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T i b e r i u Tr i f 

U N I Q U E S O L V A B I L I T Y O F C E R T A I N N O N L I N E A R 
B O U N D A R Y V A L U E P R O B L E M S V I A A G L O B A L 

I N V E R S I O N T H E O R E M O F H A D A M A R D - L E V Y T Y P E 

Abstract. The paper deals with the nonlinear even-order boundary value problem 

u<2n>(x) = f(x,u{x)), x 6 [0,1], 
u(2fc)(0) =u ( 2 f c ) ( l ) = 0, 0<k<n-l, 

where / : [0,1] x R —• R is continuous, while its partial derivative with respect to the 
second argument, denoted by f i , exists and is continuous on [0,1] x R. It is proved that 
if there exists a continuous nondecreasing function ij : R+ —• ]—oo, n2n[, such that 

( - 1 )nfL{x, u) < T7(|«|) < 7T2" for all (x, u) e [0,1] x R 
and 

oo 
j (w2" — 77(1)) dx = 00, 
0 

then the above problem has a unique solution. 

1. I n t r o d u c t i o n 

M . Lees [7, T h e o r e m 1] e s t ab l i shed a n ex i s tence-un iqueness t h e o r e m , 
concern ing t h e two-po in t b o u n d a r y va lue p r o b l e m u"(x) = f(x,u(x)), x € [0,1], 

u(0) = u ( l ) = 0. 

Namely , h e p roved t h e fol lowing 

THEOREM 1.1 . Suppose that f : [0,1] x R —> R is a continuous function, 
whose partial derivative with respect to the second argument, denoted by fu, 
exists and is continuous on [0,1] x R . If there exists a real constant 77 such 
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that 
fl(x, u) > -7] > - 7 r 2 for all (x, u) 6 [0,1] x R , 

then the boundary value problem (1.1) has a unique solution. 

Lees' result was refined by M. Radulescu and S. Radulescu [12, Theorem 
6] as follows: 

THEOREM 1 . 2 . Let f : [0 ,1] x R —> R be a continuous function, whose 
partial derivative with respect to the second argument, denoted by f'u, exists 
and is continuous on [0,1] x R. If there exists a continuous nondecreasing 
function T] : R+ —> ] —oo, 7r2 [, such that 

f'u{x,u) > -*7(M) > -71"2 for ail (x>u) e [0,1] x R 
and 

oo 
J (7r2 — 77(2;)) dx = 00, 
0 

then the boundary value problem (1.1) has a unique solution. 

Another extention of Theorem 1.1 to a more general problem than (1.1) 
has been established by J. Tippett [13]. 

Now we turn our attention to the fourth-order boundary value problem 

u^(x) = f(x,u(x)), X E [ 0 , 1 ] , 

1 ' ' u(0) = u(l) = u"(0) = u"(l) = 0. 

It describes the deformations of an elastic beam in equilibrium state, whose 
two ends are simply supported. Due to the fact that beams are used in 
structures such as aircraft, buildings, ships, and bridges, to find conditions 
ensuring the existence of at least one solution of (1.2) was the main purpose 
of numerous investigations (see, for instance, [2], [3], [8], [9], [11], [16]). We 
recall here only a few existence-uniqueness results concerning the problem 
(1.2). Thus, R. A. Usmani [15] and Y. Yang [16] dealt with a special case 
of (1.2). More precisely, they proved the following 

THEOREM 1 . 3 . Let f : [0 ,1] —• R be a continuous function, such that 
f(x)< 7T4 for all x e [0,1]. 

Then for every continuous function e : [0,1] —• R the boundary value prob-
lem 

uW(x) = f(x)u(x) + e(x), x G [0,1], 
u(0) = u(l) = u"(0) = «"(1) = 0 

has a unique solution. 
This theorem was generalized by C. P. Gupta [4, Theorem 3.1] as follows: 
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THEOREM 1.4. Let f : [0,1] x R —> R be a continuous function, whose 
partial derivative with respect to the second argument, denoted by f'u, exists 
and is continuous on [0,1] x R . If there exists a real constant 77 such that 

f'u(x, u) < 77 < 7r4 for all (x, u) 6 [0,1] X R , 

then the boundary value problem (1.2) has a unique solution. 

