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INEQUALITIES APPLICABLE TO CERTAIN PARTIAL
FINITE SUM-DIFFERENCE EQUATIONS

Abstract. The aim of this paper is to establish explicit bounds on certain discrete
inequalities in two independent variables involving iterated sums, which can be used to
study the qualitative behavior of solutions of some classes of partial finite sum-difference
equations. Applications are also given to illustrate the usefulness of one of our results.

1. Introduction
In [2] Bykov and Salpagarov (see, also [1,3,4]) have given the explicit
bounds on the following inequalities

(1.1) u(t) < c+ | k¢, s)u(s)ds + | (§ h(t, s, 0)u o)da)
(1.2) u(t) <c+ S b(s)u(s)ds + S (S k(s, T)u d‘r)ds

+ S (S (g h{s, T, a)u(a)da)dr)ds,

under some suitable conditions on the functions involved therein. Recently
in [6] it is shown that the explicit bounds on the discrete versions of the
above inequalities and their generalizations are equally important in certain
applications. In view of the successful utilizations of the explicit bounds on
such inequalities (see[5]) it is natural to expect that the explicit bounds on
the two independent variable discrete generalizations of (1.1),(1.2) would
be useful in certain new applications. The main purpose of this paper is
to establish explicit bounds on two independent variable discrete general-
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izations of the above inequalities, which can be used as handy tools in the
study of certain new classes of partial finite sum-difference equations. Some
applications of one of our results are also given.

2. Statement of Results

In what follows R denotes the set of real numbers and Ry = [0, 00),
Ny ={0,1,2,...} are the given subsets of R. We denote by

D= {(z,y,5t) EN}:0< s <1 <00,0<t <y < o0},
E={(z,y,8,t,0,7)eEN§:0<0<s5<2<00,0<T<t<y< o0}

For any function u(z,y), z,y € Ny, we define the operators Aju(z,y) =
u(z + 1,y) — u(z,y), Agu(z,y) = u(z,y+ 1) — u(z,y) and AgAu(z,y) =
Ag(Aju(z,y)). We use the usual conventions that the empty sums and
products are taken to be 0 and 1 respectively and assume that all the sums
and products involved throughout the discussion exist on the respective
domains of their definitions.

Our main results are established in the following theorems.

THEOREM 1. Let u(z,y) : N — Ry, k(z,y,s,t), Ar1k(z, y, s, 1),

Azk(za Y, S,t), A2A1k(z7 y,S,t) :D— R+7 h(.’L‘,y, s,t,0, T):

Aq h(z,y,s,t,0,7), Dah(z,y,s,t,0,7), A2y h(z,y,s,t,0,7) : E — Ry
and ¢ > 0 is a constant.

(al) lf
2.1)  u(z,y)
z—1y—1 z—1y—1 s—1t-1
< c+ZZk(z,y,s tu(s t)+zz (ZZh(m,y,s t,o, 7)u(o, ‘r))
s=0 t=0 s=0 t=0 o=07=0

for x,y € Ny, then

z—1 y—1
(2:2) u(z,y) <c [ 1+ D [Alm,n) + B(m,n)]],

m=0 n=0
Jor z,y € Ny, where

z-1

(2.3) A(:r y)=k(z+1Ly+Lz,9)+ > Ak(z,y+1,5,y)
s=0
z-1y—-1

+ZA2k(x+ 1,y,z,t) +EZA2A1k(m Y, S, 1),

s=0 t=0
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r-1y—1

(24) B(z,y)= > Y h(z+1,y+1,z,5,0,7)
o=01=0
z—1 s-1ly-1

3 (T Atk y+1,8,9,07))

s=0 o=071=0
y—1 z-11t-1

* tX—; ZZA‘Zh(I+ l,y,.’E,t,O',T))

o=07=0
- s—1t-1

z—1y-1
+ Z Z (Z Z AgAh(z,y, s,t, 0, T))
s=01t=0 o=07=0
(ag) Let g(u) be a nondecreasing continuous function defined on Ry with
g(u) > 0-foru>0. If
z—-1y—1
25 u(ey) <ct+ 33 kv, g(u(s,t)
0

8=0 t=
r—1y—1 s—-11¢t-1

+ Z Z (Z Z h(z,y,s,t,0,7)g(u(o, ’T))) ,

s=0t=0 o=07=0
fO’I" T,y € NO) then fO’I"O S T S ri, 0 < Yy < Y, T,T1,Y,Y1 € NO,

z—1 y—1
(26)  ul@y) <GUCE+ Y 3 [A(m,n) + B(m, n)),
m=0n=0
where A(z,y), B(z,y) are given by (2.3), (2.4),
¢ dw
2.7 G(r) = r >0,
@7 )= S IOK
ro > 0 is arbitrary, G~1 is the inverse of G and x1,y1 € Ny be chosen so
that z—1 y-1
Gle)+ Y_ Y [A(m,n) + B(m,n)] € Dom(G™),
m=0n=0

forallz,ye Nog suchthat 0 <z <z, 0<y<y1.

