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ON RING-LIKE STRUCTURES RELATED
TO SYMMETRIC CRYPTOSYSTEMS

Abstract. The aim of this paper is to study cryptographic systems defined as algebras
(A, +a,+g,p, s) of type (2,2,0,0) satisfying the axiom (z+qp)+s = z for all z € A. Some
standard and non-standard examples of such systems are given. In particular, we study the
systems for which +o = +3 = + and p = s where the operation + is the addition operation
of a generalized Boolean quasiring (GBQR). We investigate the structure of these algebras
revealing their relation to orthomodular lattices and characterize the systems for which
s (which is interpreted as coding and decoding key) commutes with all elements of A.
By applying direct products to cryptographic algebras one can construct complicated
cryptographic systems which may be of importance for practical use. (Then the keys are
sequences whose components may be selected at random like in an XOR? protocol.)

1. Introduction

Within a cryptographic protocol let z, p and s denote messages, public
keys and secrete keys, respectively. Denoting the outcome of the encryption
and decryption procedures by z +, p and z 43 s, respectively, the element =
has to be recovered by computing (z+4p) +3s. This motivates the following

DEFINITION 1.1. A cryptographic algebra is an algebra A = (A, +4,+35, P, 5)
of type (2,2,0,0) satisfying (z +ap) +ps = x for all z € A. A is called
symmetric if p = s; otherwise it is called nonsymmetric. If +, and +4
coincide we write + instead of +q,+g. If p and s coincide we write s instead
of p;s. If (x+s)+s =z for all z,s € A, we call (A,+) a completely
symmetric cryptographic algebra.
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We start by giving two well-known and a new example for cryptographic
algebras in order to motivate our definition. (For notions and concepts of
cryptography used in the following we refer to [9].) Our next step will then
be to introduce a whole new class of such algebras.

EXAMPLE 1.1. The Vernam One-time Pad (a completely symmetric cryp-
tosystem)

The additive group A of the two-element Boolean ring is a completely
symmetric cryptographic algebra and hence the same is true for the direct
power A". Every element of A” may serve as the private as well as the public
key of an individual participant.

EXAMPLE 1.2. RSA (an asymmetric cryptosystem)

Let 1,...,n be participants with public keys (m;, p;) and private keys
si,t = 1,...,n, (m; = a;b;, a;,b; different prime numbers, p; < m; a pos-
itive integer relative prime to (a; — 1)(b; — 1) and s; the unique positive
integer < lem(a; — 1,b; — 1) satisfying s;p; = 1 mod lem(a; — 1,b; — 1)). For
j€{1,...,n} define 4; := {0,...,m; — 1} and = +; y := z¥ mod m; for all
z,y € Aj. Then (z +;p;) +;8; =z for all z € Aj, 1. e. Aj := (A, +;,P;,55)
is a cryptographic algebra. Moreover, the direct product of the algebras
Ai,..., A, is also a cryptographic algebra which can then serve as the con-
text for the whole RSA-system.

ExAMPLE 1.3. (Cryptosystems generated by character tables of finite point
symmetry groups of molecules)

Let n be a positive integer, A denote the set of all n x n-matrices over
R and binary operations +, and +5 on A be defined as follows:

T+qy:=zy and

ragyi= TV D
pI: 0 otherwise

(z,y € A). Further let s be a fixed regular n x n-matrix over R. Then
(A, +a, +3, s) is a symmetric cryptographic algebra. In particular, we may
consider s as the n x n-matrix of the characters of the symmetry group G
of a molecule M. It is known that the columns of this matrix correspond to
the conjugacy classes of G and the rows to the irreducible representations
of G. We denote the cardinality of the conjugacy class corresponding to the
j-th column of s by Nj, j = 1,...,n, and the irreducible representation of
G corresponding to the i-th row of s by I';, ¢ = 1,...,n. Then it is known
from the representation theory of finite symmetry groups that |s| # 0 and
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with h = i Nj; for the order of G
J=1

. N\T
s7l= <]—Vhl$ij)

(this is in fact the orthogonality theorem for characters). If

Tl ... Tp
0o ... 0
=
0 ... 0
corresponding to the representation
(1) Fr=z®...0z,T,

(where @ denotes the direct sum) then zs corresponds to the characters of I.
If T is interpreted as a composed vibration of M then zs is the code of the
vibration I' in terms of the characters of I"'. We may decode the vibration by
using the matrix s and computing (zs)s~! = z. Hence every molecule can
be interpreted as providing a key s for coding and decoding the vibrations.
Let us recall that the characters of the vibration I" can be calculated from
the structure of the molecule without knowing decomposition (1). Then we
decode it by applying the character table s and we obtain decomposition (1).