In fact, it should be mentioned that in [4] a much more general result 
than Theorem 1.4 is presented. On the other hand, for existence-uniqueness 
results regarding more general problems than (1.2), the reader is referred to 
[1], [4], [6]. 

Finally, we point out the following existence-uniqueness theorem estab-
lished by C. P. Gupta [5, Theorem 3.2] for a special case of (1.2), when the 
elastic beam is at resonance: 

THEOREM 1.5. Suppose that g : [0,1] x R —> R satisfies Caratheodory's 
conditions for L^O, 1], that g(x, •) is strictly increasing on R for a.e. x G 
[0,1], and that g(x, 0) = 0 for a.e. x G [0,1]. Then for each continuous 
function e : [0,1] —> R , satisfying jJ e(x) smirxdx = 0, the boundary value 
problem 

(13) u^\x) = Tr4u(x)-g(x,u(x)) + e(x), x € [ 0 , l ] , 
1 ' ' u(0) = u(l) = u"(0) = u"(l) = 0 

has a unique solution. 

The main purpose of the present paper is to prove a common general-
ization of Theorems 1.1-1.4. It refers to the even-order two-point boundary 
value problem 

u(2n\x) = f{x,u(x)), x e [ 0 , 1 ] , 

u — u(2fc)(l) = 0, 0 < k < n — 1, 

generalizing (1.1), (1-2), and (1.3). 

2. Unique solvability of the boundary value problem (1.4) 
In the proof of our main result we will use the following global inver-

sion theorem of Hadamard-Levy type established by M. Radulescu and S. 
Radulescu (cf. [12, Theorem 2]): 

THEOREM 2.1. Let (Y, || • ||o) be a Banach space and let L : D{L) —» Y be 
a linear operator with closed graph, where D(L) is a linear subspace of Y. 
Then D(L) is a Banach space with respect to the norm defined by 

IM|i : = |M|o+||L(u)||o, ueD(L). 
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Further, let X be a linear subspace of D(L) which is closed in the norm || • ||i, 
let N : (X, || -1| i) (y, |H|o) beaC1 mapping, andS : (X, ||-||i) -> (Y, ||-||0) 
be the mapping defined by S := L — N. If S is a local diffeomorphism and 
there exists a continuous function c : R+ —> ]0, oo[, such that 

||S'(«)(/»)||o > c(||u||0)||/i||o, for all u,heX 
and 

oo 
J c(x)dx = oo, 
0 

then S is a global diffeomorphism. 

Besides, we need several inequalities, contained in the following lemma. 

L E M M A 2 . 2 . If u : [ 0 , 1 ] —> R is a continuously differentiate function such 
that u(0) = u(l) = 0, then 

( 2 . 1 ) | | u ' | | 2 > 7 r | M | 2 , 

( 2 . 2 ) ||u'||2 > 2||u||0. 

In the above lemma (and throughout the rest of the paper) 

H o := sup {|u(:r) I I a: € [0,1]} 
denotes the usual sup-norm of an arbitrary function u e C([0,1], R), while 

1 1/2 
| | u | | 2 : = (^\u2(x)dx*J 

denotes the L2-norm of an arbitrary function u € L2([0,1],R). Inequality 
(2.1) is known as the Wirtinger inequality, while inequality (2.2) is known 
as the Lees inequality. 

