

Sukhjit Singh, Sushma Gupta

ON A PROBLEM OF H. S. AL-AMIRI AND M. O. READE

Abstract. In the present paper, the authors investigate the univalence of the functions f , analytic in E , $f(0) = 0$, $f'(0) = 1$ and which satisfy

$$\operatorname{Re} \left[(1 - \alpha) f'(z) + \alpha \left(1 + \frac{zf''(z)}{f'(z)} \right) \right] > \beta, \quad z \in E,$$

where $\alpha > 0$ and $0 < \beta < 1$. The univalence of such functions has already been established in the case when $\alpha \leq 0$ and $\beta = 0$ by H. S. Al-Amiri and M. O. Reade in 1975.

1. Introduction

Let H denote the class of functions analytic in the unit disc $E = \{z : |z| < 1\}$. For $a \in \mathbb{C}$ (\mathbb{C} is the set of complex numbers), we let

$$\mathcal{A}(a) = \{f \in H : f(z) = a + a_1 z + a_2 z^2 + \dots\};$$

and

$$\mathcal{A} = \{f \in H : f(z) = z + a_2 z^2 + a_3 z^3 + \dots\}.$$

We denote by S and $St(\gamma)$, $0 \leq \gamma < 1$, the subclasses of \mathcal{A} consisting of univalent functions and starlike functions of order γ , respectively. We shall write $St(0) = St$, the usual class of starlike (with respect to the origin) functions in E .

Let $f \in \mathcal{A}$, with $\frac{f(z)f'(z)}{z} \neq 0$ in E and let α be a real number. Then f is said to be α -convex in E if and only if the inequality

$$\operatorname{Re} \left[(1 - \alpha) \frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} \right) \right] > 0,$$

holds in E . If $M(\alpha)$ denotes the class of α -convex functions, then Miller, Mocanu and Reade [7,8] proved that the functions in $M(\alpha)$ are starlike

1991 *Mathematics Subject Classification*: Primary 30C45, Secondary 30C50.

Key words and phrases: Univalent function, starlike function, differential subordination.

univalent in E for all real α , and if $\alpha \geq 1$, then $M(\alpha)$ consists of convex univalent functions.

Al-Amiri and Reade [3], in 1975, studied the class $H(\alpha)$ of functions $f \in \mathcal{A}$ with $f'(z) \neq 0$ in E which satisfy the condition

$$(1) \quad \operatorname{Re} \left[(1 - \alpha)f'(z) + \alpha \left(1 + \frac{zf''(z)}{f'(z)} \right) \right] > 0, \quad z \in E.$$

They proved that when $\alpha \leq 0$, the function f in $H(\alpha)$ satisfies $\operatorname{Re} f'(z) > 0$, $z \in E$, which in turn implies that f is close-to-convex and hence, univalent in E (Noshiro [10] and Warchawski [11]). Note that $H(1)$ consists of convex functions which are obviously univalent in E . Ahuja and Silverman [2] gave an example to show that $H(1) \not\subset H(\alpha)$, $\alpha \neq 1$. To the best of our knowledge, the question of univalence of the functions of the class $H(\alpha)$, for $\alpha > 0$, remains unsettled till date. In the present paper, we have pursued this problem, although we have succeeded only partially.

We define a class $H(\alpha, \beta)$ of functions $f \in \mathcal{A}$ with $f'(z) \neq 0$ in E for which

$$(2) \quad \operatorname{Re} \left[(1 - \alpha)f'(z) + \alpha \left(1 + \frac{zf''(z)}{f'(z)} \right) \right] > \beta, \quad z \in E.$$

We claim that when $\beta = \alpha$ and $0 < \alpha < 1$, $H(\alpha, \beta)$ consists of univalent functions. Further, when $\beta = 1/2$ and $\alpha, \alpha \geq 0$, is any real number, we show that the functions f in $H(\alpha, \beta)$ satisfy $\operatorname{Re} f'(z) > 1/2$ in E .

2. Preliminaries

We shall need the following definition and lemmas to prove our results.

