Magdalena Roszak

ON THE STRUCTURE OF SOLUTION SET OF AN INTEGRO-DIFFERENTIAL EQUATION IN BANACH SPACES

In this paper we shall present two existence theorems for local solutions of an initial value problem for nonlinear integro-differential equation in a Banach space. Moreover, we also shall prove that the set of all these solutions is an R_{δ} in the Aronszajn sense [1], i.e. it is homeomorphic to the intersection of a decreasing sequence of compact absolute retracts. Let us mention that in the case of ordinary differential equations this problem was studied by many authors (for example see to [9], [10] and [5], [6], [8]).

1. Consider the following Cauchy problem

(1)
$$x'(t) = f(t, x(t), \int_{0}^{t} g(t, s, x(s)) ds),$$

$$(2) x(0) = 0$$

in a Banach space E. We assume that D=[0,a], $B=\{x\in E:\|x\|\leq b\}$ and $f:D\times B\times E\to E,\ g:D^2\times B\to E$ are bounded continuous functions. Let

$$||f(t,x,z)|| \le m_1 \text{ for } t \in D, \ x \in B, \ z \in a \cdot \overline{\text{conv}}g(D^2 \times B)$$

 $||g(t,s,x)|| \le m_2 \text{ for } t,s \in D, \ x \in B.$

We choose a positive number d such that $d \leq a$ and

$$(3) m_1 d \leq b \text{ and } m_2 d \leq b.$$

Let J=[0,d]. Denote by C=C(J,E) the Banach space of continuous functions $z:J\to E$ with the usual norm $\|z\|_C=\max_{t\in J}\|z(t)\|$.

¹⁹⁹¹ Mathematics Subject Classification: Primary 34A12; Secondary 45J05, 34G20. Key words and phrases: Integro-differential equations, initial value problem, measure of noncompactness.

Let $W = \{x \in C : \|x\|_C \le b\}$. For $t \in J$ and $x \in W$ put

$$\tilde{g}(t,x) = \int_{0}^{t} g(t,s,x(s))ds.$$

Fix $\tau \in J$ and $x \in W$. As the set $J^2 \times x(J)$ is compact, from the continuity of g it follows that for each $\varepsilon > 0$ there exists $\delta > 0$ such that

$$||g(t, s, x(s)) - g(\tau, s, x(s))|| < \varepsilon \text{ for } t, s \in J \text{ with } |t - \tau| < \delta.$$

In view of the following inequality

$$\|\tilde{g}(t,x) - \tilde{g}(\tau,x)\| \le m_2 |t-\tau| + \int_0^{\tau} \|g(t,s,x(s)) - g(\tau,s,x(s))\| ds,$$

this implies the continuity of the function $t \to \tilde{g}(t, x)$.

On the other hand, the Lebesgue dominated convergence theorem proves that for each fixed $t \in J$ the function $x \to \tilde{g}(t,x)$ is continuous on W. Moreover

(4)
$$\|\tilde{g}(t,x)\| \le m_2 t \text{ for } t \in J \text{ and } x \in W.$$

- **2.** Assume that h is a Kamke function, i.e. $(t,r) \to h(t,r)$ is a nonnegative function defined on $D \times R_+$ which is Lebesgue measurable in t for fixed r, and continuous in r for fixed t, and
 - (i) for every bounded subset Z of $D \times R_+$ there exists a function ψ_z defined on (0, a] such that $h(t, r) \leq \psi_z(t)$ for $(t, r) \in Z$ and ψ_z is Lebesgue integrable on [c, a] for every c > 0;
 - (ii) for each $c, c \in (0, a]$, identically zero function is the only absolutely continuous function on [0, c] which satisfies z'(t) = h(t, z(t)) almost everywhere on [0, c] and such that $D_+z(0) = z(0) = 0$.

THEOREM 1. If for any $t \in D$ and $x, y \in B$, $z \in E$

$$||f(t,x,z) - f(t,y,z)|| \le h(t,||x-y||)$$

and the set $g(D^2 \times B)$ is relatively compact in E, then the set S of all solutions of the problem (1)-(2), defined on J, is an R_{δ} .