REMARK 1.1. If A is a cryptographic algebra then x «— x +, p is injective
and x +— x +g s is surjective, hence if A is finite then both mappings are
bijective and therefore polynomial permutations in the sense of [8]. In case
of symmetric cryptographic algebras with +o = +g, * — = + 5 is already
bijective and for completely symmetric cryptographic algebras x — x + a is
bijective for any a € A, i. e. the mappings x — z + s and x — = + a are
polynomial permutations.

REMARK 1.2. In order to obtain better structural results about completely
symmetric cryptographic algebras and thus better ways of constructing these
algebras we have restricted the definition of completely symmetric crypto-
graphic algebras to the case +o = +g. Moreover, if for a symmetric crypto-
graphic algebra (A, +q,+3, s) it holds that (x+48)+as =1 forallz,s € A,
then (z+qs)+gs =« for allz,s € A impliesx+o5=x+gs forallz,s € A
as one can see immediately by substituting x +4 s for x in (x+45)+5s = 1.

Any algebra whose type is extended by nullary operations in such a way
that the extended type includes the type (2, 2,0,0) or (2,0, 0), respectively,
can be considered as a candidate for a cryptographic algebra. In this paper
our choice will be the variety of generalized Boolean quasirings (GBQRs),
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which are generalizations of Boolean rings arising in a natural way when
extending the correspondence between Boolean algebras and Boolean rings
to bounded lattices with an involutory antiautomorphism.

GBQRs are defined as follows (for this definition and further properties
cf. [1] - [6]):

DEFINITION 1.2. An algebra (R,+,-) of type (2,2) is called a generalized
Boolean quasiring (GBQR) if there exist 0,1 € R such that (1) — (8) hold
forallxz,y,z € R:

(1) z+y=y+r=,

(2) O+z=u=,

3)  (zy)z = z(y2),
4) =zy=yz,

(5) zz=r,

(6) z0=0,

(7) zl==z and

8) 1+(Q+zy)(l+z)=rz.

(The elements 0 and 1 of a GBQR are uniquely determined.) Omitting
aziom (1) and considering + as a partial binary operation & on R defined on
{0,1} x R, one obtains a partial algebra called a partial GBQR (pGBQR).

The algebras (R, ®, ) are in one-to-one correspondence with bounded
lattices (L, V, A,*,0,1) with an involutory antiautomorphism * by means of
the definitions

zVy=1a(lez)(1ey)
TAYy :=zxy
t =160z
and .
0z =2
19z:=2z"
Ty =z ANy,
respectively. For a given GBQR R we write L(R) for the associated lattice.
A pGBQR (R, ®, ) can be extended to a GBQR (R, +,-) by defining
0+z=24+0:=00z,1+z=2+1:=16z for all z € R and arbitrarily
settingupr+y=y+z for all z,y € R\ {0, 1}.
Two canonical examples for extensions of @ are
z+Hy=10(10z(10y))(16(1&z)y) and
z+ry=(1o(lor)(1y)(1ozy)
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which both represent the symmetric difference in the Boolean algebras which
correspond to Boolean rings.

For all z,y € R we have £ +1 y < z +2 y, where < is defined in L(R). If
for an extension + of @ it holds that z+;y < z+y < z+gyforall z,y € R,
we will denote this fact by simply writing +; < + < +2.

Because of the many possibilities to construct GBQRs these algebras
(with respect to their operation +) qualify as candidates for cryptographic
algebras.

DEFINITION 1.3. A cryptographic GBQR is an algebra R=(R, +q,+3,,P, 5)
of type (2,2,2,0,0) such that (R, +,-) and (R, +,-) are GBQRs and R’ =
(R, +a;+8,D,8) is a cryptographic algebra. R is called symmetric or non-
symmetric if R’ has the corresponding property. If +o and +p5 coincide, we
write + instead of +4,+g. If p and s coincide, we write s instead of p, s.
A GBQR (R, +, ) is called a completely symmetric cryptographic GBQR if
(R, +) is a completely symmetric cryptographic algebra, i. e. if (z+y)+y =2
forallz,y€ R.

