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INITIAL VALUE PROBLEMS FOR 
SECOND-ORDER INTEGRO-DIFFERENTIAL EQUATIONS 

ON UNBOUNDED DOMAINS IN A BANACH SPACE 

Abstract. In this paper, the Monch fixed point theorem is used to investigate the 
existence of solutions of initial value problem(IVP, for short) for second order nonlinear 
integro-differential equations on infinite intervals in a Banach space. At the same time, 
the uniqueness of solution for IVP is obtained also. 

1. Introduction 
Nonlinear integro-differential equations arise from many nonlinear prob-

lems in science (see [1]). In [2, Section 3.3], Dajun Guo had discussed the 
initial value problems (IVP, for short) for first order integro-differential equa-
tions of Volterra type on infinite interval J — [0, +oo) in a real Banach space 
by using the Banach contraction principle. He assumed that the nonlinear 
term satisfies Lipschitz condition. In the recent papers [3], [4], D. Guo has in-
vestigated the IVP for second-order integro-differential equations in ordered 
Banach space by using the upper and lower solutions and monotone iterative 
technique on finite and infinite interval, respectively. It can be mentioned 
use such method, a Lipschitz condition or one-sided Lipschitz condition and 
upper-lower solutions are needed. Unfortunately, to find upper-lower solu-
tions is as difficult as well as to find a solution in most cases. 

In present paper, we investigate the existence of IVP for second-order 
such equations similar to [3], [4] by means of completely different method. 
We propose an use of H. Monch fixed point theorem, where the Lipschitz 
condition and upper-lower solutions are not needed. In addition, the unique-
ness result is obtained. 
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Consider the IVP for second-order integro-differential equations of mixed 
type in Banach space E: 

f x"(t) = f(t, x, x',Tx, Sx), Vi € J; 

where / G C[J x E x E x E x E , E],J = [0, +00), xo, x\ e E, and 
t +00 (2) (Tx)(t) = \k(t,s)x(s)ds, (Sx)(t) = \ h(t,s)x(s)ds, Vi G J, 
0 0 

fc € C[I>,il], D = {(t,s) e J x J : t > s}; h € C[J x J,R], R = ( - 0 0 , + 0 0 ) . 

Let 
FC[J, £] = i® € C[J, E] : sup M ^ l l < +00) 

I t e j 1 + 1 J 
and 

DC1 [J, £] = ( i e C1[J, E] : sup iiii^M < +00 and sup ||x'(t)|| < ool. 
L teJ 1 + 1 teJ J 

Evidently, Cl[J,E} C C[J,E], DCl[J,E] C FC[J,E]. It is easy to see 
that FC[J, E] is a Banach space with norm 

/ox I, || l|s(0ll (3) ||x||F = sup——— 
teJ 1 + 4 

and DC1 [J, E] is Banach space with norm 
(4) Ĥ IId = max{||x||F, H^Hc}. 
where ||a;||F is defined by (3) and 

ll^'llc = sup ||x'(i)||. 
teJ 

The basic space using in this paper is DC1 [J, E]. A mapping x € C2 [J, E] 
is called a solution of IVP(l) if it satisfies Eq. (1). 

For a bounded subset V of Banach space E let a(V) be the Kuratowski 
noncompactness measure of V(for detail, please see [2] [5] [6]). In this paper, 
the Kuratowski measures of noncompactness of bounded set in E, VC[J, E], 
FC[J,E], and DCl[J, E] are denoted by <*(•), ac(-), ap(-), and ao(-), re-
spectively. 

At the end of this section we state some lemmas which will be used in 
Section 2. 
LEMMA 1.1 [2] If H C C[I, E] is bounded and equicontinuous, then a(H(t)) 

is continuous on I and 

ac(H) = m a x a ( H ( t ) ) a ( { \x(t)dt: x G # } ) <\a(H(t))dt 

where I = [a, b], H(t) = {x(t) : x G H}, t e l . 
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LEMMA 1 . 2 [2] Let H be a countable set of strongly measurable function 
x : I —» E such that there exists a function M E L[I, such that ||:c(t)|| < 
M(t) a.e.tfE I for all xeH. Then a(H(t)) 6 L[I, i?+] and 

a ({ j x(t)dt : x € H}) < 2 \ a(H(t))dt, 

where I = [a, 6]. 