Proof. Let us remark that on J the problem (1)-(2) is equivalent to

$$x'(t) = f(t, x(t), \tilde{g}(t, x)), x(0) = 0.$$

Let $H = \bigcup_{0 \le \lambda \le d} \lambda \overline{\operatorname{conv}} g(D^2 \times B)$. By (3) and the Mazur Lemma, H is a compact subset of B. Fix $n \in N$ and $v \in W$. Put $t_i = \frac{di}{n}$ for $i = 0, 1, \ldots, n$.

We define a mapping $u_n(v): J \to B$ by

$$u_n(v)(0) = 0,$$

$$u_n(v)(t) = u_n(v)(t_i) + \int_{t_i}^t f(s, u_n(v)(t_i), \tilde{g}(s, v)) ds$$

for $t \in [t_i, t_{i+1}], i = 0, 1, \ldots, n-1$. Notice that $\tilde{g}(s, v) \in H$.

Similarly as in [5], [6], [7] it can be shown that for every $t, \tau \in J$ and $v \in W$,

(5)
$$||u_n(v)(t) - u_n(v)(\tau)|| \le m_1 |t - \tau|;$$

(6)
$$u_n(v)(t) \in V_n \text{ for } t \in J \text{ and } v \in W,$$

where V_n is a compact subset of B defined by

$$V_0 = \{0\}, \ V_{k+1} = \bigcup_{0 \le \lambda \le d} \lambda \overline{\operatorname{conv}} f(J \times V_k \times \tilde{g}(J, W)) \text{ for } k = 0, 1, \dots, n-1;$$

(7)
$$D_+ \|u_n(v)(t) - u_m(v)(t)\|$$

$$\leq \min \left(\mu(t), h(t, \|u_n(v)(t) - u_m(v)(t)\| \right) + 2\varepsilon \left(t, q_n \right) \right)$$

for $m \ge n, t \in J$ and $v \in W$, where $\varepsilon(t, p) = \sup_{0 \le r \le p} h(t, r)$,

$$\mu(t) = \sup\{\|f(t, x, z) - f(t, y, z)\|:$$

$$||x|| \le m_1 t, ||y|| \le m_1 t, z \in a \cdot \overline{\operatorname{conv}} g(D^2 \times B)$$
 and $q_n = \frac{m_1 d}{n}$;

(8)
$$\left\| u_n(v)(t) - \int_0^t f(s, u_n(v)(s), \tilde{g}(s, v)) ds \right\| \le m(q_n)$$

for $t \in J$ and $v \in W$, where $m(p) = \int_0^d \min(\mu(t), \varepsilon(t, p)) dt$ for $p \ge 0$; and $\lim_{p \to 0_+} m(p) = 0$; for any $\varepsilon > 0$ and $v_0 \in W$ there exists $\delta > 0$ such that

(9)
$$\int_{0}^{t} \|\tilde{g}(s,v) - \tilde{g}(s,v_0)\| ds \le \varepsilon \text{ for } t \in J, v \in W, \|v - v_0\|_{C} < \delta,$$

and consequently $||u_n(v)(t) - u_n(v_0)(t)|| \le m_n(\varepsilon)$, where $m_0(p) = 0$, $m_{k+1}(p) = m(m_k(p)) + p$ for $k = 0, 1, \ldots$ and $p \ge 0$; obviously $\lim_{p \to 0_+} m_n(p) = 0$.

