

Joso Vukman

ON α -DERIVATIONS OF PRIME AND SEMIPRIME RINGS

Abstract. In this paper we investigate identities with α -derivations on prime and semiprime rings. We prove, for example, the following result. If $D : R \rightarrow R$ is an α -derivation of a 2 and 3-torsion free semiprime ring R such that $[D(x), x^2] = 0$ holds, for all $x \in R$, then D maps R into its center. The results of this paper are motivated by the work of Thaheem and Samman [20].

Introduction

Throughout, R is an associative ring with center $Z(R)$. Given an integer $n \geq 2$, a ring R is said to be n -torsion free if for $x \in R$, $nx = 0$ implies $x = 0$. As usual we write $[x, y]$ for $xy - yx$ and make use of the commutator identities $[xy, z] = [x, z]y + x[y, z]$, $[x, yz] = [x, y]z + y[x, z]$. We denote by I the identity mapping of a ring R . Recall that a ring R is *prime* if for $a, b \in R$, $aRb = (0)$ implies that either $a = 0$ or $b = 0$, and is *semiprime* in case $aRa = (0)$ implies $a = 0$. For explanation of the extended centroid $C(R)$ of a semiprime ring R we refer to [1]. An additive mapping $D : R \rightarrow R$ is called a *derivation* if $D(xy) = D(x)y + xD(y)$ holds, for all pairs $x, y \in R$. Let α be an automorphism of a ring R . An additive mapping $D : R \rightarrow R$ is called an α -*derivation* if $D(xy) = D(x)\alpha(y) + xD(y)$ holds, for all pairs $x, y \in R$. Note that the mapping, $D = \alpha - I$ is an α -derivation. Of course, the concept of α -derivation generalizes the concept of derivation, since any I -derivation is a derivation. α -derivations are further generalized as (α, β) -derivations. Let α, β be automorphisms of R , then an additive mapping D of R into itself is called an (α, β) -*derivation* if $D(xy) = D(x)\alpha(y) + \beta(x)D(y)$ holds for all $x, y \in R$. α -derivations and (α, β) -derivations have been applied in various situations; in particular, in the solution of some functional equa-

2000 *Mathematics Subject Classification*: 16A12, 1670, 16A72.

Key words and phrases: Prime ring, semiprime ring, derivation, automorphism, α -derivation, (α, β) -derivation, commuting mapping, centralizing mapping, skew-commuting mapping, skew-centralizing mapping.

This research has been supported by the Research Council of Slovenia.

tions (see, e. g. Brešar [4]). For more information on α -derivations and (α, β) -derivations, we refer to [3, 4, 8, 9, 10, 11, 12, 13, 14, 20]. In this paper we are concerned with α -derivations. A mapping f of R into itself is called *centralizing* on R if $[f(x), x] \in Z(R)$ holds, for all $x \in R$; in the special case when $[f(x), x] = 0$ holds, for all $x \in R$, the mapping f is said to be *commuting* on R . The history of commuting and centralizing mappings goes back to 1955 when Divinsky [16] proved that a simple Artinian ring is commutative if it has a commuting nontrivial automorphism. Two years later Posner [19] has proved that the existence of a nonzero centralizing derivation on a prime ring forces the ring to be commutative (Posner's second theorem). Luh [17] generalized the Divinsky result, we have just mentioned above, to arbitrary prime rings. Mayne [18] has proved that in case there exists a nontrivial centralizing automorphism on a prime ring, then the ring is commutative. A result of Brešar [5], which states that every additive commuting mapping f of prime ring R is of the form $f(x) = \lambda x + \zeta(x)$ where λ is an element of $C(R)$ and $\zeta : R \rightarrow C(R)$ is an additive mapping, should be mentioned. A mapping $f : R \rightarrow R$ is called *skew-centralizing* on R if $f(x)x + xf(x) \in Z(R)$ holds for all $x \in R$; in particular, if $f(x)x + xf(x) = 0$ holds for all $x \in R$, then it is called *skew-commuting* on R . Brešar [6] has proved that if R is a 2-torsion free semiprime ring and $f : R \rightarrow R$ is an additive skew-commuting mapping on R , then $f = 0$.

In [20], Thaheem an Samman have proved the following result.

THEOREM A ([20], Proposition 2.3). *Let $D : R \rightarrow R$ be an α -derivation, where R is a semiprime ring. If D is commuting on R , then D maps R into $Z(R)$.*

The result above was the inspiration for our first theorem.

