a(t) + b(t) + k*(t)c(t) + h*(t)d(t)]dt < 1, +§>°e(t)dt < +00,
(O 0
where
k*(t) = S |k(t, s)|(1+ s)ds, h*(t) = +Soolh, (t,8)|(1+s)ds < 400, Vte J
0

Hy) There exist nonnegative functlons i, lo, I3, Iy € L[0,+00) such
that

a(f(t, D1, D, D3, Dy)) < Li(t)(D1) +la(t)a(D2) +13(t)a(D3) +la(t)o(Da),

Vt € J, bounded subsets D;,Dy,D3,DsCE
and
+o00 1
l=: S (A + )1 (8) + l2(t) + 2K* ()I3(t) + 2U4(t)R*(t)]dt < 3
0
LEMMA 2.1. If condition Hy) is satisfied, then z € DC[J, E|NC?[J, E] is a
solution of IVP(1) if and only if x € DC'[J, E] is a solution of the following
integral equation
¢

(5)  z(t) = zo+ ter + {(t — 5)f(s,2(s),2'(s), (Tz)(s), (Sz)(s))ds.

0
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Proof. First, we show that the abstract infinite integral
+0o0

| f(s,2(s),2'(s), (Tz)(s), (Sz)(s))ds

0
is convergent for z € DC![J, E).
In fact, from condition Hi), we know
400

© § 15 z(t), 2 (2), (Tz)(2), (Sz)(t)) lldt
0

+o0

< | [a@®lle@®ll+ bl @)l + 0| S,k(t’ s)a(s)ds|

0

+d() +(§)°° h(t, s)(s)ds|| + e(t)| dt

T+ oato - 120

0

IA

+ B @) + o(t) H k(t, s)(1+ s) - s)sds”

+d(t)| +§° h(t, s)(1 + s) - ffsdsu +e(t)] dt

+00 t
< | [(1+t)a(t)~||m||p+b(t)||w’llc+c(t)§|k(t,s)|(1+s)ds-IIzIIF
0 0
+o0o
+d(t) | |h(t 9)|(1+ s)ds - ol + e(t) | dt
0
+o0
< § [+ )a(®) +b(t) + K (t)e(t) + R*(t)d(®)]dt - fiz|D
0
+o00
+ S e(t)dt < +oo.
0

Thus, {3 f(s,z(s), '(s), (Tz)(s), (Sz)(s))ds is convergent.
For x € C?[J, E], we have

(7) z'(t) = '(0) + §:L'"(s)ds, VieJ
0
and

(8) z(t) = z(0) + §m'(s)ds vt e J.
0



Initial value problems 353

Substituting Eq. (7) into (8), it is easy to get the following formula:

¢
9) =z(t) = z(0) + t2'(0) + {(t — s)a"(s)ds, Vte J, =ze C*JE].
0
Now, if z € C?[J, E] is a solution of IVP(1), then, substituting Eq. (1)
into Eq. (9), we see that z(t) satisfies Eq. (5).
Conversely, if z € DC[J, E] is a solution of Eq. (5), then, differentiation
of Eq. (5) gives

() =z1+ S f(s,z(s),2'(s), (Tz)(s), (Sx)(s))ds, VteJ
0

and
" = f(t,z(t), z'(t), (Tz)(t), (Sz)(¥)), VteJ,
hence z € C?[J, E] and z(t) satisfies Eq. (1). w
For z € DC![J, E], we define an operator A by

t
(10)  (Az)(t) =: zo +tz1 + {(t ~ 5)f (s, 2(s), 7' (5), (Tz)(s), (Sz)(s))ds.

0
Then, by Lemma 2.1, we know that the existence of solution for IVP(1) in
DC![J, E] is equivalent to the existence of a fixed point of the operator A

in DC[J, E). Therefore, we need to investigate only the existence of fixed
a point of A in DC![J, E].

LEMMA 2.2. Suppose H,) is satisfied. Then A: DC![J,E] — DC[J,E] is
bounded.