EXAMPLE 1.4. The operation tables

4|0 a a* b b 1 +3|0 a a* b* 1
0 a a b b 1 010 a a b* 1
a 0 1 b b @ a 0 1 b* a*
a*ta* 1 O a , a*|la* 1 O a
bib b 0 1 b b|b b g 1 »
b* | b* b 1 b b* | b* b 1 0 b
1|1 a a b b 111 a a b b

0 a av- b b 1

0f0 0 0 0 0 O

al0 a 0 0 0 a

and a*|0 0 a* 0 0 a*

b0 0 0 b 0 b

10 0 0 0 o b

1|10 a a* b b 1

(where the empty places can be filled arbitrarily such that the corresponding
operation table is symmetric with respect to the main diagonal) define a
symmetric cryptographic GBQR ({0, a, a*, b,b*,1}, +4, +3, a).
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In the following we study completely symmetric and symmetric cryp-
tographic GBQRs from the algebraic point of view. Nonsymmetric cryp-
tograpghic GBQRs as well as considerations concerning the cryptographic
strength of cryptographic GBQRs will be the subject of further investiga-
tions.

2. Completely symmetric cryptographic GBQRs

A completely symmetric cryptographic GBQR is characterized by the
equation (z + y) + y = z for all z,y € R. Immediate consequences of this
equation are z +x =0and x +2* =1 for all z € R.

We recall that for an arbitrary GBQR (R, +,-) with +; < + < +9

r<y=>zc+y=2"Ay,
T>2y=>r+y=cAy,
rly=z+y=zVyand
2 ly'=s>z+y=z*Vvy'
where z L y is defined by z < y* (z,y € R). (These implications hold
because they are true for +; and +2 instead of +. The operations V, A, *

and the relations < and L relate to the corresponding lattice L(R) and will
always be used in this sense in the following.)

Let R = (R,+,-) be an arbitrary GBQR satisfying +; < + < +9
and assume L(R) to be orthomodular. Then it can be easily checked that
(z+y)+y=cz for all those z,y € R which satisfy one of the relations
z<y,z>y,xlyorz* Ly*

Observing that a bounded lattice with an involutory antiautomorphism
which satisfies the orthomodular law is an ortholattice we prove:

LEMMA 2.1. Let R = (R, +,-) be an arbitrary GBQR with the property that
r+y=x*Vy* forz,y € R with z* L y*. Then

(2) (z+y)+y==zx forallz,y € R withy > z*

if and only if L(R) is orthomodular.

Proof. For all z,y € R with z* 1 y*, i. e. with y > z*, we have
(T+y)+y=@"Vy ) +y=("Vy)'Vy = (zAy)Vy"

Since z* 1 y* is equivalent to y* < z and orthomodularity of L(R) can be
characterized by y* < z = z = y* V (z A y), L(R) is orthomodular if and
only if R satisfies (2). .

THEOREM 2.1. If R = (R,+,-) is a completely symmetric cryptographic
GBQR satisfying +1 < + < +9 then L(R) is orthomodular. On the other
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hand, given an orthomodular lattice the partial operation @ of the associ-
ated pGBQR. cannot always be extended to a full operation + such that the
corresponding GBQR is a completely symmetric cryptographic GBQR.
Proof. Given a completely symmetric cryptographic GBQR R = (R, +, )
with +; <+ < +2and z+y=2z*Vy* for z,y € R with z* L y*, L(R) is
orthomodular according to Lemma 2.1.

To prove the second part of the theorem suppose that there exists a com-
pletely symmetric cryptographic GBQR the corresponding lattice of which
is the six-element orthomodular lattice £. Then one can obtain a contra-
diction by appropriately checking the equation (z + y) + y = z for various
possibilities for the outcome of a + b where a, b are two different atoms of £
which are not orthogonal. °

REMARK 2.1. The lattice corresponding to a completely symmetric crypto-
graphic GBQR (R, +,-) satisfying +1 < + < +2 need not be a Boolean
algebra, as can be seen by means of the class of GBQRs definied in Ezam-
ple 2.1.