THEOREM 1. *Let $D : R \rightarrow R$ be an α -derivation, where R is a 2 and 3-torsion free semiprime ring. Suppose that the mapping $x \mapsto [D(x), x]$ skew-commuting on R . In this case D maps R into $Z(R)$.*

Neglecting the fact that in the theorem above we have an additional assumptions that a ring is 2 and 3-torsion free, Theorem 1 generalizes Theorem A. In the proof of Theorem 1 we need Theorem A and the following lemma.

LEMMA 1 ([22], Lemma 1). *Let R be a semiprime ring. Suppose that the relation $axb + bxc = 0$ holds, for all $x \in R$ and some $a, b, c \in R$. In this case $(a + c)xb = 0$ and $bx(a + c) = 0$ is satisfied, for all $x \in R$.*

Proof of Theorem 1. We have therefore the relation

$$(1) \quad [D(x), x]x + x[D(x), x] = 0, \quad \text{for all } x \in R,$$

which can be written as

$$(2) \quad [D(x), x^2] = 0, \quad \text{for all } x \in R.$$

The linearization of the above relation gives

$$[D(y), x^2] + [D(x), xy + yx] + [D(x), y^2] + [D(y), xy + yx] = 0, \\ \text{for all } x, y \in R.$$

Putting in the above relation $-x$ for x and comparing the relation so obtained with the above relation one obtains

$$(3) \quad [D(y), x^2] + [D(x), xy + yx] = 0, \quad \text{for all } x, y \in R.$$

Putting in the above relation xy for y and applying (2) we obtain

$$\begin{aligned} 0 &= [D(x)a(y) + xD(y), x^2] + [D(x), x(xy + yx)] \\ &= D(x)[\alpha(y), x^2] + x[D(y), x^2] + [D(x), x](xy + yx) + x[D(x), xy + yx] \\ &= D(x)[\alpha(y), x^2] + [D(x), x](xy + yx), \quad \text{for all } x, y \in R. \end{aligned}$$

We have therefore proved that

$$(4) \quad D(x)[\alpha(y), x^2] + [D(x), x](xy + yx) = 0$$

holds, for all $x, y \in R$. The substitution xy for y in the above relation leads to

$$(5) \quad D(x)[\alpha(x)a(y), x^2] + [D(x), x]x(xy + yx) = 0, \quad \text{for all } x, y \in R.$$

Left multiplication of the relation (4) by x gives

$$(6) \quad xD(x)[a(y), x^2] + x[D(x), x](xy + yx) = 0, \quad \text{for all } x, y \in R.$$

Combining (5) and (6) and applying the relation (1) we obtain

$$D(x)[\alpha(x)a(y), x^2] + xD(x)[a(y), x^2] = 0, \quad \text{for all } x, y \in R.$$

We have therefore $D(x)[\alpha(x)y, x^2] + xD(x)[y, x^2] = 0$, for all $x, y \in R$, which can be written in the form

$$(7) \quad A(x)y + B(x)[y, x^2] = 0, \quad \text{for all } x, y \in R,$$

where $A(x)$ and $B(x)$ denotes $D(x)[a(x), x^2]$ and $xD(x) + D(x)\alpha(x)$, respectively. Putting in the above relation yz for y and applying the relation (7) one obtains

$$B(x)y[z, x^2] = 0, \quad \text{for all } x, y, z \in R.$$

The substitution $[z, x^2]yB(x)$ for y in the above relation gives

$$(B(x)[z, x^2])y(B(x)[z, x^2]) = 0, \quad \text{for all } x, y, z \in R,$$

whence it follows $B(x)[z, x^2] = 0$, for all $x, z \in R$, which reduces the relation (7) to $A(x)y = 0$, for all $x, y \in R$, which makes it possible to conclude that

$$(8) \quad A(x) = 0, \quad \text{for all } x \in R.$$

Putting in the relation (4), $y = x$ and applying the above relation we obtain

$$(9) \quad [D(x), x]x^2 = 0, \quad \text{for all } x \in R.$$

Right multiplication of the relation (1) by x gives according to the above relation

$$(10) \quad x[D(x), x]x = 0, \quad \text{for all } x \in R.$$

From the relation (9) one obtains after some calculations (see [15])

$$[D(x), x](xy + yx) + ([D(x), y] + [D(y), x])x^2 = 0, \quad \text{for all } x, y \in R.$$