DEFINITION 2.1. Let f and g be analytic in E . We say that f is subordinate to g in E , written as $f \prec g$ or $f(z) \prec g(z)$ in E , if g is univalent in E , $f(0) = g(0)$ and $f(E) \subset g(E)$.

LEMMA 2.1 [6, page 11]. *Let $n \geq 0$ be an integer and let $\gamma \in \mathbb{C}$, with $\operatorname{Re} \gamma > -n$. If $f(z) = \sum_{m \geq n} a_m z^m$ is analytic in E and F is defined by*

$$F(z) = \frac{1}{z^\gamma} \int_0^z f(t) t^{\gamma-1} dt = \sum_{m \geq n} \frac{a_m z^m}{m + \gamma},$$

then, F is analytic in E .

LEMMA 2.2 [9]. *Let c be a complex number with $\operatorname{Re} c > 0$. Let $P \in \mathcal{A}(c)$ be such that $\operatorname{Re} P(z) > 0$, $z \in E$. If $p \in \mathcal{A}(1/c)$ satisfies the differential equation*

$$zp'(z) + P(z)p(z) = 1 \quad z \in E,$$

then $\operatorname{Re} p(z) > 0$, $z \in E$.

LEMMA 2.3. Let $\phi(u, v)$ be a complex function: $\phi: \mathbb{D} \rightarrow \mathbb{C}$ (\mathbb{D} is a subset of $\mathbb{C} \times \mathbb{C}$) and let $u = u_1 + iu_2$, $v = v_1 + iv_2$. Suppose that ϕ satisfies the following conditions:

- (i) $\phi(u, v)$ is continuous in \mathbb{D} ;
- (ii) $(1, 0) \in \mathbb{D}$ and $\operatorname{Re} \phi(1, 0) > 0$; and
- (iii) $\operatorname{Re} \{\phi(iu_2, v_1)\} \leq 0$ for all $(iu_2, v_1) \in \mathbb{D}$ such that $v_1 \leq -(1 + u_2^2)/2$.

Let $p(z) = 1 + p_1 z + p_2 z^2 + \dots$ be regular in the unit disc E , such that $(p(z), zp'(z)) \in \mathbb{D}$ for all $z \in E$. If

$$\operatorname{Re}[\phi(p(z), zp'(z))] > 0, \quad z \in E,$$

then,

$$\operatorname{Re} p(z) > 0, \quad z \in E.$$

Lemma 2.3 is due to Miller [5].

LEMMA 2.4. Let p be analytic in E and let it satisfy the differential subordination

$$p(z) + \frac{zp'(z)}{\beta p(z) + \gamma} \prec \frac{1 + (1 - 2\delta)z}{1 - z} = h(z)$$

with $\beta > 0$ and $-\operatorname{Re}(\gamma/\beta) \leq \delta < 1$. Then the differential equation

$$q(z) + \frac{zq'(z)}{\beta q(z) + \gamma} = h(z), \quad q(0) = 1,$$

has a univalent solution $q(z)$. In addition, $p(z) \prec q(z) \prec h(z)$ and q is the best dominant.

Lemma 2.4 is due to Eenigenburg, Miller, Mocanu and Reade [4].

LEMMA 2.5 [12]. Let μ be a positive measure on $[0, 1]$ and let g be a complex-valued function defined on $E \times [0, 1]$ such that $g(., t)$ is analytic in E for each $t \in [0, 1]$ and $g(z, .)$ is μ -integrable on $[0, 1]$ for all $z \in E$. In addition, suppose that $\operatorname{Reg}(z, t) > 0$, $g(-r, t)$ is real and

$$\operatorname{Re} \frac{1}{g(z, t)} \geq \frac{1}{g(-r, t)}$$

for all $|z| \leq r < 1$ and $t \in [0, 1]$. If

$$g(z) = \int_0^1 g(z, t) d\mu(t),$$

then

$$\operatorname{Re} \frac{1}{g(z)} \geq \frac{1}{g(-r)}.$$

3. Main results and their proofs

We begin with the following lemma.

