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ON THE STRUCTURE OF SOLUTION SET
OF AN INTEGRO-DIFFERENTIAL EQUATION
IN BANACH SPACES

In this paper we shall present two existence theorems for local solutions
of an initial value problem for nonlinear integro-differential equation in a
Banach space. Moreover, we also shall prove that the set of all these so-
lutions is an Rs in the Aronszajn sense [1], i.e. it is homeomorphic to the
intersection of a decreasing sequence of compact absolute retracts. Let us
mention that in the case of ordinary differential equations this problem was
studied by many authors (for example see to [9], [10] and [5], [6], [8]).

1. Consider the following Cauchy problem
t

(1) z'(t) = f(t,2(t), { g(t, 5, 2(s))ds),

0
) 2(0) =0

in a Banach space E. We assume that D = [0,a], B = {z € F: ||z]| < b}

and f: Dx BXxE — E, g: D?x B — E are bounded continuous functions.
Let

|f(t,z,2)]| <m; fort € D, z € B, z € a-comvg(D? x B)
llg(t, s,z)|| < mq for t,s € D, z € B.

We choose a positive number d such that d < a and

(3) ' mid < b and maod < b.

Let J = [0,d]. Denote by C = C(J,E) the Banach space of continuous
functions 2z : J — E with the usual norm ||z||, = maxc s ||2(2)]| -
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Let W={zeC:|z||o<b}.Forte Jand z € W put

t

3(t,z) = {g(t, s,2(s))ds.
0

Fix 7 € J and z € W. As the set J2 x z(J) is compact, from the continuity
of g it follows that for each € > 0 there exists § > 0 such that

lla(t, s, z(s)) — g(7,s,z(s))|| < e for t,s € J with |t — 7| < é.

In view of the following inequality

T

13t z) = §(r, @)l < ma |t = 7| + llg(2, 5, 2(s)) — 9(7, 5, 2(s))l| ds,
0
this implies the continuity of the function t — g(¢, z).

On the other hand, the Lebesgue dominated convergence theorem proves
that for each fixed ¢t € J the function £ — §(¢,z) is continuous on W.
Moreover

(4) lg(t, z)|| < mot for t € J and z € W.

2. Assume that h is a Kamke function, i.e. (¢,r) — h(t,r) is a nonnegative
function defined on D x R, which is Lebesgue measurable in ¢ for fixed r,
and continuous in r for fixed ¢, and

(i) for every bounded subset Z of D x R, there exists a function ), defined
on (0,a] such that h(t,r) < v¥,(t) for (¢t,r) € Z and 3, is Lebesgue
integrable on [c, a] for every ¢ > 0;

(ii) for each ¢, ¢ € (0, a], identically zero function is the only absolutely
continuous function on [0, c] which satisfies 2/(t) = h(t, 2(t)) almost
everywhere on [0, ¢] and such that D z(0) = z(0) = 0.

THEOREM 1. If foranyte€ D andz,y€ B, z€ E

(¢, 2,2) = f(t, 9, 2)l.< h(t, llz - yl)

and the set g(D? x B) is relatively compact in E, then the set S of all
solutions of the problem (1)-(2), defined on J, is an R;.

Proof. Let us remark that on J the problem (1)-(2) is equivalent to

2'(t) = f(t, z(t), 3(t, 2)), =(0) =0.

Let H = Up<p<caAtonvg(D? x B). By (3) and the Mazur Lemma, H is a
compact subset of B. Fix ne€ N andve W. Put t; = % fori=0,1,...,n.
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We define a mapping u,(v) : J — B by

un(v)(0) =0,

un(v)(t) = ua(V)(t:) + § £ (s, un(v)(t:), 3(s,v))ds

ti

for t € [ti,tiy1],3=0,1,...,n — 1. Notice that g(s,v) € H.