Multiplying the relation above from the right side by $[D(x), x]x$ and applying the relation (10), we arrive at $[D(x), x]xy[D(x), x]x = 0$, for all $x, y \in R$, which gives

$$(11) \quad [D(x), x]x = 0, \quad \text{for all } x \in R.$$

Combining the relation (1) with the above relation, we obtain

$$(12) \quad x[D(x), x] = 0, \quad \text{for all } x \in R.$$

From the relation (11) one obtains easily

$$[D(x), x]y + [D(y), x]x + [D(x), y]x = 0, \quad \text{for all } x, y \in R.$$

Right multiplication of the above relation by $[D(x), x]$ gives, according to (12), $[D(x), x]y[D(x), x] = 0$, for all $x, y \in R$, whence it follows that $[D(x), x] = 0$, for all $x \in R$. Now Theorem A completes the proof of the theorem. ■

Our next theorem is inspired by the following result proved by Brešar and Hvala [7]. Suppose there exists an additive mapping $f : R \rightarrow R$, where R is a prime ring of characteristic different from two, satisfying the relation $f(x)^2 = x^2$ for all $x \in R$. In this case either $f = I$ or $f = -I$.

THEOREM 2. *Let $D : R \rightarrow R$ be an a -derivation, where R is a 2 and 3-torsion free semiprime ring. Suppose that $D(x)^2 = x^2$ holds, for all $x \in R$. In this case $D = 0$.*

P r o o f. We have therefore the relation

$$(13) \quad D(x)^2 = x^2, \quad \text{for all } x \in R.$$

The linearization of the above relation gives

$$(14) \quad D(x)D(y) + D(y)D(x) = xy + yx, \quad \text{for all } x, y \in R.$$

Applying the relation (13) we obtain $[D(x), x^2] = [D(x), D(x)^2] = 0$, for all $x \in R$, which makes it possible to conclude that D maps R into $Z(R)$, according to Theorem 1. The fact that $D(x) \in Z(R)$, for any $x \in R$, means that we can write the relation (14) in the form

$$(15) \quad 2D(x)D(y) = xy + yx, \quad \text{for all } x, y \in R.$$

The substitution xy for y in the above relation gives

$$2D(x)^2a(y) + 2D(x)x D(y) = x(xy + yx), \quad \text{for all } x, y \in R.$$

Multiplying the relation (15) from the left side by x and subtracting the relation so obtained from the above relation, we obtain $2D(x)^2a(y) = 0$, for all $x, y \in R$ (recall that $[D(x), x] = 0$). We have therefore $D(x)^2y = 0$, for all $x, y \in R$, which means that

$$D(x)^2 = 0, \quad \text{for all } x \in R.$$

From the above relation it follows that $D(x) = 0$, for all $x \in R$, since in semiprime rings there are no nonzero central nilpotent elements. The proof of the theorem is complete. ■

Throughout the proof of our last result we need the following lemma.

LEMMA 2 ([20], Proposition 2.1). *Let $D : R \rightarrow R$ be an α -derivation, where R is a prime ring, and let a be an element of R . Suppose that either $aD(x) = 0$ or $D(x)a = 0$ holds, for all $x \in R$. In this case either $a = 0$ or $D = 0$.*

It is well-known that in case derivations $D, G : R \rightarrow R$, of a prime ring R of characteristic different from two, satisfying the relation $D(x)G(x) = 0$, for all $x \in R$, then either $D = 0$ or $G = 0$ (see, Corollary 1 in [2]). The following theorem generalizes the result we have just mentioned.

THEOREM 3. *Let R be a prime ring of characteristic different from two and let $D, G : R \rightarrow R$ be α -derivations. Suppose that $D(x)G(x) = 0$ holds, for all $x \in R$. In this case either $D = 0$ or $G = 0$.*

Proof. We have the relation

$$(16) \quad D(x)G(x) = 0, \quad \text{for all } x \in R.$$

Let us assume that neither D nor G maps R into $Z(R)$. The linearization of the above relation gives

$$(17) \quad D(x)G(y) + D(y)G(x) = 0, \quad \text{for all } x, y \in R.$$

The substitution yz for y in the above relation gives

$$D(x)G(y)\alpha(z) + D(x)yG(z) + D(y)\alpha(z)G(x) + yD(z)G(x) = 0, \\ \text{for all } x, y, z \in R.$$