Proof. Firstly, we claim that Az € DC![J, E] for any z € DC1[J, E].
In fact, for x € DCY[J, E], by (6) (10) we know that Az € C'[J, E] and

) |4 ¢ ot tnl, SHtIIfsw(S) #(s), (T2)(5), (S2)(s))ds
+o00
< flzoll + lloall+ § 1f(s,2(5), /(s), (T2)(s), (S2)(s) s
0
+00

< Nzoll + llzall + § [(1+8)a(t) + b(t) + k*()e(t) + R*()d(t)]dt - |lzllp
0

+ | e(®)dt.
0
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Similarly, we have

+00

<zl + § [+ t)a(t) +b(t) + K (B)e(t) + h* (D)d(D)]dt - ||zllp
0
+o0

+ | e(®)at

(12) |42y @)l = lles + [ £(5,2(5),2/(s), (T2) (), () (5))ds|
0
1

Now (11) and (12) guarantee that Az € DC'[J, E] and A is a bounded
operator. =

LEMMA 2.3. Let H,) be satisfied, V is a bounded subset of DC'[J, E]. Then
%ﬂ , (AV)(t) are equicontinuous on any finite subinterval of J and for

any € > 0, there exists N > 0 such that

H(Aff)(tl) _ (A=z)(t2)
1+4 1429

<& [I(Az)(0) — (Az) ()] <€

uniformly with respect to ¢ € V as t;,to > N.
Proof. For z € V, t3 > 3, by using (10), we get

(A.'I:)(tl) _ (A:I:)(tz) o+ tixy T+ temy

(13) “ 1+t 1+t2 1+t1 - 1+t2
+ (S) %__ij(s, z(s), z'(s), (Tz)(s), (Sz)(s))ds
g s ’
B § T (5,2(9),/(8), (T)(s), (S2)()ds

t2
< (ol + llza )]tz — t1] + S

1 +t (s,z(s),z (3), (T'x)(s), (Sz)(s))|ds

t

S

Then by using H;) together with (13), it is easy to see that
{L%Q : ¢ € V'} is equicontinuous on any finite subinterval of J.
Similarly, from the same reason, one can prove that {(Az)'(t) : z € V}

is equicontinuous on any finite subinterval of J.

In the following, we shall prove that for any € > 0, there exists sufficiently
large N > 0, which satisfies

+t1 m £ (s, 2(s),2(s), (Tz)(s), (Sz)(s))llds.
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(Az)(t1) _ (Az)(t2) ) ’
- € t1) — t
E <l (Ax) () - (Ae) ()] <€
holds for all z € V and t;,t9 > N.
By (2.9), we need to show only that for any € > 0, there exists sufficiently
large N > 0 such that
t1

J if 1 (5,2(5), 2(5), (Tz)(s), (S2)(5))ds

0

(14)

= § 220 1, a(9),2(5), (T2)(9), (S9)(5))ds

<eg, Viti,to> N.

o l+t2
Since V is bounded, then, by using (6), there exists M > 0 which satisfies
(15) +§°° £ (s,2(5), &'(s), (Tz)(s), (Sz)(s))|ds < M,  VzeV.
There(f)ore, there exists L > 0 such that
(16) +§° I1£(s, z(s),2'(s), (Tx)(s), (Sz)(s))llds

€
< 3 uniformly with respect to z € V.

Choose N > L > 0 such that
t1—s tg—s 5
17 — -
(17) 1+t 1+t 300
Then (15)-(17) yield that

Vi, te > N, Vse€ [O,L]

f 222 (5,251, 2/(5), (T)(6), (S2)()ds
0

t
2ty —s

_(S)].-I-tg

f(s,2(s), 2/ (s), (Tz)(s), (Sz)(s))ds

+o0

| f(s,2(s),2/(s), (Tx)(s), (Sz)(s))ds

il

26 €
—+ = -M=
3 T3
what means that (14) holds.