THEOREM 2. Let u(z,y), k(z,v, s, t), h(z,y,s,t,0,7), ¢ be as in Theorem
1 and b(z,y) : N} - R,.

(o) If
z—1y~1 r—1y—-1 s-11t-1
(28) u(z,y) Sc+ 3y b(s,uls)+3 (Z 3" k(s,t,0,7)u(o, T))
=0 t=0 §=01t=0 o0=07=0

z—=1y—1 s-1t-1 o-17-1

+ ZZ (Z Z (Z Zh(s,t, o, T,m,n)u(m, n))),

$=0t=0 o0=07=0 m=0n=0
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for z,y € Ny, then

z—1 y—

(2.9) u(z,y) <c H 1+ Z Q(s,t)]
s=0 t=0

for x,y € Ny, where
z—1y—1

(2.10) Qz,y) =b(z,¥) + Y > k(z,y,0,7)
o=071=0

z—1ly—1 o-171-1

+ZZ(Z Zh(m Y,0,T,m, n))

a=07=0 m=0n=0

(b2) Let g(u) be as in Theorem 1, part (aq). If
(2.11)  u(z,y)

r—1y— r~1y—-1 s—11t-1

c+ b(s,t)g(u(s,t)) +ZZ(Zstt0’T (u(aT)))
0

5=0 t= s=0t=0 o=07=0

—

r—=1y-1 s-1t=1 o-17-1

+ Z Z (Z Z (Z Z h(s,t,a,7,m,n)g(u(m, n)))),

s=0t=0 o=07=0 m=0n=0
fO’I" T,y € NO') then fOT' 0 <z< za, 0 S yS Y2; T,Z2,Y,Y2 € NO,
z—-1y—1

(2.12) u(z,y) SGHG() + ) Y Qs )],

s=0 t=0
where Q(z,y) is given by (2.10), G, G~} are as in Theorem 1, part (ag) and
x9,y2 € Np, be chosen so that

z—1y-1

G(c) + ZZ Q(s,t) € Dom(G™1),

s=0 t=0
forallz,y € Ny such that 0 < z < 29, 0 <y < 1.

3. Proofs of Theorems 1 and 2

(a1) We first assume that ¢ > 0 and define a function z(z, y) by the right
hand side of (2.1). Then z(z,y) > 0, 2(0,y) = z(z,0) = ¢, and

(1)  Asz(z,y) = 2(z+ 1,y) — 2(z,y)
z y—1 z y-1 s-11t-1

= ZZk(m-}-l Y, s, tyu(s, t)+ZZ<ZZh(w+1,y,s t,o, T)U(U,T))

$=0 t=0 s=0t=0 o=07=0
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z—1y-1 z—1y—1 s-11t-1

- Z Z k(z,y, s, t)u(s, t) — Z Z (Z z h(z,y,s,t,0,7)u(o, T))
s=0 t=0 s=0t=0 o=07=0
-1 z—-1y-1

= Zk (z+1,y,z,t)u(z, t) +ZZk z+1,y,s,t)u(s,t)

=0 s=0 t=0
z—1y—-1 y—=1 z—11t-1

=YY ke ysuls )+ Y (D ke +Lyzto,mule,n)
3=0 t=0 t=0 o=07=0

r—1y—1 s—11¢-1

+ZZ(ZZh(x+1 v, 8, t,0,7)u(o, T))

§=0t=0 o=071=
z—-1y—1 s-11t=1

_ Z Z (Z Z h(z,y, s, t,0,7)u(o, T))

$=01t=0 o=01=0

—

z—1y—1

k(e +1Ly,2,0u(@, ) + 3 3 Atk(z,y, 5, t)u(s, )
$=0 t=0

<

i
Ng

o
Il
[ [=]

-1 -1

Z (S t h(z +1,y,z,t,0,7)u(o, 7'))

=0 o=07=0
r—1y-1 s—11t-1

Z (ZZAlh(a:,y,s,t, o, T)u(o, T))