LEMMA 1 . 3 [2] ( H . Monch fixed point theorem). LetD be a closed and convex 
subset of E and u e D. Assume that the continuous operator A : D —> D 
has the following property: 

C C D countable, C C cd({u} U A(C)) —> C is relatively compact. 
Then A has a fixed point in D. 

2. M a i n result 
For convenience, let us list some conditions. 
H\) There exist nonnegative functions a, b, c,d,e € C[J, J] such that 

|| f(t, x,y, z, «,)|| < a( i ) |k| | + 6(t)||y|| + c(t)\\z\\ + d( i ) |h | | + e(t) 
Vf € J,x,y,z,w e E 

and 
+oo +CXI 

\ [(l + t)a(t) + b(t) + k*(t)c(t) + h*(t)d(t)]dt < 1, \ e(t)dt < +oo, 
0 0 

where 
t +oo 

jb*(i) = j | fc(t Js) | ( l + s)ds J h*(t)= \ \h(t,s)\(l + s)ds < +oo, Vi € J. 
0 0 

H?) There exist nonnegative functions ii, h, h, U 6 L[0,+oo) such 
that 

a(f(t, Di, Da, D3, DA)) < h(t)a(D1) + l2(t)a(D2) + h(t)a(D3) + h(t)a(D4), 

Vi 6 J , bounded subsets D2, -D3, D4 c E 

and 
+00 -TOO -| 

I =: J [(1 + t)h(t) + h(t) + 2k*{t)l3(t) + 2l4(t)h*(t)}dt < -. 

0 2 

LEMMA 2.1. If condition Hi) is satisfied, thenx € DC1 [J, E] HC2[J, E\ is a 
solution of IVP(l) if and only if x G DCl[J,E] is a solution of the following 
integral equation 

t 
(5) x{t) = xQ + tx 1 + \(t - s)f(s,x(s),x'(s), (Tx)(s), (Sx)(s))ds. 
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P r o o f . First, we show that the abstract infinite integral 
+00 

j f(s,x(s),x'(s),(Tx)(s),(Sx)(s))ds 
0 

is convergent for x € DC1 [J, E]. 
In fact, from condition Hi), we know 

+00 
(6) J || f(t,x(t),x'(t), (Tx)(t), (Sx)(t))\\dt 

0 
+00 t 

< J [a(t)|Ki)|| + 6(t)||s,(t)|| + c(t)||ifc(i,s)x(S)ds| 
0 0 

+00 

+ d(t)|| \ h(t,s)x(s)ds +e(t)jdt 
0 

< + f [(1 + t)a(t) • J M + 6(i)||x'(i)|| + c(i)|| 5 k(t, , )(1 + s) • ^ - d s 

+00 / \ 
+ d(t)J J h(t,s)(l + s) • +e(t)]dt 

+00 t 
< \ f(l + t)a(t) • ||£||f + 6(i)||x'||c + c(t) j \k{t, s)|(l + s)ds • ||x||f 

0 0 
+00 

+ d(t) $ \h(t, s)|(l + s)ds • ||x||f + e(t) dt 

+00 
< \ [(1 + t)a(i) + b(t) + k*(t)c(t) + h*(t)d(t)]dt • \\x\\D 

0 
+00 

+ \ e(t)dt < +00. 
0 

Thus, Jq 00 f(s, x(s),x'(s), (Tx)(s), (Sx)(s))ds is convergent. 
For x € C2[J, E], we have 

t 
(7) x'(t) = x'(0) + \ x"(s)ds, VteJ 

and 

(8) x(t) = x(0) + \ x'(s)ds Vi G J. 
0 
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Substituting Eq. (7) into (8), it is easy to get the following formula: 

t 
(9) x(t) = ®(0) + tx'(O) + \{t - s)x"(s)ds, Vi € J, xe C2[J,E]. 

o 

Now, if x € C2[J,E] is a solution of IVP ( l ) , then, substituting Eq. (1) 
into Eq. (9), we see that x(t) satisfies Eq. (5). 