LEMMA 3.1. *Let α be a real number with $0 < \alpha < 1$ and let $\phi \in \mathcal{A}$ be a starlike function of order α . If $F(z) = I_\alpha[\phi](z)$ is defined by*

$$(3) \quad F(z) = \left[\left(\frac{1-\alpha}{\alpha} \right) z \int_0^z \phi^{1/\alpha}(t) t^{-2} dt \right]^\alpha,$$

then $F(z)/z \neq 0$ in E and $F \in St(\alpha)$. Here, all the powers are principal ones.

Proof. Let us define a function q as under:

$$(4) \quad \begin{aligned} q(z) &= \frac{z}{\phi^{1/\alpha}(z)} \int_0^z (\phi(t))^{1/\alpha} t^{-2} dt \\ &= \frac{\alpha}{1-\alpha} + q_1 z + \dots \end{aligned}$$

In view of Lemma 2.1 (with $n = 0$), $q \in \mathcal{A}(\alpha/(1-\alpha))$. Differentiating (4), we get

$$(5) \quad \left(\frac{1}{\alpha} \frac{z\phi'(z)}{\phi(z)} - 1 \right) q(z) + zq'(z) = 1.$$

Since ϕ is a starlike function of order α , therefore,

$$\operatorname{Re} \left(\frac{1}{\alpha} \frac{z\phi'(z)}{\phi(z)} - 1 \right) > 0, \quad z \in E.$$

Using Lemma 2.2 with $c = (1-\alpha)/\alpha$ and $P(z) = \frac{1}{\alpha} \frac{z\phi'(z)}{\phi(z)} - 1$, we conclude that $q(z) \neq 0$ and $\operatorname{Re} q(z) > 0$, for all $z \in E$.

From (3) and (4), we see that F can be represented as

$$(6) \quad \begin{aligned} F(z) &= \left(\frac{1-\alpha}{\alpha} q(z) \right)^\alpha \phi(z) \\ &= z + a_2 z^2 + \dots, \text{ say.} \end{aligned}$$

Since q and ϕ are analytic, we conclude that $F \in \mathcal{A}$ and $F(z)/z \neq 0$ in E . Differentiation of (6) logarithmically leads to

$$\frac{1}{\alpha} \frac{zF'(z)}{F(z)} = \frac{zq'(z)}{q(z)} + \frac{1}{\alpha} \frac{z\phi'(z)}{\phi(z)}$$

or

$$\frac{1}{\alpha} \frac{zF'(z)}{F(z)} - 1 = \frac{1}{q(z)}, \text{ using (5).}$$

As $\operatorname{Re} q(z) > 0$, $z \in E$, we have $F \in St(\alpha)$.

THEOREM 3.1. *Let $0 < \alpha < 1$. Suppose that an analytic function p , $p(0) = 1$, satisfies*

$$(7) \quad \operatorname{Re} \left[(1 - \alpha)p(z) + \alpha \left(1 + \frac{zp'(z)}{p(z)} \right) \right] > \alpha, \quad z \in E,$$

then, there exists a function $\phi \in \mathcal{A}$, starlike of order α , such that p has the representation

$$(8) \quad p(z) = \left[\frac{1 - \alpha}{\alpha} \int_0^1 \left(\frac{\phi(tz)}{\phi(z)} \right)^{\frac{1}{\alpha}} t^{-2} dt \right]^{-1}$$

and $\operatorname{Re} p(z) > 0$, $z \in E$.

Proof. In view of (7), we can write

$$(1 - \alpha)p(z) + \alpha \left(1 + \frac{zp'(z)}{p(z)} \right) = \frac{z\phi'(z)}{\phi(z)}$$

for some $\phi \in St(\alpha)$. Let F be as defined in (3) and let

$$(9) \quad p(z) = \frac{1}{1 - \alpha} \left(\frac{zF'(z)}{F(z)} - \alpha \right).$$

Then p is analytic in E with $p(0) = 1$ and $\operatorname{Re} p(z) > 0$ in E (as $F \in St(\alpha)$, by Lemma 3.1). In view of (3) and (9), one can easily verify that

$$p(z) = \left(\frac{\phi(z)}{F(z)} \right)^{1/\alpha} = \left[\frac{1 - \alpha}{\alpha} \int_0^1 \left(\frac{\phi(tz)}{\phi(z)} \right)^{\frac{1}{\alpha}} t^{-2} dt \right]^{-1}.$$

This completes the proof of our theorem. ■

Taking $p(z) = f'(z)$ in Theorem 3.1, we immediately get the following result:

THEOREM 3.2. *Let α be a real number such that $0 < \alpha < 1$. Let $f \in \mathcal{A}$ satisfy*

$$(10) \quad \operatorname{Re} \left[(1 - \alpha)f'(z) + \alpha \left(1 + \frac{zf''(z)}{f'(z)} \right) \right] > \alpha, \quad z \in E.$$

Then $\operatorname{Re} f'(z) > 0$ in E and hence, f is univalent in E .

