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ON o-DERIVATIONS OF PRIME AND SEMIPRIME RINGS

Abstract. In this paper we investigate identities with a-derivations on prime and
semiprime rings. We prove, for example, the following result. If D : R — R is an
a-derivation of a 2 and 3—torsion free semiprime ring R such that {D(z),z?] = 0 holds,
for all z € R, then D maps R into its center. The results of this paper are motivated by
the work of Thaheem and Samman [20)].

Introduction

Throughout, R is an associative ring with center Z(R). Given an integer
n > 2, a ring R is said to be n—torsion free if for z € R, nz = 0 implies
z = 0. As usual we write [z, y] for zy — yz and make use of the commutator
identities [zy, 2] = [z, 2]y + z[y, 2], [z, y2] = [z, y]z + y[z, 2]. We denote by I
the identity mapping of a ring R. Recall that a ring R is prime iffora,b € R,
aRb = (0) implies that either a = 0 or b = 0, and is semiprime in case
aRa = (0) implies a = 0. For explanation of the extended centroid C(R) of a
semiprime ring R we refer to {1]. An additive mapping D : R — R is called
a derivation if D(zy) = D(z)y + zD(y) holds, for all pairs z,y € R. Let «
be an automorphism of a ring R. An additive mapping D : R — R is called
an o —derivation if D(zy) = D(z)a(y)+zD(y) holds, for all pairs z,y € R.
Note that the mapping, D = a—1 is an a-derivation. Of course, the concept
of a-derivation generalizes the concept of derivation, since any I— derivation
is a derivation. a-derivations are further generalized as (a, 3)—derivations.
Let «, 8 be automorphisms of R, then an additive mapping D of R into
itself is called an (a, B) — derivation if D(zy) = D(z)a(y) + B(z)D(y) holds
for all z,y € R. a-derivations and (a, §)—derivations have been applied in
various situations; in particular, in the solution of some functional equa-
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tions (see, e. g. Bresar [4]). For more information on a—derivations and
(a, B)—derivations, we refer to (3,4, 8,9,10,11,12,13,14,20]. In this paper
we are concerned with a-derivations. A mapping f of R into itself is called
centralizing on R if [f(z),z] € Z(R) holds, for all z € R; in the special
case when {f(z),z] = 0 holds, for all z € R, the mapping f is said to be
commuting on R. The history of commuting and centralizing mappings goes
back to 1955 when Divinsky [16] proved that a simple Artinian ring is com-
mutative if it has a commuting nontrivial automorphism. Two years later
Posner [19] has proved that the existence of a nonzero centralizing deriva-
tion on a prime ring forces the ring to be commutative (Posner’s second
theorem). Luh [17] generalized the Divinsky result, we have just mentioned
above, to arbitrary prime rings. Mayne [18] has proved that in case there
exists a nontrivial centralizing automorphism on a prime ring, then the ring
is commutative. A result of Bresar [5], which states that every additive com-
muting mapping f of prime ring R is of the form f(z) = Az + ((z) where
A is an element of C(R) and ¢ : R — C(R) is an additive mapping, should
be mentioned. A mapping f: R — R is called skew — centralizing on R if
f(z)z+zf(x) € Z(R) holds for all z € R; in particular, if f(z)z+zf(z) =0
holds for all z € R, then it is called skew — commuting on R. Bresar [6]
has proved that if R is a 2-torsion free semiprime ring and f : R — R is an
additive skew-commuting mapping on R, then f = 0.
In [20], Thaheem an Samman have proved the following result.

THEOREM A ([20], Proposition 2.3). Let D : R — R be an a-derivation,
where R is a semiprime ring. If D is commuting on R, then D maps R into

Z(R).
The result above was the inspiration for our first theorem.

THEOREM 1. Let D : R — R be an a-derivation, where R is a 2 and
3—torsion free semiprime ring. Suppose that the mapping z — [D(z),z]
skew-commuting on R. In this case D maps R into Z(R).

Neglecting the fact that in the theorem above we have an additional
assumptions that a ring is 2 and 3—torsion free, Theorem 1 generalizes
Theorem A. In the proof of Theorem 1 we need Theorem A and the following
lemma.

LEMMA 1 ([22], Lemma 1). Let R be a semiprime ring. Suppose that the
relation azb+bxc = 0 holds, for all x € R and some a,b,c € R. In this case
(a + c)xb =0 and bz(a + ¢) = 0 is satisfied, for all x € R.

Proof of Theorem 1. We have therefore the relation
(1) [D(z),z]z + z[D(z),z} =0, forallz € R,
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which can be written as
(2) [D(z),2¥ =0, forallz e R.
The linearization of the above relation gives
[D(y), 2% + [D(), zy + yz] + [D(z), y°] + [D(y), zy + yz] = 0,
for all z,y € R.