Thus, our conclusion follows. w

<2

— S
+t1 1+t2

f(s,2(s), 2'(s), (Tz)(s), (Sz)(s))ds
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LEMMA 2.4. Let Hy) be satisfied, V is a bounded subset of DC[J, E}. Then,
ap(AV) = max { sup a((AV) (t) ) , sup a((AV)'(t)}.
teJ 1+1¢ teJ
Using Lemma 1.1 and Lemma 2.3, the proof of Lemma 2.4 is very similar
to that of [7, Lemma 2.4], so we omit it.

LEMMA 2.5 Let Hi) be satisfied. Then A: DC'[J, E] — DC[J, E] is con-
tinuous.
Proof. Let {z,},{z} ¢ DC![J,E] and ||z, —z|lp = 0 (n — +0c0). Hence
{z, : n > 1} is a bounded subset of DC![J, E]. Thus, there exists M > 0
such that ||z,|lp < M. At the same time, ||z|p < M.

In the following, we first show that {Az,} is relatively compact. Since

(A28 D) < [ o000, 20, (D)0, S0

s |

=f(s,2(s),2'(s), (Tz)(s), (Sz)(s))llds

and

1(Az,)'(t) — (Az)' (D)]] < §|If(s Zn(8), Tn(s), (T2n)(5), (Szn)(5))

—f(s,2(s), 2'(s), (Tz)(s), (Sz)(5)) | ds.
By Hi) (6)(11)(12)(18)(19) together with the Lebesgue dominated con-
vergence theorem, one can get

(Tz,)(t) = (Tz)(t) (n — +o00),

(Szn)®) = (S)(B) (n—to0),
Moreover,
(Azn)(t)  (Az)(®)
(20) Trt it T e
(Az,)'(t) = (Az)'(t) (n — +o0),
Therefore,
a({gﬁ‘)t@ ‘ne N}) = a({(Aza)(t) in € N}) =0, Vt e J.

Immediately, Lemma 2.4 guarantees that
ap({Az, :n € N}) =0,
that is, {Az,} is relatively compact.
Next, we prove ||Az, — Az||p = 0 (n — +00).
In fact, if this is not true, then there exist &g > 0 and {zn,} C {z.}
such that |Az,, — Az|lp > eo(i = 1,2,3,---). Since {Az,} is relatively
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compact, there exists a subsequence of { Az, } (without loss of generality, we
relabel the subsequence still as {Az,,}) and u € DC![J, E] with Az,, — u
(¢ — +00), that is, ||Axn1 - u||D — 0(¢ = +00). Therefore,

(Azp,)(t) “
1+t 1 +1

I(Azn) () =W/ ()] = 0 (n — +00),
Combining this with (20), one get that u = Az. This is a contradiction.
Consequently, A is continuous. =

(n=+20) ey

Our main results is the following.

THEOREM 2.1. Let Hy)H?3) be satisfied. Then IVP(1) has at least one solu-
tion belonging to DC1[J, E) N C2[J, EJ.
Proof. We need to prove only the existence of fixed point of operator A in
DC'[J, E]. Let

+00

> (lzoll + ol + | e(t)dt)
0
X (1 - +§m[(1 + t)a(t) + b(t) + k* (t)c(t) + h*(t)d(t)]dt)“l,
0

B =: Bp(6,R) = {z € DC'[J, E]: |lzllp < R},
where 8 denotes the zero element in FE.

We first show that A : B — B. In fact, for z € B, by (10), (11) and (12)
we know

+00
GO < ol + o+ 0+ )
+o00
+b(t) + K" ()e(t) + h* (D)d())dt - |lzllp + | e(t)t
0
<R, Vteld

Analogously, we can get
|(Az)' ()| <R, VteJ

Thus, by Lemma 2.5, we know that A is a continuous operator from B
into B.

Next, we prove that if C C B is countable, C C cop({u} U A(C)), then
C is relatively compact.