To prove our next result, we shall need the definition and some properties of Gaussian hypergeometric function. The function

$${}_2F_1(a, b, c; z) = 1 + \frac{ab}{c} \frac{z}{1!} + \frac{a(a+1)b(b+1)}{c(c+1)} \frac{z^2}{2!} + \dots,$$

is called Gaussian hypergeometric function where a, b and c are complex constants with $c \neq 0, -1, -2, \dots$. Following properties of ${}_2F_1(a, b, c; z)$ are well-known (see [1, p. 556–558])

$$(11) \quad {}_2F_1(a, b, c; z) = {}_2F_1(b, a, c; z);$$

$$(12) \quad {}_2F_1(a, b, c; z) = (1 - z)^{-a} {}_2F_1(a, c - b, c; z/(z - 1));$$

and if $\operatorname{Re} c > \operatorname{Re} b > 0$, then there is a probability measure on $[0, 1]$ given by

$$d\mu(t) = \frac{\Gamma(c)t^{b-1}(1-t)^{c-b-1}}{\Gamma(b)\Gamma(c-b)}dt,$$

such that

$$(13) \quad {}_2F_1(a, b, c; z) = \int_0^1 (1 - tz)^{-a} d\mu(t).$$

In the next theorem, we obtain the best dominant for $f'(z)$, when $f \in H(\alpha, \alpha)$, $0 < \alpha < 1$.

THEOREM 3.3. *Let $f \in H(\alpha, \alpha)$, $0 < \alpha < 1$. Then for all $z \in E$, we have*

$$f'(z) \prec \frac{1}{{}_2F_1(\frac{2}{\alpha} - 2, 1, \frac{1}{\alpha}; \frac{z}{z-1})} \prec \frac{1+z}{1-z}.$$

Proof. Let $f'(z) = p(z)$. Since $f \in H(\alpha, \alpha)$, we can write

$$(1 - \alpha)p(z) + \alpha \left(1 + \frac{zp'(z)}{p(z)} \right) \prec \frac{1 + (1 - 2\alpha)z}{1 - z}.$$

A little simplification leads us to

$$p(z) + \frac{\alpha}{1 - \alpha} \frac{zp'(z)}{p(z)} \prec \frac{1+z}{1-z}.$$

This is Briot-Bouquet differential subordination of the form defined in Lemma 2.4, with $\beta = \frac{1-\alpha}{\alpha}$, $\delta = 0$ and $\gamma = 0$. Since $0 < \alpha < 1$, an application of Lemma 2.4 gives that $p(z) \prec q(z) \prec (1+z)/(1-z)$, where $q(z)$ is the univalent solution of the differential equation