$=0t=0 o=071=0

+
+
From (3.1) and using the facts that u(z, y) < z(z, y), 2(z, y) is nondecreasing
in z,y € Np, we have
B2)  AAiz(z,y) = Arz(z,y + 1) — Lr2(z,y)

z—1 y

Yy
Yok +Ly+ Lz u(z,t)+ > Y Ak(z,y+1,8,t)u(s, 1)

8=0 t=0

z—1t-1

S S hz+Ly+1,3,t0,7)u(s,7)

=07=0

+
M@‘:
—

s—1t—-1

+ zy: (Z Z Arh(z,y +1,s,t,0,T)u(o, T))

s=0t=0 o=071=0
y—1 z—1y—1

- Z k(fl? + 17 y,z, t)’ll.(.’II, t) - Z Z Alk(:l:a Y, S, t)u(s7 t)

t=0 s=0 t=0
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y—1 z—11t-1

- (L X e+ Lt n)

t=0 o=071=0
z~1y—1 s—11t—1

-3 (XY Atk s, torule,m)

s=0t=0 o=07=0

y—1
=k(z+1,y+ 1, z,9)u(z,y) + Z k(z+1,y+1,z,t)u(z,t)
t=0
z—1 r—1y-1
+3 Atk y+ L gulsn) + 303 Ak y+ 1,5, (s, 0
s=0 s=0 t=0
y—1 z—1y—1
- k(z+1,y,z,t)u(z,?) Ark(z,y, s, t)u(s,t)
t=0 s=0 t=0
z—1y—1
+ ZZh(m +1,y+1,z,y,0,7)u(o,7)
o=07=0

y—1 z-—-11t-1

+ 3 (X ha+ Ly + La,t,0,7)u(o, )

t=0 o0=07=0
z—1 s—1y-—1

+ Z (Z Z Arh(z,y +1,s,y,0,7)u(o, 'r))

s=0 o=01=0
z—1y—1 s—11t—-1

+33 (E S sabley+ Lot )

0t=0 o=07=0
1 z-1t—

t—1

(Zzh<z+1,y,x,t,a,r>u<a,r>)

o=0r=0
y—1 s—1t-1

(ZZAM(Q:,y,s t, 0, T)u(o, 7'))

0t=0 o=07=0

< 1)

M

>3
Il
HO

H

fa

z—1

=k(z+Ly+1z,y)ulz,y) + Y Ak(z,y + 1,5,9)u(s,y)
§=0

y—1 z—1y—1

+ Z A2k($ + la Y,z t)u(‘T, t) + Z Z A2A1k(z7 Y, s, t)’U.(S, t)

t=0 s=0 t=0
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z—1y-1

+3 ) hz+1,y+1,x,9,0,7)u0,7)
o=01=0
z-1 s-1y-1

+> (ZZAlh(z y+1,s,y,0,7)u(o, T))
$=0 o=071=0
y—1 z-1¢-1

+ 3 (X3 Ah(z+ Ly, t,0,7)u(o, 7))
t=0 o=07=0
r—1ly—-1 s—1t-1

+ Z Z (Z Z A2A1h($, Y,s, t1 g, T)U(O', T))
s=0t=0 o=07=0

< [A(z,y) + B(z,y)]2(z, y).

Now by following the proof of Theorem 4.2.1 given in [5] we get

z-1 y—1
(3.3) z,y) <c [] [1 + 3" [A(m,n) + B(m, n)]],

m=0 n=0
for z,y € Np. Using (3.3) in u(z,y) < z(z,y), we get the required inequality
in (2.2).

If ¢ > 0, we carry out the above procedure with ¢+ € instead of ¢, where
€ > 0 is an arbitrary small constant, and subsequently pass to the limit as
€ — 0 to obtain (2.2).

(a2) Assume that ¢ > 0 and define a function z(z,y) by the right hand
side of (2.5). Then z(z,y) > 0, 2(z,0) = 2(0,y) = ¢, u(z,y) < 2(z,y) and
z(z,y) is nondecreasing in z,y € Ny. By following the arguments as in the
proof of (a1) upto (3.2) with suitable modifications we get

(34) AgAlZ(ZB, y) < [A(ZL‘, y) + B("L‘) y)]g(Z((L‘, y))
The remaining proof can be completed as in the proof of Theorem 5.2.1
given in [5,p.388].

(b1) Let ¢ > 0 and define a function z(z,y) by the right hand side of
(2.8). Then z(z,y) > 0, 2(z,0) = 2(0,y) = ¢, u(z,y) < z(z,y), z(z,y) is
nondecreasing in z,y € Ny and

z—1y-1
(3'5) AZAIZ(:B" y) = b(l‘a y)u(z,y) + Z Z k(z,y,0,T)u(o,7)
o=07=0
z—1y—-1 o~171-1

+ ZZ (Z Zh(i’?ay,ffﬁ,m,n)u(m,n))

o=07=0 m=0n=0

< Q(z, y)z(z, y).
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The rest of the proof can be completed by following the proof of Theorem
4.2.1 given in [5)].