Let u_n denote the mapping $v \to u_n(v)$ for $v \in W$. From (5) and (6) it follows that $u_n(W)$ is a relatively compact set in C. Since, by (9), u_n is continuous, it is completely continuous mapping $W \to W$. Furthermore, analogously as in [4], the inequality (7) becomes

(10)
$$||u_n(v)(t) - u_m(v)(t)|| \le w_n(t) \text{ for } m \ge n, \ t \in J, \ v \in W,$$

where w_n is the maximal solution of $z'(t) = \min(\mu(t), h(t, z(t)) + 2\varepsilon(t, q_n))$ issuing from (0,0). Since w_n uniformly converges to 0 as $n \to \infty$, from (10) we conclude that the sequence (u_n) converges uniformly on W to a limit u. By passing to the limit in (8), we have

(11)
$$u(v)(t) = \int_{0}^{t} f(s, u(v)(s), \tilde{g}(s, v)) ds \quad \text{for } t \in J, \ v \in W.$$

Since u is the uniform limit of the sequence of completely continuous mappings u_n, u is a completely continuous mapping $W \to W$. Note that

$$u(v)'(t) = f(t, u(v)(t), \tilde{g}(t, v))$$
 for $t \in J$ and $v \in W$.

Now we shall show that for each $\varepsilon > 0$

(12)
$$v|_{[0,\epsilon]} = z|_{[0,\epsilon]} \Longrightarrow u(v)|_{[0,\epsilon]} = u(z)|_{[0,\epsilon]} \quad (v, z \in W).$$

Indeed, if $v, z \in W$ and v(t) = z(t) for $t \in [0, \varepsilon]$, then $\tilde{g}(t, v) = \tilde{g}(t, z)$ for $t \in [0, \varepsilon]$, and hence

$$\begin{aligned} D_{+} \| u(v)(t) - u(z)(t) \| &\leq \left\| u(v)'(t) - u(z)'(t) \right\| \\ &= \left\| f(t, u(v)(t), \tilde{g}(t, v)) - f(t, u(z)(t), \tilde{g}(t, z)) \right\| \\ &\leq \min \left(\mu(t), h(t, \| u(v)(t) - u(z)(t) \| \right) \text{ for } t \in [0, \varepsilon]. \end{aligned}$$

From the fact that u(v)(0) = u(z)(0) = 0 and h is a Kamke function, by Olech's Lemma ([4], Lemma 1) this implies ||u(v)(t) - u(z)(t)|| = 0 for $t \in [0, \varepsilon]$. This proves (12). We see that the mapping $v \to u(v)$ satisfies all asumptions of a Vidossich theorem ([10], Corollary 1.2). By applying this theorem, we conclude that the set Fix u is an R_{δ} . From (11) it is clear that Fix $u \subset S$. Conversely, let $v \in S$. Since f satisfies the Kamke condition, the Cauchy problem

(13)
$$z'(t) = f(t, z(t), \tilde{g}(t, v)), \ z(0) = 0$$

has a unique solution z = u(v). As v satisfies (13), we get v = u(v), so that $v \in \text{Fix } u$. Thus S = Fix u which ends the proof.

3. Let α be the Kuratowski measure of noncompactness [2] in E.

THEOREM 2. If there exist Lebesgue integrable functions $h: D \to R_+$ and $k: D^2 \to R_+$ such that

(14)
$$\alpha \left(f(t, X \times Y) \right) \le h(t) \cdot \alpha(X) + \alpha(Y) \quad and$$

(15)
$$\alpha \left(g(t,s,X) \right) \le k(t,s) \cdot \alpha(X)$$

for $t, s \in D$ and for each sets $X \subset B$ and $Y \subset E$, then the set S of all solutions of the problem (1)-(2), defined on J, is an R_{δ} .

Proof. Put

$$r(x) = \begin{cases} x & \text{for } x \in B, \\ \frac{bx}{\|x\|} & \text{for } x \in E \backslash B. \end{cases}$$