Conversely, if x G DC 1 [J, E] is a solution of Eq. (5), then, differentiation 
of Eq. (5) gives 

t 

x'{t) = xi + \ f(s, x(s),x'(s), (Tx)(s), (Sx)(s))ds, Vi € J 
o 

and 

x" = f(t,x(t),x'(t),(Tx)(t),(Sx)(t)), Vi G J, 

hence x 6 C2[J, E] and x(t) satisfies Eq. (1). • 

For x 6 DC1 [J, E], we define an operator A by 

t 
(10) (Ax)(t) =: x0 + txi + \(t - s)f(s, x(s),x'(s), (Tx)(s), (Sx)(s))ds. 

o 

Then, by Lemma 2.1, we know that the existence of solution for IVP ( l ) in 
DC1 [J, E] is equivalent to the existence of a fixed point of the operator A 

in DCl[J, E]. Therefore, we need to investigate only the existence of fixed 
a point of A in DCl[J,E]. 

LEMMA 2.2. Suppose H{) is satisfied. Then A: DCl[J,E] —> DCl[J,E] is 

bounded. 

Proo f . Firstly, we claim that Ax € DC1 [J, E] for any x e DC1 [J, E}. 

In fact, for x 6 DC1 [J, E], by (6) (10) we know that Ax G Cl[J, E] and 

+oo 

<||xo|| + ||xi||+ S Wf(s,x(s),x'(s),(Tx)(s),(Sx)(s))\\ds 
o 

+oo 

<||xo|| + I M I + J [{l + t)a(t) + b(t) + k*(t)c(t) + h*(t)d(t)]dt-\\x\\D 

o 
+oo 

+ \ e(t)dt. 
o 

(11) 
{Ax)(t) 

1 + t 
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Similarly, we have 

(12) ( M W I I = 11*1 + i f(s, x(8),x\s), (Tx)(s), (Sx)(s))ds 
+oo 

<||®i|| + j [{l + t)a(t) + b(t) + k*{t)c{t) + h*(t)d{t)]dt-\\x\\D 
o 

+oo 

+ \ e(t)dt. 
o 

Now (11) and (12) guarantee that Ax € DCl[J,E] and A is a bounded 
operator. • 

LEMMA 2 . 3 . Let H\) be satisfied, V is a bounded subset of DCl[J,E]. Then 
, (AV)'(t) are equicontinuous on any finite subinterual of J and for l+t 

any £ > 0, there exists N > 0 such that 

(Ax)(ti) (Ax){t2) 
1 + h 1 + ¿2 

uniformly with respect to x € V as ti, t2 > N. 

Proof . For x e V, t2 > ti, by using (10), we get 

||(Ar)'(tO - (Ar)'(t2)|| < e 

(13) (Ar)(i!) (Ax)(t2) 
1 + t i 

ii 
1 + Ì2 

< Xo + t\X\ Xo + ¿2^1 
1 + tl l + t2 

+ S r r r / ( * ' *(*)> *'(*)> M M , (Sx)(s))ds i l + U 
t2 

- 1 T—^f(s,x(s),x'(S),(Tx)(s),(Sx)(s))ds 
i 1 + ti 

t2 
< (limoli + Il®i||)|ta - «il + J «'(«J. (^a:)^), 

+ 5 
il — s t2 — s 
l + t1 1 +1 2 

II f(s,x(s),x'(s),(Tx)(S),(Sx)(s))\\ds. 

Then by using H\) together with (13), it is easy to see that 
I^AxHil : x € V} is equicontinuous on any finite subinterval of J. 

Similarly, from the same reason, one can prove that {(Ax)'(t) : x G V} 
is equicontinuous on any finite subinterval of J . 

In the following, we shall prove that for any e > 0, there exists sufficiently 
large N > 0, which satisfies 
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(Ae)(éi) (Ax)(t2) <e, I K A r n t O - C A r / i i a J I ^ e 
1 + ti 1 + ¿2 

holds for all x € V and ¿i, ¿2 > N. 
By (2.9), we need to show only that for any £ > 0, there exists sufficiently 

large N > 0 such that 
h 

(14) S r r r x < T x ^ ( S x ) ( s ) ) d s ¿ i + ii 
«2 

- 5 n r / ^ i i i j y w . M W . W W ) ^ n 1 + ¿2 
<£, Vt1,t2>N. 