Similarly as in [5], [6], [7] it can be shown that for every t,7 € J and
veW,

(5) l[un (V) () — un(v)(T)I| < M1 [t - 715

(6) up(v)(t) € Vo fort € Jand v e W,
where V,, is a compact subset of B defined by
Vo = {0}, Vi1 = Upch<grtonvf (J x Vi x g(J,W)) for k =0,1,...,n—1;
(7)) D4 llun(v)(t) — um(v)(®)|l
< min (4(8), h(t, 1un(0) (8) — um ()OI + 26 (¢, a0))

for m > n,t € J and v € W, where £(t, p) = supo<, <, h(t, 7),
u(t) = sup{||f(t,z,2) — f(t,y,2)| :

lzll < mat, |yl < mat, z € a - Tonvg(D? x B)} and g, = %1;

(8)

un(0) () = | (5, un(v)(9), 55, v))ds]| < m(gn)
0

for t € J and v € W, where m(p) = Sg min (u(t),e(t, p)) dt for p > 0; and
lim,_.o, m(p) = 0; for any € > 0 and vp € W there exists § > 0 such that

t
9) S||§(s, v) - g(s,v)||lds < eforte JJve W, |v—w|s <9,

0
and consequently |jun(v)(t) — un(vo)(®)|| < mn(e), where mo(p) = 0,
mp41(p) =m(mi(p))+p for k=0,1,... and p > 0; obviously limy,_.o, mn(p)
=0.

Let u, denote the mapping v — u,(v) for v € W. From (5) and (6) it
follows that u,(W) is a relatively compact set in C. Since, by (9), u, is
continuous, it is completely continuous mapping W — W. Furthermore,
analogously as in [4], the inequality (7) becomes

(10) lun(©)(t) — um(v)(t)|| L wa(t) form >n, te J, ve W,
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where w, is the maximal solution of 2’(t) = min (u(¢), h(t, 2(2)) + 2¢(t, gn))
issuing from (0, 0). Since wy, uniformly converges to 0 as n — oo, from (10)
we conclude that the sequence (u,) converges uniformly on W to a limit u.
By passing to the limit in (8), we have

(11) u(v)(t) = Sf(s, u(v)(s),g(s,v))ds forte J ve W
0

Since u is the uniform limit of the sequence of completely continuous map-
pings un,, u is a completely continuous mapping W — W. Note that
u()'(t) = f(t,u(v)(t),g(t,v)) fort € J and v € W.

Now we shall show that for each e > 0

(12) UI[O,E] = Zl[O,e] = U(U)I[O,e] = u(z)‘[O,s] (’U,Z € W)
Indeed, if v,z € W and v(t) = 2(t) for t € [0,¢], then §(t,v) = g(¢,2) for
t € [0,€], and hence
Dy |lu(w)(t) —u(z) &) < [Ju (@) () —u (=) @)

=If (& u(@)(®),3(Ev)—f{u(2)(8),5(E2)]

< min (4(8), h (& Ju (v) (&) —u (2) D)) for ¢ € [0,6].
From the fact that u(v)(0) = u(z)(0) = 0 and h is a Kamke function,
by Olech’s Lemma ([4], Lemma 1) this implies [Ju(v)(t) — u(z)(¢)|| = 0 for
t € [0,e]. This proves (12). We see that the mapping v — u(v) satisfies all
asumptions of a Vidossich theorem ([10], Corollary 1.2). By applying this
theorem, we conclude that the set Fix u is an Rs. From (11) it is clear that

Fix u C S. Conversely, let v € S. Since f satisfies the Kamke condition, the
Cauchy problem

(13) Z(t) = f(t, 2(t),§(t, v)), 2(0) =0

has a unique solution z = u(v). As v satisfies (13), we get v = u(v), so that
v €Fix u. Thus S =Fix u which ends the proof.

3. Let a be the Kuratowski measure of noncompactness [2] in E.

THEOREM 2. If there erist Lebesgue integrable functions h : D — Ry and
k:D? — R, such that ’

(14) a(fE, X xY)) <h()-a(X)+a(Y) and
(15) a(g(t s, X)) < k(t, ) - o(X)

for t,s € D and for each sets X C B and Y C E, then the set S of all
solutions of the problem (1)-(2), defined on J, is an R;.
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i for z € B,
re) = ” " for z € E\B.

