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O N R I N G - L I K E S T R U C T U R E S R E L A T E D 
T O S Y M M E T R I C C R Y P T O S Y S T E M S 

Abstract. The aim of this paper is to study cryptographic systems defined as algebras 
{A, +a, +0 ,p, s) of type (2,2,0,0) satisfying the axiom (x+ap)+p.s = x for all x € A. Some 
standard and non-standard examples of such systems are given. In particular, we study the 
systems for which + Q = +/3 = + and p = s where the operation + is the addition operation 
of a generalized Boolean quasiring (GBQR). We investigate the structure of these algebras 
revealing their relation to orthomodular lattices and characterize the systems for which 
s (which is interpreted as coding and decoding key) commutes with all elements of A. 
By applying direct products to cryptographic algebras one can construct complicated 
cryptographic systems which may be of importance for practical use. (Then the keys are 
sequences whose components may be selected at random like in an XOR2 protocol.) 

1. Introduction 
Within a cryptographic protocol let x, p and s denote messages, public 

keys and secrete keys, respectively. Denoting the outcome of the encryption 
and decryption procedures by x p and x+ps, respectively, the element x 
has to be recovered by computing ( x + a p ) +ps. This motivates the following 

DEFINITION 1.1. A cryptographic algebra is an algebra A = (A, +a, + / j ,p , s) 
of type ( 2 ,2 ,0 ,0 ) satisfying (a; + a p) +p s = x for all x 6 A. A is called 
symmetric if p — s; otherwise it is called nonsymmetric. If +a and 
coincide we write + instead of+a, +¡3. Ifp and s coincide we write s instead 
of p,s. If (x + s) + s = x for all x,s € A, we call (A, + ) a completely 
symmetric cryptographic algebra. 
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We start by giving two well-known and a new example for cryptographic 
algebras in order to motivate our definition. (For notions and concepts of 
cryptography used in the following we refer to [9].) Our next step will then 
be to introduce a whole new class of such algebras. 

EXAMPLE 1.1. The Vernam One-time Pad (a completely symmetric cryp-
tosystem) 

The additive group A of the two-element Boolean ring is a completely 
symmetric cryptographic algebra and hence the same is true for the direct 
power An. Every element of An may serve as the private as well as the public 
key of an individual participant. 

EXAMPLE 1.2. RSA (an asymmetric cryptosystem) 

Let 1,... ,n be participants with public keys (rrii,pi) and private keys 
Si,i = 1, . . . ,n, (rrii = a A , ai,bi different prime numbers, pi < rtii a pos-
itive integer relative prime to (a* — l)(6j — 1) and s, the unique positive 
integer < lcm(ai — 1,6» — 1) satisfying Sipi = 1 mod lcm(a, — 1,6, — 1)). For 
j G {1 , . . . , n } define Aj := {0 , . . . , rrii — 1} and x +j y := xy mod rrij for all 
x, y 6 Aj. Then (x +.j pj) +j Sj = x for ail x E A j , i. e. Aj := (Aj, +j,Pj, Sj) 
is a cryptographic algebra. Moreover, the direct product of the algebras 
A\,..., An is also a cryptographic algebra which can then serve as the con-
text for the whole RSA-system. 

EXAMPLE 1.3. (Cryptosystems generated by character tables of finite point 
symmetry groups of molecules) 

Let n be a positive integer, A denote the set of all n x n-matrices over 
R and binary operations + Q and on A be defined as follows: 

(x,y 6 A). Further let s be a fixed regular n x n-matrix over R. Then 
(̂ 4, + Q , +/3, s) is a symmetric cryptographic algebra. In particular, we may 
consider s as the n x n-matrix of the characters of the symmetry group Q 

of a molecule M . It is known that the columns of this matrix correspond to 
the conjugacy classes of Q and the rows to the irreducible representations 
of Q. We denote the cardinality of the conjugacy class corresponding to the 
j-th column of s by Nj, j = 1,. . . , n, and the irreducible representation of 
Q corresponding to the z-th row of s by Tj, i = 1,.. . , n. Then it is known 
from the representation theory of finite symmetry groups that |s| ^ 0 and 