Putting in the above relation —x for x and comparing the relation so ob-
tained with the above relation one obtains

(3) [D(y), %] + [D(z),zy + yz] =0, for all z,y € R.
Putting in the above relation zy for y and applying (2) we obtain
0 = [D(z)a(y) + zD(y), z°] + [D(), z(zy + yz)]
— D(2)[aly), 5% + 21D(y), 27 + [D(), 2)(zy + ya) + 2[D(z), 2y + ya]
= D(z)[a(y), 2%] + [D(z),z](zy + yz), for all z,y € R.
We have therefore proved that
(4) D(z)la(y), 2?] + [D(z), z](zy + yz) = 0

holds, for all z,y € R. The substitution zy for y in the above relation leads
to

(5)  D(z)[a(z)a(y),z? + [D(z), z)z(zy + yz) =0, for all z,y € R.

Left multiplication of the relation (4) by z gives

(6)  zD(x)la(y), 2] + z[D(z), z](xy + yx) =0, forallz,y € R.

Combining (5) and (6) and applying the relation (1) we obtain

D(z)[e(z)a(y), z%] + zD(z)[a(y),z?] =0, for all z,y € R.

We have therefore D(z)[a(z)y, z2)+zD(z)[y, 2% = 0, for all z,y € R, which

can be written in the form

(7) A(z)y + B(z)[y,z* =0, forall z,y € R,

where A(z) and B(z) denotes D(z)[a(z), z?] and zD(z) + D(z)a(z), respec-
tively. Putting in the above relation yz for y and applying the relation (7)
one obtains

B(2)y[z,2%] =0, forall z,y,z€ R.

The substitution [z, z?)yB(z) for y in the above relation gives
(B(2)lz2"))y(B(2)[z,2%]) =0, forallz,y,z € R,

whence it follows B(z)[z, z2] = 0, for all z, z € R, which reduces the relation
(7) to A(z)y =0, for all z,y € R, which makes it possible to conclude that

(8) A(z) =0, forallze€R.
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Putting in the relation (4), y = z and applying the above relation we obtain
9) [D(z),z]z? =0, forallz € R.

Right multiplication of the relation (1) by z gives according to the above
relation

(10) z[D(z),z]z =0, forall z€ R.
From the relation (9) one obtains after some calculations (see [15])
[D(2),a)(zy + y2) + ([D(x), 4] + [D(y), )z’ =0, forallz,y € R.

Multiplying the relation above from the right side by [D(z), z]z and applying
the relation (10), we arrive at [D(z), z]zy[D(z),z]z = 0, for all z,y € R,
which gives

(11) [D(z),z]z =0, forallze€ R.
Combining the relation (1) with the above relation, we obtain
(12) z[D(z),z] =0, forallz € R.

From the relation (11) one obtains easily
[D(z),z]y + [D(y), z]z + [D(z),y]c =0, forall z,y € R.
Right multiplication of the above relation by [D(z),z] gives, according
to (12), [D(z),z]y[D(z),z] = O, for all z,y € R, whence it follows that

[D(z),z] = 0, for all z € R. Now Theorem A completes the proof of the
theorem. =

Our next theorem is inspired by the following result proved by Bresar
and Hvala [7]. Suppose there exists an additive mapping f : R — R, where
R is a prime ring of characteristic different from two, satisfying the relation
f(z)? = 22 for all z € R. In this case either f =T or f = —I.

THEOREM 2. Let D : R — R be an a—derivation, where R is a 2 and
3—torsion free semiprime ring. Suppose that D(z)? = z? holds, for all
z € R. In this case D = 0.

Proof. We have therefore the relation

(13) D(x)? =z?, forallz € R.
The linearization of the above relation gives
(14) D(z)D(y) + D(y)D(z) = zy + yz, forall z,y € R.

Applying the relation (13) we obtain [D(z), 2% = [D(z), D(z)?] = 0, for
all z € R, which makes it possible to conclude that D maps R into Z(R),
according to Theorem 1. The fact that D(z) € Z(R), for any = € R, means
that we can write the relation (14) in the form

(15) 2D(z)D(y) = zy +yz, forallz,y€ R.
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The substitution zy for y in the above relation gives
2D(x)2%a(y) + 2D(z)xD(y) = z(zy + yz), for all 2,y € R.

Multiplying the relation (15) from the left side by = and subtracting the
relation so obtained from the above relation, we obtain 2D(z)2a(y) = 0, for
all 2,y € R (recall that [D(z),z] = 0). We have therefore D(z)%y = 0, for
all z,y € R, which means that

D(z)>=0, forallzeR.

From the above relation it follows that D(z) = 0, for all = € R, since in
semiprime rings there are no nonzero central nilpotent elements. The proof
of the theorem is complete. =

Throughout the proof of our last result we need the following lemma.

LEMMA 2 ([20], Proposition 2.1). Let D : R — R be an a-derivation,
where R is a prime ring, and let a be an element of R. Suppose that either
aD(z) = 0 or D(z)a = 0 holds, for all z € R. In this case either a =0 or
D = 0.

