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UNIQUE SOLVABILITY OF CERTAIN NONLINEAR
BOUNDARY VALUE PROBLEMS VIA A GLOBAL
INVERSION THEOREM OF HADAMARD-LEVY TYPE

Abstract. The paper deals with the nonlinear even-order boundary value problem

u®(z) = f(z,u(z)), =z€[01],
u®0) =u®¥(1)=0, 0<k<n-1,
where f : [0,1] x R — R is continuous, while its partial derivative with respect to the

second argument, denoted by f, exists and is continuous on [0,1] x R. It is proved that
if there exists a continuous nondecreasing function 7 : Ry — ]—o0, 772"[, such that

(=)™ fu(z,u) < n(jul) < 7™ for all (z,u) € 0,1] xR

and
[ o]

8 (7*" — n(z)) dz = oo,

then the above problem has a unique solution.

1. Introduction

M. Lees [7, Theorem 1] established an existence-uniqueness theorem,
concerning the two-point boundary value problem

) W(@) = f@u(z),  zel01)
u(0) = u(l) = 0.
Namely, he proved the following
THEOREM 1.1. Suppose that f : [0,1] x R — R is a continuous function,

whose partial derivative with respect to the second argument, denoted by f,,,
ezists and is continuous on [0,1] X R. If there exists a real constant n such
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that
fi(z,u) > —n > —n? for all (z,u) € [0,1] x R,
then the boundary value problem (1.1) has a unique solution.

Lees’ result was refined by M. Riédulescu and S. R&dulescu [12, Theorem
6] as follows:

THEOREM 1.2. Let f : [0,1] x R — R be a continuous function, whose
partial derivative with respect to the second argument, denoted by f|, ezxists
and is continuous on [0,1] x R. If there ezists a continuous nondecreasing
functionn : Ry — ]—oo, 72 [, such that

fi(z,uw) > —n(u)) > —72 for all (z,u) € [0,1] x R

and
[0 o]

S (7% — n(z)) dz = oo,
0

then the boundary value problem (1.1) has a unique solution.

Another extention of Theorem 1.1 to a more general problem than (1.1)
has been established by J. Tippett [13].
Now we turn our attention to the fourth-order boundary value problem

u@(z) = f(z,u(x)), z € [0,1],
u(0) = u(1) = «”(0) = v"(1) = 0.

It describes the deformations of an elastic beam in equilibrium state, whose
two ends are simply supported. Due to the fact that beams are used in
structures such as aircraft, buildings, ships, and bridges, to find conditions
ensuring the existence of at least one solution of (1.2) was the main purpose
of numerous investigations (see, for instance, [2], [3], (8], [9], [11], [16]). We
recall here only a few existence-uniqueness results concerning the problem
(1.2). Thus, R. A. Usmani {15] and Y. Yang {16] dealt with a special case
of (1.2). More precisely, they proved the following

(1.2)

THEOREM 1.3. Let f:[0,1] = R be a continuous function, such that
fz) <7t forallz€[0,1)].

Then for every continuous function e : [0,1] — R the boundary value prob-
lem

u®(z) = f(z)u(z) +e(z), =€[0,1],
u(0) = (1) = v"(0) =u"(1) =0
has a unique solution.

This theorem was generalized by C. P. Gupta [4, Theorem 3.1] as follows:



Unique solvability of certain problems 333

THEOREM 1.4. Let f : [0,1] x R — R be a continuous function, whose
partial derivative with respect to the second argument, denoted by f, exists
and is continuous on [0,1] x R. If there ezists a real constant 1 such that

fi(z,u) <np <t for all (z,u) € [0,1] xR,
then the boundary value problem (1.2) has a unique solution.

In fact, it should be mentioned that in [4] a much more general result
than Theorem 1.4 is presented. On the other hand, for existence-uniqueness
results regarding more general problems than (1.2), the reader is referred to
1], (4], [6]-

Finally, we point out the following existence-uniqueness theorem estab-
lished by C. P. Gupta [5, Theorem 3.2] for a special case of (1.2), when the
elastic beam is at resonance:

THEOREM 1.5. Suppose that g : [0,1] x R — R satisfies Caratheodory’s
conditions for L[0,1], that g(z,-) is strictly increasing on R for a.e. x €
[0,1]), and that g(z,0) = O for a.e. = € [0,1]. Then for each continuous
function e : [0,1] — R, satisfying S(l) e(z)sinmzdx = 0, the boundary value
problem

4®(2) = mu(z) — g(z,u(@)) + elz),  z € [0,1],
u(0) = u(1) =u"(0) =u"(1) =0

has a unique solution.