Indeed, suppose that C C B satisfies the above condition. Then we have
ap(C) < ap(AC). At the same time, by [8], it follows that

C(t) c @e({u()} U(AO)(1), C'(t) T Ba({u ()} U(ACY(®)), Vte J.
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Therefore,

@) o f9) <o(Y2Y), aw) <atacro)

1+t 1+t
On the other hand, fort € J,ne N,z € C, let
(Spx)(t) =: Xh(t, s)z(s)ds.
0
By Hi) we know that
+00

1(Snz)(t) = (Sz)() < | [Alt,9)] - (s)llds
+00
< | bt )1+ )ds - alp — 0 (n— +o0), z€C.

n

This implies that
dg((SnC)(t), (SC)(t)) = 0 (n— +o0),t € J,

where dg(+,-) denotes the Housdorff distance. Thus, by the property of the
measure of noncompactness, we get

(22) a((S.0)(1)) — a((SC)(®)), te

Moreover, by Lemma 1.2 we know

n

((SnC) (1)) = a({ [ A(t, s)z(s)ds : z € c})

0

SZ§|h(t,s)|(1+s)~a<
0

C(s)
145

)dS < QTSI |h(t, $)|(1 + s)ds - ap(C).
0

So, (22) guarantees that

+o0

(23) a({ +(§:O h(t,s)z(s)ds:z € C’}) <2 (S) |h(t, s)|(1 + s)ds - ap(C).

Now, by Hj), Lemma 1.2 and (10)(21)(23), we obtain

a((AC)(t)> <2f LTS {f (s, 2(5), ' (5), (Tx)(s), (Sz)(s)) : = € C})ds

14t 0 1+1¢
< 2| () C(8)) + la()a(C'(5)) + lg(s)a<{ [k(s,7)a(r)dr : z € C})
0 0
+00

+ l4(s)a({ S h(s,T)z(T)dr : 2 € C})]ds
0
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<2{h(s)1+ s)a(?@) +l2(s)a(C'(s))

0 S8

p C(r)
23(s)\ |k(s, |1 + T dr
+ 2059 o, DI+ e (77

+0o0
+ 2l4(s) S |h(s,T)|(1 + 7)dT - ap(C)]ds
0

+00 3
<2 S [(1+ 8)l1(s) + la(s) + 2l3(s) S |E(s,T)[(1+T)dr
0 0

+o00
+ 2l4(s) S |h(s,7)|(1 4+ 7)d7]ds - ap(C)
0

< 2lap(AC).

Since t is arbitrary, it follows that

(24) supa(%??) < 2lap(AC).

teJ

Very similarly, one can get

(25) Stlel?a((AC)l(t)) < 2lap(AC).

Immediately, by (24), (25) and Lemma 2.4, we obtain ap(AC) = 0.
Furthermore, ap(C) = 0. This implies that C is a relatively compact subset
of DC![J, E|. It follows from Lemma 1.3 that A has a fixed point in B, that
is, IVP(1) has at least one solution in DC*[J, E]. u

REMARK 1. In Theorem 2.1, f needs not to be uniformly continuous.

REMARK 2. If f(¢t,z,2',Tz,Sz) = f(t,z,Tz,Sz) in IVP(1), we may use
similar method to study IVP(1) in basic space FC[J, E] to obtain the same
result as Theorem 2.1 under H;) — Hy) (here b(t) = 0, l3(s) = 0). Moreover,
the proof may be simpler since we do not need to estimate the derivative
term.

REMARK 3. If f(¢,z, 2/, Tz, Sz) = f(¢t,z,2’, Tz) in IVP(1), that is, the term

Sz does not emerge in f, the condition "] < %” in Hy) may be removed.

In fact, from the proof of Theorem 2.1, for C C B countable and C C
cop({u} U A(C)), we get
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(Y7 s 2dmE + e £ + oo )

M C(r)
203(s)\ |k(s, D)|(1 + )| ——= )d7]ds.
+205(5) | Ik, 1+ (T
Also we have

) c C(s) /
a((AC)Y (1)) < 2\Ml1(s)(1 + s)a| —= l9(8)a(C'(s
(A0 ®) <2 {1+ 9o 1)) + ble)a(@(s)

0 C(r)
2l3(s)\ [k(s, T)|(1 + T)a| —= )d7]ds.
+ 2309 b I+ )77 )
Let
(AC)(t)
1+¢

m(t)=max{a( ) a((AC)’(t))}, ted

Then
t

m(t) < 2 {{{l(s)(L + 5) + la(s)]m(s)
0

+ 2l3(s) \ |k(s, T)|(1 + 7)m(7)dT}ds.