Then r is a continuous function $E \to B$ and

$$r(X) \subset \bigcup_{0 \le \lambda \le 1} \lambda X$$
 for $X \subset E$,

so that $\alpha(r(X)) \leq \alpha(X)$ for each bounded subset X of E. Consequently, putting

$$ar{f}(t,x,z) = f(t,r(x),z), \ ar{g}(t,s,x) = g(t,s,r(x)) \quad (t,s \in D,z \in E),$$

we obtain bounded continuous functions $\bar{f}: D \times E^2 \to E$ and $\bar{g}: D^2 \times E \to E$, satisfying (14)-(15) for bounded subsets X of E, such that on J the problem (1)-(2) is equivalent to

$$x'(t) = \bar{f}(t, x(t), \tilde{g}(t, x)), \quad x(0) = 0.$$

Define a mapping F by

$$F(x)(t) = \int_{0}^{t} \bar{f}(s, x(s), \tilde{g}(s, x)) ds \quad (t \in J, x \in C).$$

By Lebesgue dominated convergence theorem, from the considerations of Section 1 we deduce that F is a continuous mapping $C \to C$. Moreover, F(C) is an equiuniformly continuous subset of C, F(x)(0) = 0 for $x \in C$ and for each $\varepsilon > 0$, $x, y \in C$

$$x|_{[0,\epsilon]} = y|_{[0,\epsilon]} \Rightarrow F(x)|_{[0,\epsilon]} = F(y)_{[0,\epsilon]}$$

From (3) and (4) it follows that

$$||F(x)(t)|| \le b$$
 for $x \in C$.

Then a function $x \in C$ is a solution of (1)-(2) iff x = F(x). Now we shall show that

(16) each sequence (x_n) in C such that $\lim_{n\to\infty} ||x_n - F(x_n)||_C = 0$

has a limit point.

Let (x_n) be a sequence in C such that

(17)
$$\lim_{n \to \infty} ||x_n - F(x_n)||_C = 0.$$

Put $V = \{x_n : n \in N\}$ and $V(t) = \{x_n(t) : n \in N\}$. As $V \subset \{x_n - F(x_n) : n \in N\} + F(V)$, from (16) it follows that V is an equicontinuous set.

So the function $t \to v(t) = \alpha(V(t))$ is continuous on J. By (14)–(15) and Heinz's theorem ([3], Th. 2.1) we obtain

$$\alpha\left(\left\{\tilde{g}(\tau, x_n) : n \in N\right\}\right) = \alpha\left(\left\{\int_0^\tau g(\tau, s, r\left(x_n(s)\right))ds : n \in N\right\}\right)$$

$$\leq 2\int_0^\tau \alpha\left(\left(g\left\{\tau, s, r\left(x_n(s)\right\}\right)ds : n \in N\right)\right)ds$$

$$= 2\int_0^\tau \alpha\left(g\left(\tau, s, r\left(V\left(s\right)\right)\right)\right)ds$$

$$\leq 2\int_0^\tau k(\tau, s) \cdot \alpha\left(r\left(V(s)\right)\right)ds$$

$$\leq 2\int_0^\tau k(\tau, s)\alpha\left(V(s)\right)ds$$

$$= 2\int_0^\tau k(\tau, s)\alpha\left(V(s)\right)ds$$

$$= 2\int_0^\tau k(\tau, s) \cdot v(s)ds, \text{ for } \tau \in J, x \in B$$

and further

$$\begin{split} \alpha\Big(\Big\{\int\limits_0^t \tilde{g}(\tau,x_n)d\tau:n\in N\Big\}\Big) &\leq 2\int\limits_0^t \alpha\Big(\Big\{\tilde{g}(\tau,x_n):n\in N\Big\}\Big)d\tau\\ &\leq 4\int\limits_0^t \Big(\int\limits_0^\tau k(\tau,s)v(s)ds\Big)d\tau \text{ for } t\in J. \end{split}$$