Then 7 is a continuous function £ — B and
T‘(X) C Uos,\s]_}\X for X CE,

so that a(r(X)) < a(X) for each bounded subset X of E. Consequently,
putting

Proof. Put

f_(t’ z, Z) = f(t,’l"(l‘), z))
g(t,s,z) = g(t,s,7(z)) (t,s€ D,z¢€ F),

we obtain bounded continuous functions f:D x E2—FE and §:D?*x E—E,
satisfying (14)-(15) for bounded subsets X of E, such that on J the problem
(1)-(2) is equivalent to

a'(t) = f(t,z(t),3(t, 2)), z(0)=0.
Define a mapping F by

F(z)(t) = S f(s,z(s),9(s,z))ds (t € J,z € C).
0

By Lebesgue dominated convergence theorem, from the considerations of
Section 1 we deduce that F' is a contiuous mapping C — C. Moreover,
F(C) is an equiuniformly continuous subset of C, F(z)(0) = 0 for z € C
and foreache >0, z,y € C

zljo,) = Ylpo,e] = F(@)lo,e] = F(W)o,e-
From (3) and (4) it follows that
[F(z)®)|| <b forz € C.

Then a function z-€ C is a solution of (1)-(2) iff z = F(z). Now we shall
show that

(16) each sequence (z,) in C such that lim ||z, — F(z,)||o =0
n—oo
has a limit point.
Let (z,) be a sequence in C such that
(17) lim [lzs — F@a)llg = 0.

Put V={z,:n€ N} and V(t) = {z,(t) : n € N}. AsV C {z, — F(z,) :
n € N} + F(V), from (16) it follows that V is an equicontinuous set.
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So the function ¢t — v(t) = a(V(t)) is continuous on J. By (14)-(15) and

Heinz’s theorem ([3], Th. 2.1) we obtain

and further

({Sg('r zp)dr : neN}) <2

Therefore

IA
()

Ot b Oty b O b & O )

IA
(%)

IN
[\

IA
™o

a({g(‘r,:vn) ‘n € N}) = a({gg(r, s,r(zn(s)))ds ‘n € N})

IA
()

a((g{T, s,r(zn(s)})ds ‘ne N))ds
a(g(r,5,7(v(s))))ds
k(r, s) - a(r(V(s)))ds

k(r, s)a(V(s))ds

I
0o

IA
()

I IA
3] N
Ot Y Ot ) Ol | O e S O e

k(r,s)-v(s)ds, forte Jyxz € B

<4

a({g(‘r, Zp):nE N})dv'
§
0

( k(r, s)v(s)ds) dr fort € J.

O e O L b

o({Fer(v(9))8(=) 1)
10 (V (5) s+ o({ {02 e )

h(s)v (s)ds + 4S ( (T, s)v(s)ds)dT forte J.

Since V(t) C {zn(t) — F(z»)(t) :n € N} + F(V)(t) and
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a({za(t) — F(z,)(t) : n € N}) = 0, we get a(V(t)) < a(F(V)(t)). This
implies that

v(t) < a(F(V)(t) <2 S h(s)v(s)ds + 48 (SL(T s d'r)'u(s)
0 0
Then
(18) v(t) <2 S h(s)v(s)ds +4 S q(t, s)v(s)ds fort e J,
0 0

where
t

q(t,s) = Sk(r, s)jdr for0<s<t<a.
8
The function t — g(t, s) is continuous and the function s — g(t, s) is inte-
grable, because

¢ t ot t T

Sq(t, s)ds = S (Sk(T, s)dT)ds = S (Sk(T, s)ds) dr.

0 0 s 00
As the function v is contiuous, from (17) we see that a(V (t)) = v(t) = 0 for
t € J. Therefore the set V(t) is relatively compact in E. Then by Ascoli’s
theorem, V is a relatively compact subset of C. This proves (14). Using
now Th. 5 of [8], we find that the set S =Fix F is an R;. This completes
the proof.
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