QO b

This integral inequality yields m(t) = 0 for t € J. By Lemma 2.4 it can
be obtained that ap(AC) = 0. The rest is the same as in the proof of
Theorem 2.1. Thus, the existence of solution for IVP(1) follows.

The following theorem is an uniqueness result for IVP.

THEOREM 2.2. Assume that
Hs3) there ezist nonnegative functions a,b,c,d € C[J, J]| such that

“f(t7m17y1a Zl,’ll)l) - f(t,272,y2,22,w2)” < a(t)”ml - .’132” + b(t)“yl - y2“
+c(t)|lz1 = 22|l + d(t)||wy — wel| Vte Jyz,y,2,w€E

and
+o00
L=: | [(Q+t)a(t) +b(t) + k*(t)c(t) + *(t)d(t)]dt < 1,
0
+00

} 11£(£,0,0,0,0)dt < +oo,

0
where k*(t) and h*(t) are the same as in Hj).

Then there ezists the only solution of IVP(1) belonging to DC*[J, E] N

C2[J,E).
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Proof. First, it is easy to see that H3) implies H;). So by Lemma 2.5, A:
DC'[J, E) — DC[J, E] is continuous, where A is the same as in (10).

Next, we show A is a contraction. For any given z1, z2 € DC![J, E], by
(10) and (H3) we know that

u (Az)(t) — (Az2)(2) ’ S | £(t, z1(2), 21 (t), (Tz1)(t), (Sz1)(t))

141¢
= $tm2(8) 25(0), (To)(e), (Sm2) ()l
+oo
< | [a@® e =22 @l+b®)12 () ~2h () [ +e(t || (t, 5)(z1(s)—z2(s))ds
0
+d(t)H g h(t,s)(ml(s)—:cg(s))ds”]dt
0
+o0 t
< | [1+Dat) le1—zall p+b(#) 12 —ahllc+o(t) [ Ik (t, 5)| (1+8)ds- o1~z
0 0
+o00
+d(©) § bt (1 + $)ds - 21 = o]l dt
0
+o00

< 1 [(L+D)a(t) +b(e) + k* @)c(t) + h* ({)d(B))dt - 21— 2l = Lilz1 —za]lp.
0
Similarly,
I(Az1)'(t) — (Az2)' ()| < Lllz1 — 22]ip.
So it follows that
|Az1 — Azs|lp < Li|zy — x2|p.
Immediately, the Banach contraction principle guarantees our result. m

The following example, may be used to illustrate some applications of
Theorem 2.1.

EXAMPLE. Consider the IVP of an infinite system for scalar second order
differential equations
(

.’I:”— t+z, + 1+ Y |xl2nl + 1
"T7(t+1)et T 4n(9+182)  n2(1+t)2
26 t
(2) 1 Xln(2+§6_(t+1)s s)ds+ S sin(t )3)xn+1(8)ds), 0<t < +o0;
0 0

Lmn(O)zmon, z,(0)=11, (n=1,2,3,--"),

where sup |zon| < 400, sup |T1,] < +o00.
n n
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CoNcLUSION: IVP(26) has at least one solution defined on [0, +00).

Proof. Let £ =1 = {z = (21, - Zp, ) : sup|za| < +o0} with norm

||z} = sup |zn|. Then IVP(26) can be regarded as an IVP of form (1) in E.
n

In this situation, J = [0, +00), z = (21, Zn," ), o = (To1,"** Ton," "),
1= (T11," " Tin, 7)) € B, f = (f1,-" fny )y fu = gn + P, in which

_ t+ z,

In = TG+ et

1+ {2, 1 1
n = 4n(9 T t2) + n2(1 T t)2 l’l( + Zpyo +wn+1)v

where
i - 400
_ sin(t — s

Zn = (S)e sy (s)ds, wp = (S) (1(+—s)3) n(s)ds.