(b2) The proof can be completed by following the proof of (b;) and closely
looking at the proof of Theorem 5.2.1 given in [5]. Here, we leave the details
to the reader.

4. Applications

In this section, we present applications of the inequality established in
Theorem 2, part (b;) to study certain properties of solutions of the partial
finite sum-difference equation of the form

z~1y—1

(41) Babdu(e,y) = F(z,9,u(z,9), Y 3 P(e,9,0,7,u(0, 7)),
o=07=0

z—1y—-1 o—-171-1

ZZ (Z ZH(m,y,a,r,m,n,u(m,n)))),

o=071=0 m=0n=0

with the given initial conditions at z = 0,y = 0 as

(42) u(z,0) = d(z), u(0,1) = e(y), u(0,0) =0,

whered,e: N - R,P:DxR— R H:ExR—- R F:N}xR} - R. It
is easy to observe that the problem (4.1) — (4.2) is equivalent to the following
sum-difference equation

z—-1y—1

(43)  u(z,y) = d(@)+e@) + > 3 F(s b ulsb),
s=0 t=0
s—1t—1 s—1t-1 o—17-1
ZZP(S t,o,1,u(o,T)), ZZ(Z ZH(S t,o0,7,m,n,u(m, n))))
o=071=0 0=07=0 m=0n=0

The following theorem deals with the boundedness of the solutions of
(4.1)-(4.2).

THEOREM 3. Suppose that the functions d,e, F, P, H satisfy

(44) |ld(z)| + le(¥)| < ¢,
(4.5) |[F(z,y,u,v,w)| < b(x,y) [u| + [v| + |w],
(4.6) |P(z,y,0,7,u)| < k(z,y,0,7T) |u],

(4.7) |H(z,y,0,7,m,n,u)| < h(z,y,0,7,m,n)ful,
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where ¢, b, k, h are as in Theorem 2 and

(4.8) ﬁ [1 + ,,2_1 Q(m, n)] < o0,
m=0 n=0

in which Q(z,y) is given by (2.10), then the solution u(z,y) of (4.1) — (4.2)
is bounded and

z—1 y—1
(4.9) ()l < e [T [1+ 3 Q0m,n)],
m=0 n=0

for z,y € Np.
Proof. Let u(z,y) be a solution of (4.1) — (4.2). Then u(z,y) also satisfies
(4.3). Using (4.4) — (4.7) in (4.3) we have

z—1y—-1

(410) |u(e,y)| Sc+ 3 3 bs, Bluls, t)

$=0 t=0
z—1y—-1 s—11t-1

+ZZ (ZZk(s t,o,7)|u(o, )l)

8=0t=0 o=07=0
z—1y—1 s-=1t-1 o-17-1

+zz(zz (Z Zh(s t,o,7,m,n)|u(m, n)|))

s=0t=0 o0=07=0 m=0n=0

Now an application of Theorem 2, part (b) to (4.10) yields the bound in
(4.9), which in view of condition (4.8) implies the boundedness of solutions
of (4.1)-(4.2).

Next, we establish the uniqueness of solutions of (4.1)-(4.2).

THEOREM 4. Suppose that the functions F, P, H in (4.1) satisfy the condi-
tions

(411) |F(IE, Y, 'll,,;l), w) - F(.’lt, Y, 4, v, ‘U_))I < b(.’l:, y)‘"’ - ﬁ'|+|v - ﬁ|+|w - ’U_.)I,
(412) IP(a:, Y,0,7, u) - P(.’L‘, Y,0,7, ﬂ)l < k(.’l:, Y,0, T)lu - ﬁ'l?
(4.13) |H(z,y,0,7,m,n,u) — H(z,y,0,7,m,n, )|

< h(.’l,‘, y,0,7,m, n)lu’ - ﬁl’

where b, k, h are as in Theorem 2. Then (4.1)—(4.2) has at most one solution
on NZ.