Since V is bounded, then, by using (6), there exists M > 0 which satisfies 
+oo 

(15) \ || f(s,x(s),x'(s),(Tx)(s),(Sx){s))\\ds<M, Vx 6 V. 
0 

Therefore, there exists L > 0 such that 
+oo 

(16) J \\f(s,x(s),x'(S),(Tx)(s),(Sx)(s))\\ds 

< - uniformly with respect to x € V. 
«3 

Choose N > L > 0 such that 

(17) 
¿1 — s t2 — s 

1 + il 1 + t2 

Then (15)-(17) yield that 

\j^-f(s,x(s),x'(s),(Tx)(s),(Sx)(s))ds 
n 1 + *1 

< 3 M ' V i l ' i 2 > i V ' V s € [ ° ' L ] -

ti 

¿2 ¿2 — S 
1 +«2 

/(s, x(s), x'(s), (Tx)(s), (Sx)(s))ds 

< 2 
+oo 

5 f(s, x(s), x'(s), (Tx)(s), (Sx)(s))ds 
L 

+ t\ — S t2 — S 

1 + ti 1 + t2 
f(s,x(s),x'(s),(Tx)(s),(Sx)(s))ds 

2e £ , , 

~ "3"*" 3M ' 
what means that (14) holds. 

Thus, our conclusion follows. • 
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L E M M A 2 . 4 . Let Hi) be satisfied, V is a bounded subset of DCl[J,E\. Then, 

aD(AV) = max { sup a ( ® ) , supa( ( J 4F) , ( i ) l . 
I t g ; \ 1 + i / t e j J 

Using Lemma 1.1 and Lemma 2.3, the proof of Lemma 2.4 is very similar 
to that of [7, Lemma 2.4], so we omit it. 

L E M M A 2 . 5 Let Hi) be satisfied. Then A: DCl[J,E] DCl[J,E] is con-
tinuous. 
P r o o f . Let {xn}, {x} C DCl[J, E] and ||x„ — x||D —> 0 (n —> +oo). Hence 
{xn : n > 1} is a bounded subset of DC1 [J, E], Thus, there exists M > 0 
such that ||xn||£) < M. At the same time, ||x||u < M. 

In the following, we first show that {Axn} is relatively compact. Since 

(Axn)(t) (Ax)(t) < | ^ | | / ( ( s ) y ( s ) ( r i n ) ( f l ) ( 5 x > i ) ( a ) ) 

. H i 
(18) 

1 + i 1 + i 
t - s , 

o 

-f(s,x(s),x'(s),(Tx)(s),(Sx)(s))\\ds 
and 

||(Axn)'(t) - (j4®)'(t)|| < J || f(s,xn(s),x'n(s), (Txn)(s), (Sxn)(s)) 
0 

-f(s,x(s),x'(S),(Tx)(s),(Sx)(s))\\ds. 
By Hi) (6)(11)(12)(18)(19) together with the Lebesgue dominated con-

vergence theorem, one can get 
(Txn)(t) —> (Tx)(t) (n —> +oo), 

Moreover, 

Vi G J. 
(Sxn)(t) (Sx)(t) (n +oo), 

(ArB)(t) . ( A r ) ( t ) ( n ^ ^ 
(20) 1 + i 1 + i v " V i G J ; 

(Axn)'(t) (Ax)'(t) (n -> +oo), 
Therefore, 

a{{(^Al + t ) : n e N } ) = «({(^Cn)'(t) : n € N}) = 0, Vt G J. 

Immediately, Lemma 2.4 guarantees that 
aD({Axn : n G N}) = 0, 

that is, {Axn} is relatively compact. 
Next, we prove ||ylxn — Ax||£> —• 0 (n —> +oo). 
In fact, if this is not true, then there exist £o > 0 and {xn i} C {xn} 

such that | |Axn i — AX\\D > £O(i — 1,2,3, •••). Since {Axn} is relatively 
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compact, there exists a subsequence of {Axni} (without loss of generality, we 
relabel the subsequence still as { A x n i } ) and u e DCl[J,E\ with Axni —> u 
(i —> +00), that is, ||Arni — U\\D —> 0(z —> +00). Therefore, 

(ArWi)(t) u(t) 
1 + t 1 + t 

- 0 ( n - + o o ) , 

Combining this with (20), one get that u — Ax. This is a contradiction. 
Consequently, A is continuous. • 

Our main results is the following. 