According to (17) one can replace in the above relation $D(x)G(y)$ by $-D(y)G(x)$ and $D(z)G(x)$ by $-D(x)G(z)$, which gives

$$(18) \quad D(y)[\alpha(z), G(x)] + [D(x), y]G(z) = 0, \quad \text{for all } x, y, z \in R.$$

In particular for $y = D(x)$ the above relation reduces to $D^2(x)[\alpha(z), G(x)] = 0$, for all $x, z \in R$, which means that we have

$$D^2(x)[y, G(x)] = 0, \quad \text{for all } x, y \in R.$$

The substitution yz for y in the above relation leads to

$$(19) \quad D^2(x)y[z, G(x)] = 0, \quad \text{for all } x, y, z \in R.$$

The linearization of the above relation gives

$$(20) \quad D^2(x)y[z, G(w)] + D^2(w)y[z, G(x)] = 0, \quad \text{for all } x, y, z, w \in R.$$

There exist x and z such that $[z, G(x)] \neq 0$, since we have assumed that G does not map R into $Z(R)$. Therefore, it follows from the relation (19) that $D^2(x) = 0$, which reduces the relation (20) to $D^2(w)y[z, G(x)] = 0$, for all $y, w \in R$, whence one can conclude that

$$(21) \quad D^2(x) = 0, \quad \text{for all } x \in R.$$

Putting in the relation (17) $D(y)$ for y and applying the above relation we obtain $D(x)D(G(y)) = 0$, for all $x, y \in R$, whence we obtain, since $D \neq 0$ (recall that we have assumed that D does not map R into $Z(R)$), by applying Lemma 2

$$(22) \quad G(D(x)) = 0, \quad \text{for all } x \in R.$$

Putting in the relation (21) xy for y and applying the relation (21) we obtain $D(x)(D(\alpha(y)) + \alpha(D(y))) = 0$, for all $x, y \in R$, whence, using the same arguments as in the proof of the above relation, it follows that

$$(23) \quad D(\alpha(x)) + \alpha(D(x)) = 0, \quad \text{for all } x \in R.$$

For $z = D(x)$, the relation (18) reduces, because of (22) to

$$D(y)[\alpha(D(z)), G(x)] = 0, \quad \text{for all } x, y, z \in R.$$

According to the relation (21) one can replace in the above relation $\alpha(D(z))$ by $-D(\alpha(z))$, which gives $D(y)[D(\alpha(z)), G(x)] = 0$, for all $x, y, z \in R$. We have therefore $D(y)[D(z), G(x)] = 0$, for all $x, y, z \in R$. Applying again Lemma 2 one can conclude that

$$(24) \quad [D(x), G(y)] = 0, \quad \text{for all } x, y \in R.$$

In particular, for $y = x$, the above relation reduces to

$$(25) \quad G(x)D(x) = 0, \quad \text{for all } x \in R,$$

because of the relation (16). Right multiplication of the relation (17) by $D(x)$ gives because of (25)

$$D(x)G(y)D(x) = 0, \quad \text{for all } x, y \in R.$$

According to the relation (24) one can replace in the above relation $D(x)G(y)$ by $G(y)D(x)$, which leads to

$$G(y)D(x)^2 = 0, \quad \text{for all } x, y \in R.$$

Since $G \neq 0$, the above relation implies

$$D(x)^2 = 0, \quad \text{for all } x \in R.$$

The linearization of the above relation gives

$$(26) \quad D(x)D(y) + D(y)D(x) = 0, \quad \text{for all } x, y \in R.$$

Putting in the relation (18) $D(y)$ for y , and applying the relation (21) we arrive at $[D(x), D(y)]G(z) = 0$, for all $x, y, z \in R$, whence it follows

$$[D(x), D(y)] = 0, \quad \text{for all } x, y \in R,$$

since $G \neq 0$. Combining the above relation with the relation (26) we obtain $D(x)D(y) = 0$, for all $x, y \in R$, which gives $D = 0$, contrary to the assumption that D does not map R into $Z(R)$. We have therefore proved that either D or G maps R into $Z(R)$. Suppose that D maps R into $Z(R)$. In this case left multiplication of the relation (16) by y gives

$$D(x)yG(x) = 0, \quad \text{for all } x, y \in R.$$

Suppose that $D(x) \neq 0$, for some $x \in R$. Now it follows from the relation above that $G(x) = 0$, which reduces the relation (14) to $D(x)G(y) = 0$, for all $y \in R$, whence it follows $G = 0$. Since the proof in case G maps R into $Z(R)$ goes through in the same way, we can conclude that the proof of the theorem is complete. ■