L E M M A 2 . 3 . If n is a positive integer and u : [ 0 , 1 ] —• R is a 2n-times 
continuously differentiate function satisfying 

(2.3) u{2k)(0) = u(2k\ 1) = 0 for all 0 < k < n - 1, 

then for each k € { 1,2,..., 2n } it holds that 

(2.4) ||«<fc>H2 > 1|«'||2-

Proof . For k — 1 inequality (2.4) holds with equality. Let m < 2n be an 
arbitrary positive integer. Assuming that (2.4) holds true for all positive 
integers k < m, let us prove that it holds also for k = m. Depending on m, 
we have two possible cases. 

Case I. m is even: m = 2p. 
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Integrating by parts p times and taking into account (2.3), we get 
1 1 r 12 
\u{x)u^m\x)dx = ( - l ) p 5 ttW(i) dx = ( - l ) l u ^ l l i . 

0 0 
Using (2.1), the Cauchy-Schwarz inequality, as well as the induction hypoth-
esis, we deduce that 

M2ll« ( m ) | l2 > - lh(P)H2 > M i 

> n4 p~2 llit'll? Ilu"2 
2i 

whence |lu(m)|L > Tr2?"1 IIu'IL = tt™"1 Ilu' 2 — " M" H2 — " II"- >12-
Case II. m i s o d d : m = 2p — 1. 

Integrating by parts p — 1 times and taking into account (2.3), we get 
i l 2 

\u'(x)u^(x)dx = ( - l ) p _ 1 J vP>(x) dx = ( - l ) p _ 1 | | u ( p ) | | i . 

0 0 
Using again the Cauchy-Schwarz inequality and the induction hypothesis, 
we find that 

1 2 
|K||2 | |uM||2 > ^ ( ^ W ^ d j j = ||u(p)||4 > 4 , 

0 
whence ||u(m)|L > TT2P~2 I I u ' I L = vr™"1 

12 ^ II- 112 - " IP h- • 
LEMMA 2.4. Let n be a positive integer, let 

X := { h e C2n([0,l], R ) | hW(0) = h W { l ) - 0 , fc = 0 , 1 , . . . , n — 1 } , 

and let v : [ 0 , 1 ] —» R be a continuous function for which there exists a real 

constant b such that 

(2.5) ( ~ l ) n v ( x ) < b < ir2n for all x G [0,1]. 
If A : X —• C ( [ 0 , 1 ] , R ) is the operator defined by 

A(h)(x) := hS2n\x) - v(x)h{x), h e X , x G [ 0 , 1 ] , 

then it holds that 

2 ( i r 2 n - b) 
(2 .6) I M 0 l l o > 7T 

for all he X . 

Proof . Let ii 6 I be arbitrarily chosen. Integrating by parts n times, we 
get 

l l 
\h(x)A(h)(x)dx = ( - l ) n | | h ( n ) | | ! - \v(x)h2(x)dx. 
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Using now (2.1), (2.4), (2.5), and the Cauchy-Schwarz inequality, we deduce 
that 

l 
\\hh\\A(h)\\2 > ("1 )n\h(x)A(h)(x)dx 

o 
l 

= \\h{n)\\l-\(-l)nv(x)h2(x)dx 
0 

>7T 2n-2\\h'\\l-b\h\x)dx 
0 ^^whhn-bMi 

whence 
PWI|2>»raB-1||/i'||2-6||/i||2. 

Using again (2.1) we have 

(2.7) \\A(h)\\2 > 7r2n_1 ||/i'||2 - ^ \\h'\\2 = l^'lla • 

Taking into account that P(/i)||0 > p(/i)||2, from (2.2) and (2.7) it follows 
that (2.6) holds true. • 

Now we are ready to state and prove the main result of the paper, con-
cerning the unique solvability of the boundary value problem (1.4). 
THEOREM 2.5. Let n be a positive integer and let f : [0,1] x R —> R be 
a continuous function, whose partial derivative with respect to the second 
argument, denoted by f'u, exists and is continuous on [0,1] x R . If there 
exists a continuous nondecreasing function r] : R-|_ —• ]—oo, 7r2n[, such that 