^ y '•= xy and 

O otherwise 
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n 
with h := Nj for the order of G 

j=i 

(this is in fact the orthogonality theorem for characters). If 
(x\ ... xn\ 

0 ... 0 
x := 

\0 ... 0 J 

corresponding to the representation 

( i ) r = ® i r i © . . . © xnrn 
(where © denotes the direct sum) then xs corresponds to the characters of I \ 
If r is interpreted as a composed vibration of M then xs is the code of the 
vibration T in terms of the characters of I \ We may decode the vibration by 
using the matrix s and computing (xs)s~1 = x. Hence every molecule can 
be interpreted as providing a key s for coding and decoding the vibrations. 
Let us recall that the characters of the vibration T can be calculated from 
the structure of the molecule without knowing decomposition (1). Then we 
decode it by applying the character table s and we obtain decomposition (1). 

R E M A R K 1 . 1 . If A is a cryptographic algebra then x >—* x +a p is injective 
and x '—• x s is surjective, hence if A is finite then both mappings are 
bijective and therefore polynomial permutations in the sense of [8]. In case 
of symmetric cryptographic algebras with +a = x H-> x + s is already 
bijective and for completely symmetric cryptographic algebras x •—> x + a is 
bijective for any a 6 A, i. e. the mappings I H I + S and x \-» x + a are 
polynomial permutations. 

R E M A R K 1 . 2 . In order to obtain better structural results about completely 
symmetric cryptographic algebras and thus better ways of constructing these 
algebras we have restricted the definition of completely symmetric crypto-
graphic algebras to the case +Q = Moreover, if for a symmetric crypto-
graphic algebra (A, +a, s) it holds that (x+Qs) +a s = x for all x,s € A, 
then ( X + A S ) +ps — x for all x,s G A implies x+as = X + ^ S for all x,s E A 
as one can see immediately by substituting x +a s for x in (x + Q s) s = x. 

Any algebra whose type is extended by nullary operations in such a way 
that the extended type includes the type (2,2,0,0) or (2,0,0), respectively, 
can be considered as a candidate for a cryptographic algebra. In this paper 
our choice will be the variety of generalized Boolean quasirings (GBQRs), 
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which are generalizations of Boolean rings arising in a natural way when 
extending the correspondence between Boolean algebras and Boolean rings 
to bounded lattices with an involutory antiautomorphism. 

GBQRs are defined as follows (for this definition and further properties 
cf. [1] - [6]): 

DEFINITION 1.2. An algebra (R, +, •) of type ( 2 , 2 ) is called a generalized 
Boolean quasiring (GBQR) if there exist 0,1 € R such that (1) - (8) hold 
for all x,y,z 6 R: 

(1) x + y = y + x, 
(2) 0 + x = x, 
(3) (xy)z = x(yz), 
(4) xy = yx, 
(5) xx — Xj 
(6) xO = 0, 
(7) xl = x and 
(8) 1 + (1 + xy){\ + x) = x. 
(The elements 0 and 1 of a GBQR are uniquely determined.) Omitting 

axiom (1) and considering + as a partial binary operation © on R defined on 
{0,1} x R, one obtains a partial algebra called a partial GBQR (pGBQR). 

The algebras (R, ffi, •) are in one-to-one correspondence with bounded 
lattices (L, V, A,* , 0,1) with an involutory antiautomorphism * by means of 
the definitions 

x V y := 1 © (1 © a;)(l ffi y) 
x Ay := xy 
x* := 1 © x 

and 
0 © x := x 
1 © x := x* 
xy := x A y, 

respectively. For a given GBQR H we write L(7£) for the associated lattice. 
A pGBQR (R , ©, •) can be extended to a GBQR (R, + , •) by defining 

0 + a; = a : 4 - 0 : = 0 © a ; , l + a: = x + l : = l f f i a ; f o r a l l i € i ? and arbitrarily 
setting up x + y — y + x for all x, y 6 R \ {0,1}. 

Two canonical examples for extensions of © are 

x + i y = 1 ffi (1 © x( l ffi y))(l ffi (1 ffi x)y) and 
x +2 y = (1 ffi (1 ffi x)( l ffi y))(l ffi xy) 
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which both represent the symmetric difference in the Boolean algebras which 
correspond to Boolean rings. 