(1.3)

The main purpose of the present paper is to prove a common general-
ization of Theorems 1.1-1.4. It refers to the even-order two-point boundary
value problem

ul™(z) = f(z,u(z)), z€l0,1],
u®)(0) =u®)(1) =0, 0<k<n-1,
generalizing (1.1), (1.2), and (1.3).

(1.4)

2. Unique solvability of the boundary value problem (1.4)

In the proof of our main result we will use the following global inver-
sion theorem of Hadamard-Lévy type established by M. Radulescu and S.
Rédulescu (cf. [12, Theorem 2}):

THEOREM 2.1. Let (Y, || - |lo) be a Banach space and let L : D(L) —» Y be
a linear operator with closed graph, where D(L) is a linear subspace of Y.
Then D(L) is a Banach space with respect to the norm defined by

[ufly = llullo + [ L(uw)llo, € D(L).
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Further, let X be a linear subspace of D(L) which is closed in the norm ||-||1,
let N+ (X, ||'l1) = (Y, [I-llo) be a C* mapping, and S : (X, ||-l1) — (Y |[lo)
be the mapping defined by S := L — N. If S is a local diffeomorphism and
there ezists a continuous function ¢ : Ry — ]0,00[, such that

18" (W) (MW)llo = c(llullo)llkllo,  for allu,h e X

and
[o o]

S c(z)dz = oo,
0

then S is a global diffeomorphism.
Besides, we need several inequalities, contained in the following lemma.

LEMMA 2.2. Ifu:[0,1] - R is a continuously differentiable function such
that u(0) = u(1) = 0, then

(21) ||u’l||2 2 7TH’U.||Q,
(2.2) %'l = 2liullo-
In the above lemma (and throughout the rest of the paper)
llullo := sup { |u(z)| | z € [0,1] }
denotes the usual sup-norm of an arbitrary function u € C({0, 1], R), while
1/2

lulla == (S)u?(z)dz)

denotes the L2-norm of an arbitrary function v € L?([0,1],R). Inequality
(2.1) is known as the Wirtinger inequality, while inequality (2.2) is known
as the Lees inequality.

LEMMA 2.3. If n is a positive integer and u : [0,1] — R is a 2n-times
continuously differentiable function satisfying

(2.3) u(0) =u®(1) =0  forall0<k<n-1,
then for each k € {1,2,...,2n} it holds that
(2.4) [u®1ly > 71|,

Proof. For k = 1 inequality (2.4) holds with equality. Let m < 2n be an
arbitrary positive integer. Assuming that (2.4) holds true for all positive
integers k < m, let us prove that it holds also for k¥ = m. Depending on m,
we have two possible cases.

Case 1. m is even: m = 2p.
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Integrating by parts p times and taking into account (2.3), we get

1 1
u(ep™ (@)dz = (-1 ] [uP (@) dz = (17|},
0 0

Using (2.1), the Cauchy-Schwarz inequality, as well as the induction hypoth-
esis, we deduce that

1 2
Il > (=)™ ()dz)” = WOl 2 774 ]

> 2 [l |3 lul3,
whence ||u(™)||, > 7%~ ||/ ||, = 7™ ||/|),.

Case II. mis odd: m =2p —1.
Integrating by parts p — 1 times and taking into account (2.3), we get

1 1 9

[ (2)u™ (@)do = (~1)7~ | [uP(2)] " dz = (1) uP |3

0 0
Using again the Cauchy-Schwarz inequality and the induction hypothesis,
we find that

1
w111 2 ([ (@um @)dz)” = [P 2 w74 o],
0

whence ||u(m)”2 > P2 |||y = 7™ W]y w
LEMMA 2.4. Let n be a positive integer, let .

X :={heC™(0,1],R) | hA®)(0)=rP(1) =0, k=0,1,...,n—1},
and let v : [0,1] — R be a continuous function for which there ezists a real
constant b such that
(2.5) (=1)™v(z) <b< ™  forallz € [0,1].