(2.8) ( - 1 )nf'u{x, u) < r?(M) < 7r2n for all (x, u) e [0,1] x R 
and 

oo 
(2.9) J (tr2n - r](x)) dx = oo, 

o 
then the boundary value problem (1.4) has a unique solution. 
Proof . Let Y := C([0,1], R) be endowed with the usual sup-norm || • ||o 
and let L : D(L) —> Y be the linear operator defined by 

L(u)(x) := u (2n)(x), u € D(L), x € [0,1], 
where D(L) := C2n([0,1], R) . Since L has closed graph (see Lemma 2.6 
below), by Theorem 2.1 we conclude that D(L) is a Banach space with 
respect to the norm defined by 

|M|i := |M|o + ||u(2n)||o, ueD(L). 
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Further, let 

X := {h e C2 n([0,1], R ) | ^2 f c )(0) = /i(2fc)(l) = 0, k = 0 , 1 , . . . , n - 1 } . 

Prom the proof of Lemma 2.6 it follows that X is a closed subspace of D(L) 
in the norm || • ||i. Consider now the nonlinear operators N,S : X —> Y, 
defined by 

N(u)(x) := f ( x , u(x)), u e X , x € [0,1], 

S(u)(x) := u ( 2 n )(x) - f(x,u(x)), u € X , x€ [0,1], 

The regularity assumption on / ensures that S is of class C 1 . Moreover, we 
have 

S'(u)(h)(x) = hS2n\x) - fu{x,u{x))h[x) 

for all u,h 6 X and all x 6 [0,1]. 
We claim that 

(2.10) ||5'(u)(/i)||o > 2 ( 7 r 2 n ~ 7 ? ( l | u | | o ) ) ||k||0 f o r an U j h e X . 
7T 

To see this, let u € X be arbitrarily chosen and let v : [0,1] —> R be the 
function defined by v(x) :— f'u{x) u(x)), x e [0,1]. According to (2.8), we 
have 

( - l ) n i ; ( x ) < TJ(\U(X)\) < r?(||u||o) < tt2" for all x € [0,1], 

Applying Lemma 2.4 with b = 7/(||u||o), we conclude that (2.10) holds, true. 
Next we show that S is a local diffeomorphism. To this end, let us fix 

u e X and let Q : X —> Y be the operator defined by 

Q(h)(x) := v(x)h(x), h e X, x € [0,1], 

where v : [0,1] —> R is the function defined by v(x) f'u(x, u(x)), x e [0,1], 
By induction on n, it is not difficult to prove that L : X —> Y is invertible 
and its inverse L - 1 : Y —> X is given by 

(2.11) L~l(z)(x) — 
11 l 

= J j • • • J G(x, xi)G(x\,X2) • • • G(xn-i,xn)z(xn)dxidx2 • • • dxn 

oo o 
for all z € Y and all x 6 [0,1], where G : [0,1] x [0,1] —> R denotes the 
Green function 

^ , f x ( l — s) i f 0 < x < s < l 
G(x,s) := < 

\s(l - x ) if 0 < s < x < 1. 

Formula (2.11) together with the Arzela-Ascoli theorem ensure that the 
operator L - 1 : (Y, || • ||o) —> (X, || • ||o) is compact, whence K := L~lQ is 
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compact, too. Remark that 

S'(u) = L — Q = L{I — K). 

From (2.10) it follows that ker{S'{u)) = {0} , hence ker(I - K) = {0} , 
because L is invertible. By the Fredholm alternative, we deduce that I — K 
is onto. Consequently, S'{u) is bijective. Applying now the local inversion 
theorem, we conclude that S is a local diffeomorphism around u. 

