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ON THE STRUCTURE OF SOLUTION SET 
OF A N INTEGRO-DIFFERENTIAL EQUATION 

IN BANACH SPACES 

In this paper we shall present two existence theorems for local solutions 
of an initial value problem for nonlinear integro-differential equation in a 
Banach space. Moreover, we also shall prove that the set of all these so-
lutions is an Rs in the Aronszajn sense [1], i.e. it is homeomorphic to the 
intersection of a decreasing sequence of compact absolute retracts. Let us 
mention that in the case of ordinary differential equations this problem was 
studied by many authors (for example see to [9], [10] and [5], [6], [8]). 

1. Consider the following Cauchy problem 
t 

(1) x'(t) = f(t,x(t),\g(t,s,x(s))ds), 
o 

(2) x(0) = 0 
in a Banach space E. We assume that D = [0, a], B = {x € E : ||x|| < 6} 
and / : D x B x E -» E, g : D2 xB —> E are bounded continuous functions. 
Let 

|| f ( t , x, z) | | < m i for t G D, x € B, z € a • c o n v g ( D 2 x B) 

||(?(i, s, x)|| < 7712 for t,s € D, x € B. 
We choose a positive number d such that d < a and 
(3) mid < b and m^d < b. 

Let J = [0, d]. Denote by C = C( J, E) the Banach space of continuous 
functions z : J —* E with the usual norm ||z||c = max(£ j ||-z(i)ll • 
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of noncompactness. 
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Let W = {x € C : ||x||c < 6} . For t <E J and x e W put 

t 
g(t,x) = \g(t,s,x(s))ds. 

0 

Fix r € J and x € W. As the set J2 x x( J) is compact, from the continuity 
of g it follows that for each e > 0 there exists 6 > 0 such that 

s, x(s) ) — g(r, s, x(s))|| < £ for t, s E J with |i — r| < S. 

In view of the following inequality 
T 

||g(t, x) - g(r, x)|| < m2 |i - r| + \ ||s(i, s, x{s)) - g(r, s, x(s)) || ds, 
o 

this implies the continuity of the function t —> g(t, x). 

On the other hand, the Lebesgue dominated convergence theorem proves 
that for each fixed t 6 J the function x —> g(t, x) is continuous on W. 
Moreover 

(4) ||<if(i, x)|| < m2t for t e J and x e W. 

2. Assume that h is a Kamke function, i.e. (t, r ) —> h(t, r) is a nonnegative 
function defined on D x R+ which is Lebesgue measurable in t for fixed r, 
and continuous in r for fixed t, and 

(i) for every bounded subset Z of D x R+ there exists a function tpz defined 
on (0, a] such that h(t,r) < ipz(t) for ( t , r ) 6 Z and ipz is Lebesgue 
integrable on [c, a] for every c > 0; 

(ii) for each c, c € (0, a], identically zero function is the only absolutely 
continuous function on [0, c] which satisfies z'{t) = h(t,z(t)) almost 
everywhere on [0, c] and such that D+z(0) = z(0) = 0. 

THEOREM 1. If for any t e D and x,y € B, z € E 

\\f(t,x,z)-f(t,y,z)\\<h(t, \\x — ?/||) 

and the set g(D2 x B) is relatively compact in E, then the set S of all 

solutions of the problem (l)-(2), defined on J, is an Rg. 

Proo f . Let us remark that on J the problem (l)-(2) is equivalent to 

x'(t) = f(t,x(t),g(t,x)), x(0) = 0. 

Let H = Uo<A<rfAconvg(D2 x B). By (3) and the Mazur Lemma, H is a 
compact subset of B. Fix n 6 N and v € W. Put U = * for i = 0,1,. . . , n. 
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We define a mapping un{y) : J —> B by 

u„(v)(0) = 0, 
t 

un{v)(t) = un(v)(ti) + J f(s,un(v)(ti),g(s,v))ds 
U 

for t G [ti, i j+i], i = 0 , 1 , . . . , n — 1. Notice that g(s, v) G H. 
Similarly as in [5], [6], [7] it can be shown that for every t,r € J and 

v G W, 

(5) ||«n(v)(t) - Un(t/)(r)|| < mi \t - T\ ; 

(6) un(v)(t) € Vn for t € J and v € W, 

where Vn is a compact subset of B defined by 

Vb = {0}, Vfc+i = U0<A<dAconv/ ( J x Vk x g(J, W)) for k = 0 , 1 , . . . , n - 1; 
(7) D+\\un(v)(t)-um(v)(t)\\ 