IfA: X — C([0,1], R) is the operator defined by
Ah)(z) == K (z) —v(z)h(z), heX, zel0,1],
then it holds that

2 (w2 — b
(2.6) AR lo > % 1%]l0 for allh € X.

Proof. Let h € X be arbitrarily chosen. Integrating by parts n times, we

get
1 1

JA(2)A(R)(2)dz = (=1)"|R™)3 - [v(2)h?(2)dz.
0 0
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Using now (2.1), (2.4), (2.5), and the Cauchy-Schwarz inequality, we deduce
that
1
Ikllzf A(R) |2 2 (1) § h(z) A(h)(2)da
0

1
= |h™13 = J(~1) (@)’ (z)dz
0
1
> 722 ||W||5 — b{ h¥(z)dz
0
> " hll2 |[W]], — blIRl3,

whence
ARz 2 72 [[B]], = bliA]l2-
Using again (2.1) we have
b 72" — b
@n  IAB 2w W, - L [, = Tt

Taking into account that ||A(R)|lo > ||A(R)||2, from (2.2) and (2.7) it follows
that (2.6) holds true. =

Now we are ready to state and prove the main result of the paper, con-
cerning the unique solvability of the boundary value problem (1.4).

THEOREM 2.5. Let n be a positive integer and let f : [0,1] x R — R be
a continuous function, whose partial derivative with respect to the second
argument, denoted by fl,, exists and is continuous on [0,1] x R. If there
erists a continuous nondecreasing function n: Ry — ]—oo, w2n [, such that

(2.8) (=) fi(z,u) < n(lu]) < 7 for all (z,u) € [0,1] xR

and
o0

(2.9) S (72" — n(z)) dz = oo,
0
then the boundary value problem (1.4) has a unique solution.
Proof. LetY := C([0,1], R) be endowed with the usual sup-norm || - ||o
and let L: D(L) — Y be the linear operator defined by
L(w)(z) :=u®(2), we D(L), z€0,1],

where D(L) := C?*([0,1], R). Since L has closed graph (see Lemma 2.6
below), by Theorem 2.1 we conclude that D(L) is a Banach space with
respect to the norm defined by

lelly = flullo + [u®llo, e D(I).
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Further, let
X :={heC™(0,1], R) | h®)(0) = h®(1) =0, k=0,1,...,n—1}.

From the proof of Lemma 2.6 it follows that X is a closed subspace of D(L)

in the norm || - ||;. Consider now the nonlinear operators N,S : X — Y,
defined by

N(u)(z) = f(z,u(z)), uveX, ze€01],
S(u)(z) := u®(z) ~ f(z,u(z)), welX, zel01]

The regularity assumption on f ensures that S is of class C1. Moreover, we
have

S'(w)(h)(z) = h®™)(z) — f,(z, u(z))h(z)
for all u,h € X and all z € [0,1].
We claim that

92 2n _
(2.10) IS (w)(A)llo 2 = Wn(HUIIO)) Ihllo  forall u,heX.

To see this, let u € X be arbitrarily chosen and let v : [0,1] — R be the
function defined by v(z) := f}(z,u(z)), z € [0,1]. According to (2.8), we
have

(=1)™v(z) < n(lu(@)]) < n(llullo) < 7**  for all z € [0,1].

Applying Lemma. 2.4 with b = n(||u||o), we conclude that (2.10) holds. true.

Next we show that S is a local diffeomorphism. To this end, let us fix
u € X and let Q : X — Y be the operator defined by

Q(h)(z) :=v(z)h(z), heX, z€]0,1],
where v : [0,1] — R is the function defined by v(z) := f.(z, u(z)), z € [0, 1].
By induction on n, it is not difficult to prove that L : X — Y is invertible
and its inverse L™1 : Y — X is given by
(2.11) L-l(z)(x) =
1
S S SG(IL‘ z1)G(z1,22) - - - G(Tpn-1,Zn)2(zp)dz1dz2 - - - dTpy

for all z € Y and all z € [0,1], where G : [0,1] x [0,1] — R denotes the
Green function

Gz, s) = z(l—s) if0<z<s<l1
T s(l—2) if0<s<z <1

Formula (2.11) together with the Arzeld-Ascoli theorem ensure that the
operator L=! : (Y, || - |lo) = (X, || - |lo) is compact, whence K := L~1Q is



338 T. Trif

compact, too. Remark that
S'(uw)=L-Q=L(I - K).