From (2.9) and (2.10) it follows that the function c : R + —> ]0, oo[, 
2 (V2*1—7?(x)) 

defined by c(x) := —— x 6 [0,1], satisfies the hypotheses of Theorem 
2.1. Therefore, S is a global diffeomorphism and, consequently, the equation 
S(u) = 0 has a unique solution u € X. This is also the unique solution of 
the boundary value problem (1.4). • 

LEMMA 2 . 6 . The graph of the linear operator L, defined in the proof of 
Theorem 2.5, is closed in the Banach space 7 x 7 . 

Proof. We make use of the following result by A. Gorny (see [10, pp. 
138-139]): let h e CP([0,1], R) and let Mj := ||/i(j)||0, 0 < j < p. Then for 
all 1 < j < p — 1 it holds that 

Mi < 4e2' ^ 

where Mp := max { Mp, p\Mo }. This inequality and the arithmetic-geomet-
ric mean inequality ensure that 

Mj < 4e2j Q V o " 0 ' / p ) [ M ^ p + (p\Mo)j/p] 

< 4e2j (Mo + 

< 4e2j W / P Mo + " Mo + 3~ Mj 

whence 

(2.12) MJ < CPJ(MQ + MP) for all 1 < j < p - 1, 

where CPtj := 8e2i {p\y/P. 
Passing now to the subject of Lemma 2.6, let (u, v) be an arbitrary 

point in the closure of the graph of L. Then there exists a sequence (ujt) 
in D(L) — C2n([0,1], R) such that the sequence ((U^, L(UK))) converges to 
(u, v) in Y x Y. This means that the sequences (u^) and converge 
uniformly to u and v, respectively. According to (2.12), we have 

n4 j ) - 4 j )iio < ¿ W K - ^ i i o + n 4 2 n ) - 42n)iio) 
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for all positive integers k, I and all 1 < j < 2n — 1. Consequently, there 
exist the functions f i , . . •, f2,1-1 such that the sequence converges 
uniformly to v3 for all 1 < j < 2n — 1. A standard theorem ensures now 
that all the functions u,v 1 , . . . , t^n-i are diiferentiable and that 

u' = i>i, 
v'j = vj+i, for 1 < j < 2n - 2 
v2n-l = v-

Therefore, v = = L(u), hence (u, v) belongs to the graph of L. • 

The result of Theorem 2.5 is interesting especially at resonance. We 
illustrate this remark by the following 

COROLLARY 2.7. Let g : [0,1] x R —• R be a continuous function, whose 
partial derivative with respect to the second argument, denoted by g'u, exists 
and is continuous on [0,1] x R. If there exists a continuous nonincreasing 
function u : R + —• ]0, oo[, such that 

g'u(x, u) > w(M) for all (x, u) G [0,1] x R 

and u(x)dx = oo, then for every continuous function e : [0,1] —» R the 
boundary value problem (1.3) has a unique solution. 

Proo f . Apply Theorem 2.5 for n = 2 and f(x,u) = 7r4u — g(x,u) + e(x). 
Then 

f'u(x, u) = 7T4 - g'u(x, u) < 7r4 - w(|«|) for all (x, u) e [0,1] x R, 

so all the assumptions of Theorem 2.5 are fulfilled if r? : R + —> ]—oo, 7r4[ is 
the function defined by r)(u) := 7r4 — u{u). • 

Comparing Corollary 2.7 with Theorem 1.5 we point out that none of 
them can be derived from the other. Indeed, if g(x,u) = arctanu, then 
Theorem 1.5 can be applied but not Corollary 2.7. On the other hand, for 

. ju +1 
c, u) := < 

' \ 2 + ln 
g(z,u):={-- if (x, u) € [0,1] x ] — oo, 1[ 

' ' In u if {x, u) € [0,1] x [1, oo[, 

the hypotheses of Corollary 2.7 are satisfied if u> is defined by 

J i i f u e [ o , i ] 
I 1/tt if u 6 ]1, oo[. 

Consequently, Corollary 2.7 can be applied but neither Theorem 1.5 nor 
Theorem 1.4. • 
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