Proof. Let u(z,y) and v(z, y) be two solutions of (4.1)—(4.2) for z,y € No.
Using the facts that u(z,y) and v(z,y) are the solutions of (4.3) and the
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conditions (4.11)—(4.13) we have
z—1y-1
(414)  fu(z,y) —v(z,y)| < DD b(s,Bluls, t) —v(s, 1)
=0 t=0
z~1y-1 s~11t—-1
+3 3 (X3 ks t,0,mlue,7) — o(a,7)])
=0 t=0 o=071=0
z—1y—-1 s-1t-1 o-17-1
+ 23 (22 (X X as tyo,rmymlum,n) - o(m, m)])).
s=0t=0 o0=07=0 m=0n=0

Now a suitable application of Theorem 2, part (b;) (when ¢ = 0) to (4.14)
yields u(z,y) = v(z,y) i.e. there is at most one solution to (4.1)-(4.2)
on NZ.

Our next result shows the dependency of solutions of equation (4.1) on
given initial values.

THEOREM 5. Let u)(z,y) and ug(z,y) be the solutions of (4.1) with the
given initial conditions

(4.15) uy(z,0) = dy(z), u1(0,y) = e1(y), u1(0,0) =0,
and

(4.16) us(z,0) = do(z), u2(0,y) = ea(y), u2(0,0) =0,
respectively, where d1,d3,e1,e2 : No — R and

(4.17) |d1(z) + e1(y) — da(z) — e2(y)| < ¢,

where ¢ > 0 is a constant. Suppose that the functions F, P, H in (4.1) satisfy
the conditions (4.11), (4.12), (4.13). Then

z—1 y-1
(4.18) (2, 9) — wa@ )l < ¢ [T [1+ 3 Qm,m),
m=0 n=0

Jor z,y € No, where Q(z,y) is given by (2.10).
Proof. From the hypotheses, it is easy to observe that

(4.19)  |ui(z,y) — u2(z,y)| < |di(z) + e1(y) — da(z) — e2(y)|
z—-1y—-1 s—11t-1

+ZZ|F(3 t,ui(s,t), ZZP(S t,o,7,u1(0, 7)),

s=0 t=0 o=07=0
s—1t-1 o-171-1

ZZ (E ZH(S,t,o,'r,m,n,ul(m,n))))

o=07=0 m=0n=0
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s—1t-1
—F(s,t,ua(s,2), ) 3 Pls,t,0,7,us(0,7),
o=07=0
s—1t-1 o-171-1
Z Z (Z Z H(S, t, o, 7T, mn, ’U2(m, n)))) l
o=07=0 m=0n=0
z—1y-1
<c+ Z Zb(sa t)lul(sat) - UQ(S,t)I
s=0 t=0
z—-1y—1 s—11t-1
+ Z Z (Z Z k(s,t,0,T)ui(o,7) — ua(o, 7')')
8=0t=0 o=07=0
z—1y-1 s—1t-1 o-171-1

+ 2 T (T X (X Thtartommmfusm,m) - uafm, n)])).

s=0t=0 o=0r=0 m=0n=0

Now an application of Theorem 2, part (b;) to (4.19) yields the estimate
(4.18), which shows the dependency of solutions of (4.1) on given initial
values.

In conclusion, we note that the inequality given in Theorem 1, part (a1)
can be used to study similar properties as above for the following sum-
difference equation

z—1y-1

(420)  u(z,y) = f(zy)+ D) Y F(z,y,8tu(s,1)

s=0 t=0
z—1y—1 s—11t-1

+ L3 (XX HE st onuem),

$=01t=0 o=07=0
under some suitable conditions on the functions involved in (4.20). Various
other applications of the inequalities in this paper will be given elsewhere.

References

(1] D. Bainov, P. Simeonov, Integral Inequalities and Applications, Kluwer Academic
Publishers, Dordrecht, 1992.

[2] Ya. V. Bykov, Kh. M. Salpagarov, On the theory of integro-differential equations,
in: Investigations in Integro-Differential Equations, Khirghizia 2, Izd. Akad. Nauk
Khirghizia SSR, 1962 (in Russian).

[3] S. S. Dragomir, Some Gronwall type Inequalities and Applications, RGMIA Mono-
graphs, Victoria University of Techonology, 2001.

[4 A. N. Filatov, L. V. Sharova, Integral Inequalities and the Theory of Nonlinear
Oscillations, Nauka, Moscow, 1976.



302 B. G. Pachpatte

[5] B. G. Pachpatte, Inequalities for Finite Difference Equations, Marcel Dekker Inc.,
New York, 2002.

[6] B. G. Pachpatte, Growth estimates on certain discrete inequalities involving iterated
sums, An. Sti. Univ. “Al. I. Cuza” lasi, in print.

57, SHRI NIKETEN COLONEY, NEAR ABHINAY TALKIES,
AURANGABAD, 431001, MAHARASHTRA, INDIA
Email: bgpachpatte@hotmail.com

Received Novernber 29, 2003.