For all x,y € R we have x +1 y < x +2 y, where < is defined in L(7£). If 
for an extension + of © it holds that x +1 y < x + y < x +2 y for all x, y € R, 
we will denote this fact by simply writing +1 < + < +2-

Because of the many possibilities to construct GBQRs these algebras 
(with respect to their operation +) qualify as candidates for cryptographic 
algebras. 

DEFINITION 1.3. A cryptographic GBQR is an algebra 7Z— (R, +a, +p, •,p, s) 
of type (2,2,2,0,0) such that (R, +Q, •) and (R, +p, •) are GBQRs and 11' = 
(R,+a,+p,p, s) is a cryptographic algebra. 1Z is called symmetric or non-
symmetric if 1Z' has the corresponding property. If+a and coincide, we 
write + instead If P and s coincide, we write s instead ofp,s. 
A GBQR (R, +, •) is called a completely symmetric cryptographic GBQR if 
(R, +) is a completely symmetric cryptographic algebra, i. e. if {x-\-y)+y = x 
for all x,y G R. 

EXAMPLE 1 .4 . The operation tables 

+a 0 a a* b b * 1 +0 0 a a* b b* 1 
0 0 a a* b b * 1 0 0 a a* b b* 1 
a a 0 1 b b * a* a a 0 1 b b* a* 
a* a* 1 0 a a* a* 1 0 a 
b b b 0 1 b* b b b 0 1 b* 
b* b* b* 1 0 b b* b* b* 1 0 b 
1 1 a* a b* b 0 1 1 a* a b* b 0 

0 a a* b b* 1 
0 0 0 0 0 0 0 
a 0 a 0 0 0 a 
a* 0 0 a* 0 0 a* 
b 0 0 0 b 0 b 
b* 0 0 0 0 b b* 
1 0 a a* b b* 1 

(where the empty places can be filled arbitrarily such that the corresponding 
operation table is symmetric with respect to the main diagonal) define a 
symmetric cryptographic GBQR ({0, a, a*, b, b*, 1}, +Q, +p, a). 
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In the following we study completely symmetric and symmetric cryp-
tographic GBQRs from the algebraic point of view. Nonsymmetric cryp-
tograpghic GBQRs as well as considerations concerning the cryptographic 
strength of cryptographic GBQRs will be the subject of further investiga-
tions. 

2. Completely symmetric cryptographic GBQRs 
A completely symmetric cryptographic GBQR is characterized by the 

equation (x + y) + y = x for all x,y € R. Immediate consequences of this 
equation are x + x = 0 and x + x* — 1 for all x 6 R. 

We recall that for an arbitrary GBQR (R, +, •) with +i < + < +2 

x<y=5>x + y = x* Ay, 
x>y=>x + y = xAy*, 
xA-y=>x + y = x\/y and 
x* _L y* => x + y = x* V y* 

where x _L y is defined by x < y* (x,y € R). (These implications hold 
because they are true for +1 and +2 instead of +. The operations V, A, * 
and the relations < and _L relate to the corresponding lattice L(7£) and will 
always be used in this sense in the following.) 

Let TZ = (i?,+, •) be an arbitrary GBQR satisfying +1 < + < +2 
and assume L(7£) to be orthomodular. Then it can be easily checked that 
(x + y) + y = x for all those x,y € R which satisfy one of the relations 
x < y, x > y, x J_ y or x* _L y*. 

Observing that a bounded lattice with an involutory antiautomorphism 
which satisfies the orthomodular law is an ortholattice we prove: 

LEMMA 2.1. Let TZ = (R, +, •) be an arbitrary GBQR with the property that 
x + y = x* V y* for x,y € R with x* _L y*. Then 

(2) (x + y) + y = x for all x,y 6 R with y > x* 

if and only ifL(R) is orthomodular. 

Proo f . For all x,y € R with x* _L y*, i. e. with y > x*, we have 

(x + y) + y = (x* V y*) + y = (x* V y*)* V y* = (x A y) V y*. 