< min (n(t),h{t, |K(î;)(î) - um(v)(t)\\) + le (t,qn)) 

for m > n, t G J and v G W, where z{t,p) = swp0<r<ph(t,r), 

fi(t) = sup{\\f(t,x,z) - f(t,y,z)\\ : 

||x|| < mit, ||y|| < mit, z G a • convg(D2 x B)} and qn = 2 x B)} and qn = 

n 

t (8) un(v)(t) - \f(s,un(v)(s),g(s,v))ds <m(qn) 
o 

for t G J and v G W, where m(p) — Jq min (//(i), p)) dt for p > 0; and 
limp_o+ m{p) = 0; for any e > 0 and i>o G W there exists 8 > 0 such that 

t 
(9) \ ||p(s, v) - g(s, VQ) || ds < s for t e J, v G W, ||v - «o||c < 5, 

o 
and consequently ||iin(t;)(i) — un(vo)(OII ^ mn(e), where mo(p) = 0, 
mk+i(p) = m(mk(p)) +p for k = 0 , 1 , . . . and p > 0; obviously limp_ 0+ ^n (P) 
= 0. 

Let un denote the mapping v —> un(v) for v G W. From (5) and (6) it 
follows that un(W) is a relatively compact set in C. Since, by (9), un is 
continuous, it is completely continuous mapping W —» W. Furthermore, 
analogously as in [4], the inequality (7) becomes 

(10) I K ^ X O - um(*>)(i)ll < wn{t) for m > n, t G J, v G W, 
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where wn is the maximal solution of z'(t) — min (/¿(£), h(t, z(t)) + 2e(t, qn)) 

issuing from (0,0). Since wn uniformly converges to 0 as n —> oo, from (10) 
we conclude that the sequence (un) converges uniformly on W to a limit u. 
By passing to the limit in (8), we have 

t 

(11) u(v)(t) = \f(s,u(v)(s),g{s,v))ds for t € J, v € W. 
0 

Since u is the uniform limit of the sequence of completely continuous map-
pings un,u is a completely continuous mapping W —> W. Note that 

u(v)'(t) = f(t,u(v)(t),g(t,v)) for t G J and veW. 

Now we shall show that for each e > 0 

(12) H[0,£] = *|[0,e] = > «(v)|[0,e] = {v,ZE W). 

Indeed, if v,z € W and v(t) = z(t) for t G [0, e], then g(t,v) = g(t,z) for 
t € [0,e], and hence 

D+\\u(v)(t)-u(z)(t)\\<\\u(vy(t)-u(z)'(t)\\ 

= 11/ (í, U (v) (t), g (t, v)) - f ( t , u (z) (t), g (t, z)) || 

<mm(n(t),h(t,\\u(v)(t)-u(z)(t)\\)) for í € [0, e]. 

From the fact that u(v)(0) = u(¿;)(0) = 0 and h is a Kamke function, 
by Olech's Lemma ([4], Lemma 1) this implies ||u(i>)(£) — u(z)(i)|| = 0 for 
t 6 [0,e]. This proves (12). We see that the mapping v —> u(v) satisfies all 
asumptions of a Vidossich theorem ([10], Corollary 1.2). By applying this 
theorem, we conclude that the set Fix u is an From (11) it is clear that 
Fix u C S. Conversely, let v € S. Since / satisfies the Kamke condition, the 
Cauchy problem 

(13) z\t) = f(t,z(t),g(t,v)),z( 0) = 0 

has a unique solution z = u(v). As v satisfies (13), we get v = u(v), so that 
v €Fix u. Thus S =Fix u which ends the proof. 

3. Let a be the Kuratowski measure of noncompactness [2] in E. 

THEOREM 2. If there exist Lebesgue integrable functions h : D —> R+ and 
k : D2 —> R+ such that 

(14) a(f(t,X xY)) <h(t)-a(X) + a(Y) and 

(15) a{g(t,s,X))<k(t,s)-a(X) 

for t,s € D and for each sets X C B and Y C E, then the set S of all 

solutions of the problem (l)-(2), defined on J, is an 
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Proo f . Put 

r{x) — < 
x for x e B, 

bx 
-r—¡7 for x G E\B. 