It would be interesting to know whether the results presented in this paper can be generalized to (α, β) -derivations. Let us point out that Chaudhry and Thaheem [12] proved the following result. Let α, β be centralizing automorphisms and let D be an (α, β) -derivation of a 2-torsion free semiprime ring R , respectively. If $[[D(x), x], x] = 0$ holds for all $x \in R$, then D maps R into its center. The result, we have just mentioned, generalizes a result proved by Vukman in [21].

Acknowledgement. The author would like to thank to the referee for helpful suggestions.

References

- [1] K. I. Beidar, W. S. Martindale III, A. V. Mikhalev, *Rings with Generalized Identities*, Marcel Dekker, Inc. New York 1996.
- [2] M. Brešar, J. Vukman, *Orthogonal derivations and an extension of a theorem of Posner*, Radovi Mat. Vol. 5 (1989), 237–246.

- [3] M. Brešar, J. Vukman, *Jordan (ϑ, ϕ) -derivations*, Glasnik Mat. 26 (1991), 13–17.
- [4] M. Brešar, *On the composition of (α, β) -derivations of rings, and an application to von Neumann algebras*, Acta Sci. Math. (1992), 369–376.
- [5] M. Brešar, *Centralizing mappings and derivations in prime rings*, J. Algebra 156 (1993), 385–394.
- [6] M. Brešar, *On skew-commuting mappings of rings*, Bull. Austral. Math. Soc. 47 (1993), 291–296.
- [7] M. Brešar, B. Hvala, *On additive maps of prime rings*, Bull. Austral. Math. Soc. Vol. 51 (1995), 377–381.
- [8] J. C. Chang, *α -derivations with invertible values*, Bull. Inst. Math. Acad. Sinica, Vol. 13 (1985), 323–333.
- [9] J. C. Chang, *On fixed power central (α, β) -derivations*, Bull. Inst. Math. Acad. Sinica, Vol. 15 (1987), 163–178.
- [10] J. C. Chang, *A note on (α, β) -derivations*, Chinese J. Math. Vol. 19 (1991), 277–285.
- [11] J. C. Chang, *On (α, β) -derivations of prime rings*, Chinese J. Math. Vol. 22 (1994), 21–30.
- [12] M. A. Chaudhry, A. B. Thaheem, *(α, β) -derivations on semiprime rings*, Intern. Math. Journal, Vol. 3 (2003), 1033–1042.
- [13] M. A. Chaudhry, A. B. Thaheem, *On (α, β) -derivations of semiprime rings*, Demonstratio Math. Vol. 36, 2 (2003), 283–287.
- [14] T. C. Chen, *Special identities with (α, β) -derivations*, Riv. Mat. Univ. Parma 5 (1996), 109–119.
- [15] L. O. Chung, J. Luh, *Semiprime rings with nilpotent derivatives*, Canad. Math. Bull. 24 (1981), 415–421.
- [16] I. N. Divinsky, *On commuting automorphisms of rings*, Trans. Roy. Canada Sect. III, 49 (1955), 19–22.
- [17] J. Luh, *A note on commuting automorphisms of rings*, Amer. Math. Monthly 77 (1970), 61–62.
- [18] J. H. Mayne, *Centralizing automorphisms of prime rings*, Canad. Math. Bull. Vol. 19 (1976), 113–115.
- [19] E. Posner, *Derivations in prime rings*, Proc. Amer. Math. Soc. 8 (1957), 1093–1100.
- [20] A. B. Thaheem, M. S. Samman, *A note on α -derivations on semiprime rings*, Demonstratio Math. Vol. 34, 4 (2001), 783–788.
- [21] J. Vukman, *Derivations on semiprime rings*, Bull. Austral. Math. Soc. 53 (1995), 353–359.
- [22] J. Vukman, *Centralizers on semiprime rings*, Comment. Math. Univ. Carolinae 42 (2001), 783–788.

DEPARTMENT OF MATHEMATICS
 UNIVERSITY OF MARIBOR
 PEF, Koroška 160
 2000 MARIBOR, SLOVENIA
 E-mail: joso.vukman@uni-mb.si

Received March 9, 2004; revised version May 31, 2004.