EXAMPLE 2.1. Let (P, L) be a finite incidence structure of points (set P
with |P| > 1) and lines (set L C 2F) such that |x| = 3 for all z € L and
that for every pair z,vy of different elements of P there exists exactly one
f(z,y) € L with z,y € f(z,y). For an element 0 ¢ P we consider the set
A :=(PU{0}) x {0,1} and define binary operations + and - on A by
'(0,0) ifr,ye P,xr=yandi=j,

0,1) ifr,y€ P,z =y and i # j,

(z,i4+7) ifz,ye Pz#yand f(z,y) = {z,y,2},
(,7) + (y,5) := § (y,9) if (z,7) = (0,0),
(y’ 1- .7) if (:l?, 1’) = (07 1)7
(z,i) i (3,) = (0,0) and
\ (:l:,l—-i) if (y,j) = (0’1)
(where 7 + j is to be taken modulo 2) and

(yvj) if (I’i) = (0’ 1),

(.’L‘, 7’) if (yvj) = (Oa 1)v
(z,7) if (z,?) = (y,7) and
(0,0) otherwise

(fl?, 7') : (y7j) =

((z,7), (y,5) € A). Then (A, +,") is a completely symmetric cryptographic
GBQR satisfying +; < + < +32, the corresponding lattice of which is the
(2| P| + 2)-element orthomodular lattice of length 2 with P x {0,1} as set of
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atoms, which is not Boolean. Trivial examples for (P, L) are
({1,2,3}, {{1,2,3}}),
({1,2,3,4,5,6,7}, {{1,2,5},{1,3,7},{1,4,6},{2,3,6},{2,4, 7}, {3,4,5},
(5,6,7}})
and
({1,2,3,4,5,6,7,8,9},{{1,2,3},{1,4,7},{1,5,9},{1, 6, 8}, {2, 4, 9},
{2,5,8},{2,6,7},{3,4,8},{3,5,7},{3,6,9}, {4,5,6},{7,8,9}}).

A necessary condition for the existence of a geometry (P,L) is that
|P|(|P] — 1) = 6|L]. From this it follows |P| =0 or 1 or 3 or 4 mod 6.

However, if + = +; or + = 42 then we end up with a Boolean ring.

THEOREM 2.2. A GBQR R = (R, +,") is a completely symmetric crypto-
graphic GBQR satisfying + = +1 or + = +2 if and only if it is a Boolean
Ting.

Proof. Assume R to be a completely symmetric cryptographic GBQR satis-
fying + = +; or + = +2. According to Theorem 2.1, L(R) is orthomodular.
If + = +1 then

zvy=(z+iy) h1y)Vy=
=(EAy)VE AYAY)VE VY AEVY)AY) VY=
=(zAy)Vy
for all z,y € R, and if + = 43 then
gAY =((z+ay) +2y) Ay =
=((@VyAE VYN VY A AY)V(AY) VY ) Ay =
=(zVy Ay
for all z,y € R. Hence any two elements of L{R) commute showing that

L(R) is a Boolean algebra which together with + = +; or + = +2 implies
that R is a Boolean ring. The rest of the proof is obvious. .

3. Symmetric cryptographic GBQRs

THEOREM 3.1. Ewvery cryptographic GBQR (R, +a,+3,-,p,s) satisfying

+1 £ 44 £ +2 is symmetric.

Proof. Let V4 and A, denote the lattice operations of L((R, +4,)). Then

p=(p+ap)tgs=(((P+ap) +ap) +ps)+as=

=(((PAaP”) +ap) +p8) +ps=(((PAaP)" Nap) +p5) +ps =
=(((P*VaP) Nap) +p8) +ps=(p+ps) +ps=
=((0+ap)+ss)+ps=0+gs=s. .
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COROLLARY 3.1. If R = (R,+,") is a GBQR satisfying +; < + < +2 and
for every p € R there erists an s € R such that (x+p)+s=z forallz € R
then R is a completely symmetric cryptographic GBQR.

DEFINITION 3.1. For every lattice (L,V,A,*) with an involutory antiauto-
morphism we define a binary relation C on L by
zCy ifand only ifz = (x Ay) V(z Ay").
We observe that if a € L and z Ca for all z € L then
z=(z"Y={(z*ANa)V(z"Aa")) ' =(zVa" )A(zVa)=(zVa)A(zVa")
for all z € L.