Evidently, f € C[J x E x E x E x E, E]. Now we verify that H,) — H2)
hold. First, it is easy to see that

17 2,9, 2 w)ll = 50p | falt, 7,2, w)]
< a(t)llz]l + b(e) ol + (@)=l + dOllwl +e(t), Vi€ Jz,y,2we E,

where

1 1
M=715ne "W prey
e(t) = d(t) = T
e(t) = t 1 1

A+ 0  20+8) T T+02
Now we estimate k*(t) and h*(t). After simple calculation, we can get

' t t
1 1
0 < k*(t) = \k(t, s)(1+ s)ds = {e~FV3(1 4 5)ds < +
(S) (S) t+1  (1+1¢)2
and
< sin(t — s)| oo 1
=\ ——=— <\ ——ds=-.
h*(t) = S TEWE (14 s)ds < (S) (1+s)2s 3
Therefore,
+o0
1 1 9
[ k*(t)e(t)dt < g [ ]dt =2
2 (t + 1)3 (1 +t)4 20
+eo 1

g R*(t)d( t)dt< 3 g (1 dt=g5.
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Also we have
+o00 +o00

1 T
(S) (1+t)a(t)dt = -, (g) b(t)dt = .
Consequently,
+o0 +00
S [(1+t)a(t) + b(t) + k*(t)c(t) + h*(t)d(t)])dt < 1, S e(t)dt < +o0,
0 0

that is, H;) is satisfied.
On the other hand, we obtain

(2 +lyl)
4n(9+12)  n2(1 +t)?

As shown in (2, Example 2.1.2], we know h(t, D1, Dy, D3, Dy) is relatively
compact in [*, i.e.

a(h(t,Dl,DQ,D3,D4)) =0, Vite J’
and all bounded subsets Dy, D9, D3, D4y C E.
Combining (26) with (27), it follows that

0 < fha(t, 2,9, 2,w)[ <

In(2 + lz|| + flwl))-

(27)

D
a(f(ta D17D2aD3,D4)) S %a

and bounded subsets Di, Dy, D3, Dy C E.
This means that 11(t) = sy, l2(t) = l3(t) = la(t) = 0. Since

vt € J,

oo 1 1
= (S) (1+h(t)dt == < 3,

then, Hs) holds.
By Theorem 2.1, our conclusion follows.

References

[1] V. Lakshmikantham, Some problems in integro-differential equations of Volterra
type, J. Integral Equations, Suppl. 10 (1985), 137-146.

[2] D. Guo, V. Lakshmikantham, X. Liu, Nonlinear Integral Equations in Abstract
Spaces, Kluwer Academic Publishers, 1996.

[3] D. Guo, Initial value problems for second-order integro-differential equations in Ba-
nach spaces, Nonlinear Anal. 37 (1999), 289-300.

[4] D. Guo, Second-order integro-differential equations of Volterra type on unbounded do-
mains in Banach spaces, Nonlinear Anal. 41 (2000), 465-476.

(5] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic
Press, Inc., New York, 1988.



364 Y. Liu

[6] V. Lakshmikantham and S. Leela, Nonlinear Differential Equations in Abstract
Space, Pergamon Oxford 1981.

[7] Y. Liu, Boundary value problems for second order differential equations on unbounded
domains in a Banach space, Appl. Math. Comput. 135 (2003), 569-583.

[8] L. Liu, Iterative method for solutions and coupled quasi-solutions of nonlinear Fred-
holm integral equations in ordered Banach spaces, Indian J. Pure Appl. Math., 27
(1996), 959-972.

DEPARTMENT OF MATHEMATICS
SHANDONG NORMAL UNIVERSITY
JINAN, 250014, P. R. CHINA

E-mail: ysliu6668@sohu.com

Received January 8, 2004.