Therefore

$$\begin{split} \alpha\Big(FV\Big(t\Big)\Big) &\leq \alpha\Big(\Big\{\int\limits_0^t \bar{f}(s,x_n\Big(s\Big),\tilde{g}(s,x_n))ds:n\in N\Big\}\Big)\\ &\leq 2\int\limits_0^t \alpha\Big(\Big\{\bar{f}(s,x_n\Big(s\Big),\tilde{g}(s,x_n)):n\in N\Big\}\Big)ds\\ &\leq 2\int\limits_0^t \alpha\Big(\Big\{f(s,r\Big(V\Big(s\Big)\Big),\tilde{g}\Big(s,V\Big)\Big\}\Big)ds\\ &\leq 2\int\limits_0^t h(s)\alpha\Big(V\Big(s\Big)\Big)ds + \alpha\Big(\Big\{\int\limits_0^t \tilde{g}(\tau,x_n)d\tau:n\in N\Big\}\Big)\\ &\leq 2\int\limits_0^t h(s)v\Big(s\Big)ds + 4\int\limits_0^t \Big(\int\limits_0^\tau k(\tau,s)v(s)ds\Big)d\tau \ \ \text{for} \ t\in J. \end{split}$$
 Since $V(t)\subset \{x_n(t)-F(x_n)(t):n\in N\}+F(V)(t)$ and

 $\alpha(\{x_n(t) - F(x_n)(t) : n \in N\}) = 0$, we get $\alpha(V(t)) \leq \alpha(F(V)(t))$. This implies that

$$v(t) \leq \alpha(F(V)(t)) \leq 2\int_{0}^{t} h(s)v(s)ds + 4\int_{0}^{t} \left(\int_{s}^{t} k(\tau, s)d\tau\right)v(s)ds.$$

Then

(18)
$$v(t) \le 2 \int_0^t h(s)v(s)ds + 4 \int_0^t q(t,s)v(s)ds \text{ for } t \in J,$$

where

$$q(t,s) = \int_{s}^{t} k(\tau,s)d\tau$$
 for $0 \le s \le t \le a$.

The function $t \to q(t, s)$ is continuous and the function $s \to q(t, s)$ is integrable, because

$$\int\limits_0^t q(t,s)ds = \int\limits_0^t \Big(\int\limits_s^t k(\tau,s)d\tau\Big)ds = \int\limits_0^t \Big(\int\limits_0^\tau k(\tau,s)ds\Big)d\tau.$$

As the function v is continuous, from (17) we see that $\alpha(V(t)) = v(t) = 0$ for $t \in J$. Therefore the set V(t) is relatively compact in E. Then by Ascoli's theorem, V is a relatively compact subset of C. This proves (14). Using now Th. 5 of [8], we find that the set S = Fix F is an R_{δ} . This completes the proof.

References

- [1] N. Aronszajn, Le correspondant topologique de l'unicite dans la théorie des equations différentielles, Ann. Math. 43 (1942), 730-738.
- [2] J. Banaś, K. Goebel, Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Appl. Math. 60, Marcel Dekker, New York and Basel 1980.
- [3] H. P. Heinz, On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlin. Anal. Theory Math. Appl. 7 (1983), 1351-1371.
- [4] C. Olech, On the existence and uniqueness of solution of an ordinary differential equation in the case of Banach space, Bull. Acad. Polon. Sci. Math. 8 (1960), 667-673.
- [5] J. Szmyd, S. Szufla, On the Aronszajn property for an integro-differential equation in Banach spaces, Demonstratio Math. 30 (1997), 671-678.
- [6] S. Szufla, On the existence of solutions of an ordinary differential equation in the case of Banach spaces, Bull. Acad. Polon. Sci. Math. 16 (1968), 311-315.
- [7] S. Szufla, Some remarks on ordinary differential equations in Banach spaces, ibid.,16 (1968), 795-800.
- [8] S. Szufla, Solutions sets of nonlinear equations, ibid., 21 (1973), 971-976.
- [9] G. Vidossich, On the structure of solutions set of nonlinear equations, J. Math. Anal. Appl., 34 (1971), 602-617.

[10] G. Vidossich, A fixed point theorem for function spaces, ibid., 36 (1971), 581-587.

FACULTY OF COMPUTING SCIENCE
THE INSTITUTION OF HIGHER LEARNING
FOR HUMANITIES AND JOURNALISM
ul. Kutrzeby 10
61-719 POZNAŃ, POLAND

Received December 11, 2003.