$$q(z) + \frac{\alpha}{1 - \alpha} \frac{zq'(z)}{q(z)} = \frac{1+z}{1-z}.$$

On solving this differential equation, we get

$$\begin{aligned} q(z) &= \frac{z^{\frac{1}{\alpha}-1}(1-z)^{2-\frac{2}{\alpha}}}{\frac{1-\alpha}{\alpha} \int_0^z t^{\frac{1}{\alpha}-2}(1-t)^{2-\frac{2}{\alpha}} dt} = \frac{z^{\frac{1}{\alpha}-1}(1-z)^{2-\frac{2}{\alpha}}}{\frac{1-\alpha}{\alpha} \int_0^1 (sz)^{\frac{1}{\alpha}-2}(1-sz)^{2-\frac{2}{\alpha}} ds} \\ &= \frac{(1-z)^{2-\frac{2}{\alpha}}}{\frac{\Gamma(\frac{1}{\alpha})}{\Gamma(\frac{1}{\alpha}-1)\Gamma(1)} \int_0^1 s^{\frac{1}{\alpha}-2}(1-sz)^{-(\frac{2}{\alpha}-2)} ds} \\ &= \frac{(1-z)^{2-\frac{2}{\alpha}}}{{}_2F_1(\frac{2}{\alpha} - 2, \frac{1}{\alpha} - 1, \frac{1}{\alpha}; z)} \quad (\text{using (13)}) \\ &= \frac{1}{{}_2F_1(\frac{2}{\alpha} - 2, 1, \frac{1}{\alpha}; \frac{z}{z-1})}. \quad (\text{using (12)}) \end{aligned}$$

Thus, we have

$$f'(z) \prec \frac{1}{_2F_1(\frac{2}{\alpha} - 2, 1, \frac{1}{\alpha}; \frac{z}{z-1})} \prec \frac{1+z}{1-z}.$$

THEOREM 3.4. *If $f \in H(\alpha, \alpha)$, $1/2 < \alpha < 1$, then*

$$(14) \quad \operatorname{Re} f'(z) > \frac{1}{_2F_1(\frac{2}{\alpha} - 2, 1, \frac{1}{\alpha}; \frac{1}{2})}, \quad \text{for all } z \in E.$$

Proof. Since $f \in H(\alpha, \alpha)$, by Theorem 3.3, we get

$$f'(z) \prec \frac{1}{_2F_1(\frac{2}{\alpha} - 2, 1, \frac{1}{\alpha}; \frac{z}{z-1})}.$$

In order to prove inequality (14), we use Lemma 2.5 alongwith properties (11) and (13) of ${}_2F_1(a, b, c; z)$. If we write $a = 2/\alpha - 2, b = 1, c = 1/\alpha$, we obtain

$$q(z) = \frac{1}{g(z)},$$

where

$$g(z) = {}_2F_1\left(a, 1, c; \frac{z}{z-1}\right) = {}_2F_1\left(1, a, c; \frac{z}{z-1}\right).$$

Since $1/2 < \alpha < 1$, we get $c > a > 0$, and therefore, from (13), we obtain

$$g(z) = \int_0^1 \frac{1-z}{1-(1-t)z} d\mu(t),$$

where $\mu(t)$ is the probability measure on $[0, 1]$. Let us define a function $g(z, t)$ on $E \times [0, 1]$ by

$$g(z, t) = \frac{1-z}{1-(1-t)z}.$$

Then, obviously, $g(., t)$ is analytic in E for each $t \in [0, 1]$ and $g(z, .)$ is μ -integrable on $[0, 1]$ for all $z \in E$. Further, $\operatorname{Re} g(z, t) > 0, g(-r, t)$ is real and

$$\operatorname{Re} \frac{1}{g(z, t)} \geq \frac{1 + (1-t)r}{1+r} = \frac{1}{g(-r, t)},$$

for $|z| \leq r < 1$ and $t \in [0, 1]$. An application of Lemma 2.5 gives

$$\operatorname{Re} \frac{1}{g(z)} \geq \frac{1}{g(-r)}.$$

Letting $r \rightarrow 1^-$, we get

$$\operatorname{Re} \frac{1}{g(z)} \geq \frac{1}{g(-1)} = {}_2F_1\left(\frac{2}{\alpha} - 2, 1, \frac{1}{\alpha}; \frac{1}{2}\right).$$

This completes the proof of our theorem.

THEOREM 3.5. *Let $\alpha \geq 0$ be a real number. Suppose that an analytic function $f \in \mathcal{A}$ satisfies*

$$(15) \quad \operatorname{Re} \left[(1 - \alpha) f'(z) + \alpha \left(1 + \frac{zf''(z)}{f'(z)} \right) \right] > 1/2, \quad z \in E.$$

Then $\operatorname{Re} f'(z) > 1/2$ in E .