THEOREM 2 . 1 . Let Hi)H2) be satisfied. Then IVP(l) has at least one solu-
tion belonging to DC1 [J, E} n C 2 [ J , E}. 

P r o o f . We need to prove only the existence of fixed point of operator A in 
DCl[J,E}. L e t 

+00 
R > ( I M + M + i e ( i ) d i ) 

0 

x ( l - j [(1 + t)a(t) + b(t) + k*(t)c(t) + h*(t)d(t)]dt^ , 
0 

B BD{9,R) = { x e DC1 [J, E] : \\x\\D < R}, 

where 6 denotes the zero element in E. 
We first show that A : B -V B. In fact, for x e B, by (10), (11) and (12) 

we know 

< | M + I M ^ f [(1 + i)a(i) 1 + t
+00 

+ 6(i) + ife*(i)c(i) + /»*(i)d(t)]di-||®||£)+ S e ( i ) d i 

0 
< R, Vte J. 

Analogously, we can get 
||(Ac)'(i)|| < R, V i G J . 

Thus, by Lemma 2.5, we know that A is a continuous operator from B 
into B . 

Next, we prove that if C C B is countable, C c COD({U} U A(C)), then 
C is relatively compact. 

Indeed, suppose that C C B satisfies the above condition. Then we have 
< OL£>{AC). At the same time, by [8], it follows that 

C{t) C c o £ ( { u ( i ) } U (AC)(t)), C'(t) C cdE({u'(t)} U (AC)'(t)), Vt € J. 
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Therefore, 

(21) < a(C'(t)) < a((AC)'(t)). 

On the other hand, for t € J, n € N, x € C, let 
n 

(,Snx)(t) =: \ h{t,s)x(s)ds. 
o 

By Hi ) we know that 
+oo 

||(S^) ( i ) - ( f i r ) ( i )||< J \h(t, s)| • ||a;(s)||ds 
n 

+oo 
< \ |/i(i,s)|(l + s)ds • ||x|| —• 0 (n —> +oo), x £ C. 

n 

This implies that 

dii(CSnC)(t), (SC) ( i ) ) 0 (n —»• +00), i € J, 

where •) denotes the Housdorff distance. Thus, by the property of the 
measure of noncompactness, we get 

(22) a((SnC)(t)) - a ( (5C) ( t ) ) , t € J. 

Moreover, by Lemma 1.2 we know 

a({SnC)(t)) = a(l\h{t,s)x{s)ds : x G C 
^ o 

< 2 j 5)1(1 + s) • < 2 5 \h(t,s)\(l + s)ds • aD(C). 
o \l + s/ o 

So, (22) guarantees that 
, , + OO n v +00 

(23) aN J h(t, s)x(s)ds : x € C H < 2 J \h(t, s)|(l + s)ds • aD(C). 
^ o ' o 

Now, by H2), Lemma 1.2 and (10) (21) (23), we obtain 

a ( ~ i T r ) - 2 \ r n a ( { / ( s ' x(s)' x'(s)' ( r x ) ( s ) ' ( 5 : c ) ( s ) ) : x G c})ds 

t S 

< 2 ¡pi(s)a(C(a)) + l2(s)a(C'(s)) + k(s)a({ \ k(s, T)X{T)<1T : x £ C}) 

o o 

+oo 

+ Z4 (s)a( { J h(s,T)x(r)dT : x e C^]ds 
o 
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< 2 j [ l i (*) ( l + + l2(s)a(C'(s)) 

+ 2h(s)\jk(s,r)\(l + T ) a ^ ^ y r 

+00 
+ 2 U ( s ) 5 \h(s,T)\(l + T)dT-aD(C)}ds 

0 
+00 s 

< 2 J [(l + s)h(s)+h(s) + 2h(s)\\k(s,T)\(l + T)dT 
0 0 

+ 0 0 

+ 2l4(s) 5 \h(s,T)\(l + T)dT}ds-aD{C) 
0 

< 2 l a D ( A C ) . 

Since t is arbitrary, it follows that 

(24 ) s u p a ( ^ M ) <2laD(AC). 
teJ V 1 + 1 J 

Very similarly, one can get 

(25 ) s u p a ( { A C ) ' { t ) ) < 2laD(AC). 
teJ 

Immediately, by (24), (25) and Lemma 2.4, we obtain a¡3(AC) — 0. 
Furthermore, an(C) = 0. This implies that C is a relatively compact subset 
of DCl[J, E). It follows from Lemma 1.3 that A has a fixed point in B, that 
is, IVP(l ) has at least one solution in DCl[J, E], m 

REMARK 1. In Theorem 2.1, / needs not to be uniformly continuous. 