- .1*11 
Then r is a continuous function E —> B and 

r(X) C U 0 <a<iAX for X C E, 

so that a(r(X)) < a(X) for each bounded subset X of E. Consequently, 
putting 

f ( t , x , z ) = f ( t , r ( x ) , z ) , 

g(t, s, x) = g(t, s, r(x)) (t,s € D,z e E), 

we obtain bounded continuous functions f:DxE2—>E and g:D 2 x E—>E, 
satisfying (14)-(15) for bounded subsets X of E, such that on J the problem 
(l)-(2) is equivalent to 

x'(t) = f ( t , x ( t ) , g ( t , x ) ) , x ( 0 ) = 0 . 

Define a mapping F by 
t 

F(x)(t) = \ / ( a , x(s),g(s, x))ds ( t e J, x e C ) . 
o 

By Lebesgue dominated convergence theorem, from the considerations of 
Section 1 we deduce that F is a contiuous mapping C —> C. Moreover, 
F{C) is an equiuniformly continuous subset of C, F(x)(0) = 0 for x 6 C 
and for each e > 0, x, y E C 

®l[0,e] = 2/|[0,e] = F(y)[0ie]. 

From (3) and (4) it follows that 

||F(x)(i)|| <b for x e C . 

Then a function x € C is a solution of (l)-(2) iff x = F(x). Now we shall 
show that 

(16) each sequence (xn) in C such that lim \\xn — F(xn)||c = 0 n—̂oo 
has a limit point. 

Let ( i n ) be a sequence in C such that 

(17) lim ||xn — F(x n ) | | c = 0. n—•oo 
Put V = {xn : n G N} and V(t) = (x„(i) : n e N}. As V C {xn - F(xn) : 
n G N} + F(V), from (16) it follows that V is an equicontinuous set. 
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So the function t —> v(t) = a(V(t)) is continuous on J. By (14)-(15) and 
Heinz's theorem ([3], Th. 2.1) we obtain 

T 

a({p( r ,x„) : n e i \ r } ) = a ( { \g(r,s,r(xn(s)j)ds : n € jv}) 

T 

< 2 s , r^x n (s)}jds : n € N ^ d s 

T 

= 2 5 a ( ( / ( r > S , r ( v ( S ) ) ) ) d S 
o 
r 

< 2\k(r,s) -a(r(v(s)))ds 
o 
T 

< 2 \k(r, s)a\V(s)\ds 
o 
T 

= 2 J fc(r, s ) • v(s)ds, ior r e J, x e B 
o 

and further 
t t 

a({is(T,a:B)dT : n € n\) < 2 J a ({»( r , xn) : n 6 iv} )d r 
o o 

< 4 J (¡fe(r, s)v{s)ds}dT for i € J. 
0 0 

Therefore 
t 

a ( i V ( i ) ) < "({ \f{s,xn(i),g(s,xn))ds : n € i v } ) 

t 
< 2 \ a ( { f ( s , x n f y , g { s , x n ) ) : n € iv})cZs 

< 2 5 a ( { / ( S | r ( v ( S ) ) , s ( S ) v ) } ) d a 

t t 
< 2 \ h(s)a(V(s) )ds + a({ \ g{r, xn)dr :n(=N}) 

o o 
t t T 

<2\h(s)v(s^jds + A\^\k(T,s)v(s)dsJdr for t e J. 
o o o 

Since V(t) c {x„(t) - F(xn)(t) : n £ N} + F(V)(t) and 
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a({xn(t) - F(xn)(t) : n € N}) = 0, we get a(V(t)) < a(F(V)(t)). This 
implies that 

t t t 

v(t) <a(F(V)(t)) <2\h(s)v(s)ds + A\(\k(T,s)dTjv(s)ds. 
0 0 s 

Then 
t t 

(18) v(t) < 2 \ h(s)v(s)ds + 4 \ q(t, s)v(s)ds for t G J, 
o o 

where 
t 

q(t, s) = J k(r, s)dr for 0 < s < t < a. 
s 

The function t —> q(t, s) is continuous and the function s —> q{t, s) is inte-
grable, because 

t t t t T 

j q(t, s)ds = ^ (\k(r, s)drjds = J í J k(T> s)dsjdT. 
o o s o o 

As the function v is contiuous, from (17) we see that a(V(t)) = v(t) = 0 for 
í G J. Therefore the set V(t) is relatively compact in E. Then by Ascoli's 
theorem, V is a relatively compact subset of C. This proves (14). Using 
now Th. 5 of [8], we find that the set S =Fix F is an R$. This completes 
the proof. 
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