It is well-known that in case derivations D,G : R — R, of a prime ring
R of characteristic different from two, satisfying the relation D(z)G(z) = 0,
for all z € R, then either D = 0 or G = 0 (see, Corollary 1 in [2]). The
following theorem generalizes the result we have just mentioned.

THEOREM 3. Let R be a prime ring of characteristic different from two and
let D,G : R — R be a-derivations. Suppose that D(z)G(z) = 0 holds, for
all x € R. In this case either D =0 or G = 0.

Proof. We have the relation
(16) D(z)G(z) =0, forall z€R.

Let us assume that neither D nor G maps R into Z(R). The linearization
of the above relation gives

(17) D(z)G(y) + D(y)G(z) =0, forall z,y € R.
The substitution yz for y in the above relation gives
D(z)G(y)a(2) + D(z)yG(z) + D(y)a(2)G(z) + yD(2)G(z) = 0,
for all z,y,2 € R.

According to (17) one can replace in the above relation D(z)G(y) by
—D(y)G(z) and D(z)G(z) by —D(z)G(z), which gives

(18) D(y)le(2), G(z)] + [D(2),4]G(z) =0, forall z,y,z € R.
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In particular for y= D(z) the above relation reduces to D?(z)[a(z), G(x)] =0,
for all z,z € R, which means that we have

D?(z)[y,G(z)] =0, forall z,y€R.
The substitution yz for y in the above relation leads to
(19) D*(z)ylz,G(z)] =0, forall z,y,2z€R.
The linearization of the above relation gives
(20) D%(z)y[z, G(w)] + D*(w)y[z,G(z)] =0, forall z,y,z € R.

There exist z and z such that [z, G(z)] # 0, since we have assumed that
G does not map R into Z(R). Therefore, it follows from the relation (19)
that D?(z) = 0, which reduces the relation (20) to D?(w)y[z, G(z)] = 0, for
all y,w € R, whence one can conclude that

(21) D*(z)=0, forall z€R.

Putting in the relation (17) D(y) for y and applying the above relation
we obtain D(z)D(G(y)) = 0, for all z,y € R, whence we obtain, since
D # 0 (recall that we have assumed that D does not map R into Z(R)), by
applying Lemma 2

(22) G(D(z))=0, forall z€ R.
Putting in the relation (21) zy for y and applying the relation (21) we

obtain D(z)(D(a(y)) + a(D(y))) = 0,z,y € R, whence, using the same
arguments as in the proof of the above relation, it follows that

(23) D(a(z)) + o(D(z)) =0, forallz € R.
For z = D(z), the relation (18) reduces, because of (22) to
D(y)[a(D(2)),G(z)] =0, forall z,y,z € R.

According to the relation (21) one can replace in the above relation
a(D(z)) by —D(a(z)), which gives D(y)[D(a(z)), G(z)] =0, for all z,y, z€ R.
We have therefore D(y)[D(z),G(z)] =0, for all z,y, z € R. Applying again
Lemma 2 one can conclude that

(24) [D(z),G(y)]=0, forall z,y€R.
In particular, for y = z, the above relation reduces to
(25) G(z)D(z) =0, forallze€ R,

because of the relation (16). Right multiplication of the relation (17) by
D(z) gives because of (25)

D(z)G(y)D(z) =0, forall z,y€ R.
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According to the relation (24) one can replace in the above relation
D(z)G(y) by G(y)D(z), which leads to

G(y)D(z)2=0, forallz,yeR.
Since G # 0, the above relation implies
D(z)>=0, forall z€R.
The linearization of the above relation gives
(26) D(z)D(y) + D(y)D(z) =0, forall z,y € R.

Putting in the relation (18) D(y) for y, and applying the relation (21)
we arrive at [D(z), D(y)]G(z) =0, for all z,y,z € R, whence it follows

[D(z),D(y)} =0, forall z,yeR,

since G # 0. Combining the above relation with the relation (26) we ob-
tain D(z)D(y) = 0, for all z,y € R, which gives D = 0, contrary to the
assumption that D does not map R into Z(R). We have therefore proved
that either D or G maps R into Z(R). Suppose that D maps R into Z(R).
In this case left multiplication of the relation (16) by y gives

D(z)yG(z) =0, forall z,y € R.

Suppose that D(z) # 0, for some z € R. Now it follows from the relation
above that G(z) = 0, which reduces the relation (14) to D(z)G(y) = 0, for
all y € R, whence it follows G = 0. Since the proof in case G maps R into
Z(R) goes through in the same way, we can conclude that the proof of the
theorem is complete. u

It would be interesting to know whether the results presented in this
paper can be generalized to («,3)—derivations. Let us point out that
Chaudhry and Thaheem [12] proved the following result. Let ¢, 8 be central-
izing automorphisms and let D be an (a, 3)—derivation of a 2—torsion free
semiprime ring R, respectively. If [[D(z), z], ] = 0 holds for all z € R, then
D maps R into its center. The result, we have just mentioned, generalizes
a result proved by Vukman in [21].
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