REMARK 2. If f(t j x ^ x j '.L' x ^ Sx) = f(t,x,Tx,Sx) in I V P ( l ) , we may use 
similar method to study IVP( l ) in basic space FC[J, E] to obtain the same 
result as Theorem 2.1 under Hi) — H2) (here b{t) = 0, h{s) = 0). Moreover, 
the proof may be simpler since we do not need to estimate the derivative 
term. 

REMARK 3. If f(t, x, x', Tx, Sx) = f(t, x, x', Tx) in IVP(l) , that is, the term 
Sx does not emerge in /, the condition "/ < in H2) may be removed. 

In fact, from the proof of Theorem 2.1, for C c B countable and C C 
cod({u} U A(C)), we get 
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a - 2 j [ / l ( s ) ( 1 + s ) a G r D + 

+ 2 l 3 (s) J |fc(s,r) |(l + 

Also we have 

Let 

Then 

a((AC)'(t)) <2S[ / i (a) ( l + + l2(s)a(C'(s)) 

+ 2 k ( s ) \ \k(s, r ) | ( l + 

t € J. 

m(t) < 2\{[h(s){l + s) + l2(s)]m(s) 
o 

s 
+ 2 l 3 (s) J Ik(s, T)|(1 + t)m(r)dr}ds. 

o 
This integral inequality yields m(t) = 0 for t € J. By Lemma 2.4 it can 
be obtained that ao(AC) = 0. The rest is the same as in the proof of 
Theorem 2.1. Thus, the existence of solution for IVP(l) follows. 

The following theorem is an uniqueness result for IVP. 

THEOREM 2.2. Assume that 
there exist nonnegative functions a, b,c,d€ C[J, J] such that 

- f(t,x2,y2,z2,w2)\\ < a(i)||a:i - x2\\ + b(t)\\yi - y2\\ 
+ c(t)\\zi - z21| + d(t)\\wi - w21| Vi € J,x,y,z,w € E 

and 
+oo 

L=: J [(l + t)a(t) + b(t) + k*(t)c(t) + h*(t)d(t)]dt < 1, 
o 

+O0 
5 | | / ( t , 0 , 0 , 0 , 0 ) | | d t < + o o , 
o 

where k*(t) and h*(t) are the same as in Hi). 
Then there exists the only solution of IVP(1) belonging to DC1 [J, E] (~1 

C*[J,E). 
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Proo f . First, it is easy to see that Hz) implies H\). So by Lemma 2.5, A: 
DC1 [J, E] —> DC1 [J, E] is continuous, where A is the same as in (10). 

Next, we show A is a contraction. For any given xi, x2 € D C l [ J , E], by 
(10) and (Hz) we know that 

( A X l ) ( t ) - ( A x 2 ) ( t ) ^ - | | / ( t > a : i ( t ) > x l ( t ) > ( r a i ) ( t ) > ( 5 a : i ) ( t ) ) 

1 + t 

f ( t , x2(t),x'2(t), ( T x 2 ) ( t ) , (Sx2)(t))IIdt 

+oo 

s ) ( x i ( s ) - x 2 ( s ) ) d s 
o o 

+ 0O 
+d(t)\\ \ h(t, s ) ( X l ( s ) - x2(s))ds dt 

o 
+oo t 

< 5 [(l+i)a(i)-|ki-^2||F+6(i)||x ,
1-x'2 | |c+c(i)5|A;(i,s)|(l+s)cis-||x1-X2||F 

0 0 
+oo 

+ d ( t ) \ \h(t, s)\(l + s)ds • \\xi - x2\\F dt 
o 

+ o o 

< \ [(1 + t ) a ( t ) + b(t) + k*(t)c(t) + h*(t)d(t)]dt • ||RCI — £ 2 | | D = L\\XI-X2\\D. 
o 
Similarly, 

\ \ ( A X l ) ' ( t ) - (Ax2)'(t)\\ < L\\Xl - x2\\D. 