From (2.10) it follows that ker(S’'(u)) = {0}, hence ker(I — K) = {0},
because L is invertible. By the Fredholm alternative, we deduce that I — K
is onto. Consequently, S’(u) is bijective. Applying now the local inversion
theorem, we conclude that S is a local diffeomorphism around .

From (2.9) and (2.10) it follows that the function ¢ : Ry — ]0, 0],

defined by ¢(z) := gﬂn—;"(z)—), z € [0, 1], satisfies the hypotheses of Theorem
2.1. Therefore, S is a global diffeomorphism and, consequently, the equation
S(u) = 0 has a unique solution v € X. This is also the unique solution of
the boundary value problem (1.4). =

LEMMA 2.6. The graph of the linear operator L, defined in the proof of
Theorem 2.5, is closed in the Banach space Y x Y.

Proof. We make use of the following result by A. Gorny (see [10, pp.
138-139)): let h € CP([0,1], R) and let M; := ||h1)||;, 0 < j < p. Then for
all 1 <7 <p-—1it holds that

(p\? R
M; < 4e% (f) MO pg3le,

where M, := max { M, p!Mp }. This inequality and the arithmetic-geomet-
ric mean inequality ensure that

. Y . , .
M; < 4e% (?) M&-(J/P) [Mg/p + (p!Mo)J/p]

‘ i iy .
< 4e% (?) (p!)J/p (Mo + M(} (J/p)M{,/p)

2% (P ’ Ni/p J J
<4e(° ) (PP | Mo+ (1-=) Mo+ =My,
J p p
whence
(2.12) M; < Cp (Mo + M) forall1<j<p-1,
where Cp j 1= 8e2J (?)j (p!)j/P.
Passing now to the subject of Lemma 2.6, let (u,v) be an arbitrary

point in the closure of the graph of L. Then there exists a sequence (ug)

in D(L) = C?*([0, 1], R) such that the sequence ((ux, L(ux))) converges to
(u,v) in Y x Y. This means that the sequences (u;) and (ug")) converge

uniformly to u and v, respectively. According to (2.12), we have

j j 2n 2
1u® — 4o < Conj(llur ~ wello + [[uZ™ — uP™|lo)
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for all positive integers k,£ and all 1 < j < 2n — 1. Consequently, there
)]
k

exist the functions vy,...,v2,—1 such that the sequence {u converges
uniformly to v; for all 1 < j < 2n — 1. A standard theorem ensures now
that all the functions u, vy, ..., von_1 are differentiable and that

ul =1,

Vi = Ujy1, for1<j<2n-2

/ .
Vop—1 = V.

Therefore, v = u{?®) = L(u), hence (u, v) belongs to the graph of L. u

The result of Theorem 2.5 is interesting especially at resonance. We
illustrate this remark by the following

COROLLARY 2.7. Let g : [0,1] x R — R be a continuous function, whose
partial derivative with respect to the second argument, denoted by g.,, exists
and is continuous on [0, 1] x R. If there ezxists a continuous nonincreasing
function w : Ry — ]0, 00, such that

gi(z,u) > w(|u|) for all (z,u)€[0,1] xR

and §3° w(z)dz = oo, then for every continuous function e : [0,1] — R the
boundary value problem (1.3) has a unique solution.

Proof. Apply Theorem 2.5 for n = 2 and f(z,u) = ntu — g(z,u) + e(z).
Then

fi(z,u) =7 = gl (z,u) < 7 — w(|u|) for all (z,u) € [0,1] x R,

so all the assumptions of Theorem 2.5 are fulfilled if 7 : Ry — |—o0, 7] is
the function defined by n(u) := 74 —~ w(u). =

Comparing Corollary 2.7 with Theorem 1.5 we point out that none of
them can be derived from the other. Indeed, if g(z,u) = arctanu, then
Theorem 1.5 can be applied but not Corollary 2.7. On the other hand, for

u+1 if (z,u) € [0,1]x | — o0, 1]
9(z,u) := .
2+Inu if (z,u) € [0,1] x [1,00],
the hypotheses of Corollary 2.7 are satisfied if w is defined by
w(u) = 1 ff u € [0,1]
1/u if u € ]1, 00[.

Consequently, Corollary 2.7 can be applied but neither Theorem 1.5 nor
Theorem 1.4. »
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