LEMMA 3.1. If (R,+a,-) and (R,+g, ) are GBQRs satisfying +1 < +q,
+3<+2,a,5€ R, sANs*=0andaCs then (a+45)+3s=a.

Proof. Since s A s* = 0 we have sV s* = 1 and hence (by using the
distributive inequalities)
a=(aAs)V(aAs)=(aAs*)V(@*AsAS)V(a"As*As)V(aAs) <

<(({ans*)V(@*AsHAS)IV((a*As*)V(aAs))As)=

=((a+18)As)V((a+28)*As) < ((a+as)As")V((a+as) As)=
atas)+15<(a+as)+gs<(a+as)t2s=
(a+as)Vs)AN((a+as)*'Vs)<((a+2s)VS)A((a+18)*Vs")=
((avs)A(a*Vs*)Vs)A(((a*Vs)A(aVs*))Vs') <
aVs)A(@*Vs*Vs)A(a*VsVs*)A(aVs*)=
=(aVs)A{aVs)=a

= (
(
(
<(

which shows (a +4 s) +3 5 = a. o

THEOREM 3.2. If (R, +a,) and (R, +3,) are GBQRs satisfying +1 < +a,
+5 < +2, s € R and xCs for all z € R then (R,+q,+3,, ) is a crypto-
graphic GBQR.

Proof. The result follows from Lemma 3.1 by observing that s A s* =
(Ovs)A(0vVs*)=0. o
LEMMA 3.2. Let (R, +,-) be a GBQR and a,s € R. Then any single of the
following conditions implies a C s:

(a+1s)+15=aq,

(a+2s)+15 =g,

(a* +28) +2s=a" and

(a* +18) +2 s =a".
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Proof. Since for ¢, j = 1,2 one has (a* +3-; s) +3-j s = ((a +:i 5) +; 5)* the
equalities (a +; s) +; s = a and (a* +3-; ) +3—; s = a* are equivalent. First
assume (a +1 $) +1 s = a. Put
b:=((ans*)V(a*As))As* and
c:=(aVs*)As.
Then
a=(a+18)+15=bV((e*Vs)A(aVs*)As)=bVe
and hence b, ¢ < a. From this it follows that

aAs*<b<aAs*and
aANs<cLaAs

which shows (a A s*) V (aAs) = bV c=a proving aCs.
Now assume (a +2 s) +1 s = a. Put

d:=(aVs)As*and
e:=((a*As*)V(aAs))As.

Then
a=(a+2s)+15=((aVs)A(a*Vs*)As*)Ve=dVe
and hence d, e < a which yields

ans*<d<aAs*and
aNs<e<aAs

showing (aAs*)V(aAs)=dVe=a,i. e aCs. o

THEOREM 3.3. Let (R,+,-) be a GBQR, i, € {1,2} and s € R. Then
(R, +i,+j,,8) is a cryptographic GBQR if and only if £ Cs for all z € R.

Proof. The result follows from Theorem 3.2 and Lemma 3.2. .
Theorem 3.2 shows that any GBQRs (R, +4,-) and (R, +g,) satisfy-
ing +1 < 44,4+ < +2 defined by means of an ortholattice that contains
an element s such that xCs for all x € R can serve as an example of a
cryptographic GBQR. (For the structure of such lattices cf. e. g. [7].)

An example of a bounded lattice (L, V,A,*,0,1) with an involutory an-
tiautomorphism that is not an ortholattice and contains an element s # 0, 1
such that z Cs for all z € L is given in Fig. 3.1:
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%* *
s ” s*
x )

Fig. 3.1

Starting from a bounded lattice (L, V, A,*,0, 1) with an involutory anti-

automorphism with the property that there exists an element s of L with
zCs for all x € L one can obtain different GBQRs by differently extend-
ing the operation @ to +, and +g, respectively. Performing direct products
of (a large number of) copies of small lattices with the appropriate prop-
erties and assigning GBQRs to these direct products the direct products
of the GBQRs obtained this way can serve for cryptographic purposes. If
one needs completely symmetric cryptographic GBQRs one can start with
orthomodular lattices like in Example 2.1 or with Boolean algebras.
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