So it follows that 
\\Axi - AX2\\D < L\\xi - x2\\D. 

Immediately, the Banach contraction principle guarantees our result. • 
The following example, may be used to illustrate some applications of 

Theorem 2.1. 
EXAMPLE . Consider the IVP of an infinite system for scalar second order 
differential equations 

, , _ t + xn 1 + y ^ J 1 

(26) 

n 7(t + i y 4n(9 + i2) n2(l +i)2 

t +oo 

x \ n ( 2 + \ e - ^ s x n + 2 ( s ) d s + \ ^ ^ ^ - x n + 1 ( s ) d s ] , 0<t<+oo; 
V ^ J (l + s)J

 J 

xn(0) = xon, x'n(0) = xin (n= 1,2,3, • • •), 
where sup |xon| < SUP l^inl < +°o. 
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CONCLUSION: IVP(26) has at least one solution defined on [0,+00). 

P r o o f . Let E = — {x = (x\, • • • xn, • • •) : sup|xn | < +00} with norm 
n 

||x|| = sup |x„|. Then IVP(26) can be regarded as an IVP of form (1) in E. 
n 

In this situation, J = [0, +00), x = (rri, • • • xn, • • •), xo = (xoi, • • • zon, • • •), 
XI = • • • Xin, • • •) e E, f = (/1, • • • /„, • • •), fn - 9n + hn, in which 

t ^ Xfi 
9n = 

hn= , J . .ox + 

7(t + i y 

1 
4n(9 + i2) n 2 ( l + i)2 ln(2 + z„+2 + w„+i), 

where 

zn = \e {t+l)sxn(s)ds, wn= \ 
+ °°s in ( t - s ) 

3-xn(s)ds. 
I A + *) 3 

Evidently, / e C[J x E x E x E x E, E]. Now we verify that Hi) - H2) 
hold. First, it is easy to see that 
\\f(t,x,y,z,w)\\ = sup\fn(t,x,y,z,w)\ 

n 
< a(i)IM| + 6(i)|M| + c(i)|M| + d(t)IMI + e(i), Vi 6 J, x, y,z,w€ E, 

where 

a(t) = 
7(1 + t)e f m = 

1 
4(9 + t 2 y 

c(t) = d(t) = 

e(t) = 

(1 + i ) 2 ' 
1 1 

+ . .0. + 7(1 + t)et 2(9 + i2) (1 + i ) 2 ' 
Now we estimate k*(t) and h*(t). After simple calculation, we can get 

0 < k*(t) = J k(t, s)( 1 + s)ds = j e
_(t+1)s(i + s)ds < J _ + _ ! _ 

0 0 1+1 (i-i-i) 
d 

fc-W= S T i T s F { 1 + s ) d s - I ( T T ^ d s = 3-

Therefore, 
+ 0 0 

S 
0 
\ k*(t)c(t)dt < J 

+ 0 0 

+ 0 0 

S 
0 

1 1 
+ 

L(i + i ) 3 ( i + 0 4 J 
-00 j +00 j j 
J r ( t ) d ( t ) d t < 3 J = 9-

9 
20' 
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Also we have 
+00 j +00 ^ 

! (1 + t)a(t)dt=~, j b(t)dt = —. 
0 ' 0 ^ 

Consequently, 
+00 +00 

\ [(l + t)a(t) + b(t) + k*(t)c(t) + h*(t)d(t)]dt< 1, \ e(t)dt < +00, 
0 0 

that is, Hi) is satisfied. 
On the other hand, we obtain 

0 < \hn(t,x,y,z,w)\ < + _ l _ l n ( 2 + ||z|| + H I ) -

As shown in [2, Example 2.1.2], we know h(t, D\, D2, D3, D4) is relatively 
compact in i.e. 

a(h(t, Di, Da, D3, D4)) = 0, Vt e J, 

and all bounded subsets D\, £>2, D3, C E. 
Combining (26) with (27), it follows that 

a(/(t , Du D2, D3, AO) < Vi € J, 

and bounded subsets D1, D3, D4 C E. 

This means that li(t) -•- 7(1+t)et, h(t) = h(t) = U(t) = 0. Since 
+00 1 1 

1= \ (1 + t)h(t)dt=-<-, 
0 ' z 

then, H2) holds. 
By Theorem 2.1, our conclusion follows. • 
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