Proof. Let us define a function p in E by

$$f'(z) = \frac{1 + p(z)}{2},$$

where $p(z) = 1 + p_1 z + \dots$. We shall show that $\operatorname{Re} p(z) > 0$, $z \in E$. Obviously,

$$(1 - \alpha) f'(z) + \alpha \left(1 + \frac{zf''(z)}{f'(z)} \right) = (1 - \alpha) \frac{1 + p(z)}{2} + \alpha \left[1 + \frac{zp'(z)}{1 + p(z)} \right].$$

Define $\Psi(u, v) : \mathbb{D} = (\mathbb{C} \setminus \{-1\}) \times \mathbb{C} \rightarrow \mathbb{C}$ as under:

$$\Psi(u, v) = 2 \left[(1 - \alpha) \frac{1 + u}{2} + \alpha \left(1 + \frac{v}{1 + u} \right) \right] - 1.$$

Then $\Psi(u, v)$ is continuous in \mathbb{D} , $(1, 0) \in \mathbb{D}$ and $\operatorname{Re} \Psi(1, 0) > 0$. Further, (15) implies that $\operatorname{Re} \Psi(p(z), zp'(z)) > 0$, $z \in E$.

Also, for $(ir_2, s_1) \in \mathbb{D}$, with $s_1 \leq -(1 + r_2^2)/2$, we have

$$\begin{aligned} \operatorname{Re} \Psi(ir_2, s_1) &= \operatorname{Re} \left[(1 - \alpha)(1 + r_2 i) + 2\alpha \left(1 + \frac{s_1}{1 + r_2 i} \right) - 1 \right] \\ &= -\alpha + 2\alpha \left[1 + \frac{s_1}{1 + r_2^2} \right] \leq -\alpha + 2\alpha \left[1 - \frac{1 + r_2^2}{2(1 + r_2^2)} \right] = 0. \end{aligned}$$

Result now follows by Lemma 2.3.

Acknowledgement. The authors would like to thank Prof. Vikramaditya Singh for his help, guidance and encouragement during this work.

References

- [1] M. Abramowitz, I. A. Stegun, *Hand Book of Mathematical Functions*, Dover Publications Inc., New York (1971).
- [2] O. P. Ahuja, H. Silverman, *Classes of functions whose derivatives have positive real part*, J. Math. Anal. Appl. 138, No.2(1998), 385–392.
- [3] H. S. Al-Amiri and M. O. Reade, *On a Linear combination of some expressions in the theory of univalent functions*, Monatsh. Math. 80,(1975), 257–264.
- [4] P. Eenigenburg, S. S. Miller, P. T. Mocanu, M. O. Reade, *On a Briot-Bouquet differential subordination*, General Inequalities 3 (1983), (Birkhäuser-Verlag, Basel), 339–348.
- [5] S. S. Miller, *Differential inequalities and Carathéodory functions*, Bull. Amer. Math. Soc. 81(1975), 79–81.

- [6] S. S. Miller and P. T. Mocanu, *Differential Subordinations-Theory and Applications*, Marcel Dekker Inc., New York, Basel (2000).
- [7] S. S. Miller, P. T. Mocanu, M. O. Reade, *All α -convex functions are univalent and starlike*, Proc. Amer. Math. Soc. 37 (1973), 553–554.
- [8] S. S. Miller, P. T. Mocanu, M. O. Reade, *Bazilevič functions and generalized convexity*, Rev. Roumaine Math. Pures Appl. 19 (1974), 213–224.
- [9] P. T. Mocanu, *Some integral operators and starlike functions*, Rev. Roumaine Math. Pures Appl., 31(1986) 231–235.
- [10] K. Noshiro, *On the theory of schlicht functions*, J. Fac. Sci. Hokkaido Univ. 2 (1934-35), 129–155.
- [11] S. E. Warchawski, *On the higher derivatives at the boundary in conformal mappings*, Trans. Amer. Math. Soc. 38 (1935), 310–340.
- [12] D. Wilken and J. Feng, *A remark on convex and starlike functions*, J. London Math. Soc. (2) 21 (1980) 287–290.

SANT LONGOWAL INSTITUTE OF ENGINEERING AND TECHNOLOGY

LONGOWAL-148106 (PUNJAB)-INDIA

E-mails: sukhjit.d@yahoo.com

sushmagupta1@yahoo.com

Received September 24, 2003.