Since x* J. y* is equivalent to y* < x and orthomodularity of L(7£) can be 
characterized by y* < x => x = y* V (x A y), L(7£) is orthomodular if and 
only if 72. satisfies (2). • 

THEOREM 2.1. If TZ = (/?,+,•) is a completely symmetric cryptographic 
GBQR satisfying +1 < + < +2 then L(TZ) is orthomodular. On the other 
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hand, given an orthomodular lattice the partial operation © of the associ-

ated pGBQR cannot always be extended to a full operation + such that the 

corresponding GBQR is a completely symmetric cryptographic GBQR. 

Proo f . Given a completely symmetric cryptographic GBQR 1Z = (R, +, •) 
with +1 < + < + 2 and x + y — x* V y* for x, y 6 R with x* J. y*, L(7£) is 
orthomodular according to Lemma 2.1. 

To prove the second part of the theorem suppose that there exists a com-
pletely symmetric cryptographic GBQR the corresponding lattice of which 
is the six-element orthomodular lattice C. Then one can obtain a contra-
diction by appropriately checking the equation (x + y) + y = x for various 
possibilities for the outcome of a + b where a, b are two different atoms of C 
which are not orthogonal. • 

REMARK 2.1. The lattice corresponding to a completely symmetric crypto-

graphic GBQR {R, +, •) satisfying + i < + < +2 need not be a Boolean 

algebra, as can be seen by means of the class of GBQRs definied in Exam-

ple 2.1. 

EXAMPLE 2.1. Let ( P , L ) be a finite incidence structure of points (set P 
with |P| > 1) and lines (set L C 2P) such that |z| = 3 for all x 6 L and 
that for every pair x, y of different elements of P there exists exactly one 
f(x,y) € L with x, y E f(x,y). For an element 0 0 P we consider the set 
A (P U {0 } ) x {0,1} and define binary operations + and • on A by 

(0,0) if x,y 6 P,x = y and i = j, 

(0,1) if x, y € P, x = y and i ± j, 

(z, i + j) if x, y e P, x ± y and f(x, y) = {a;, y, z}, 

(y,j) i f ( M ) = (0,0), 

( y , l - j ) i f ( x , i ) = (0 t l ) , 

(x,i) if (y , j ) = (0,0) and 

{ ( x , l - i ) if (y, j ) = (0,1) 

(where i + j is to be taken modulo 2) and 

(y,j) if (x,i) = (0,1), 

(x,i) if (?/, j ) = (0,1), 

(;x,i) if (x,i) = (y, j) and 

(0,0) otherwise 

((x,i),(y,j) 6 A). Then (A, + , •) is a completely symmetric cryptographic 
GBQR satisfying +1 < + < + 2 , the corresponding lattice of which is the 
(2|P| + 2)-element orthomodular lattice of length 2 with P x {0,1} as set of 

(x,i) + (y,j) := 

OM) • (yJ) •= < 
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atoms, which is not Boolean. Trivial examples for (P, L) are 
( {1 ,2 ,3} , { {1 ,2 ,3} } ) , 
( {1,2,3,4,5,6,7} , { {1 ,2 ,5} , {1,3,7}, {1,4,6}, {2,3,6}, {2,4,7}, {3,4,5}, 

{5 ,6 ,7}}) 
and 

({1,2,3,4,5,6,7,8,9} , { {1 ,2 ,3} , {1,4,7}, {1,5,9}, {1,6,8}, {2,4,9} , 
{2,5,8}, {2,6,7} , {3,4,8} , {3,5,7}, {3,6,9}, {4,5,6}, {7,8,9}}) . 

A necessary condition for the existence of a geometry (P, L) is that 
|P|(|P| - 1) = 6|L|. From this it follows |P| = 0 or 1 or 3 or 4 mod 6. 

However, if + = + i or + = +2 then we end up with a Boolean ring. 
THEOREM 2.2. A GBQR 7Z = (R, +, •) is a completely symmetric crypto-
graphic GBQR satisfying + = +1 or -F = +2 if and only if it is a Boolean 
ring. 

Proof. Assume 1Z to be a completely symmetric cryptographic GBQR satis-
fying + = +1 or + = +2- According to Theorem 2.1, L(7£) is orthomodular. 
If + = +1 then 

x V y = ((x +1 y) +1 y) V y = 

= (((x A y*) V (x* A y)) A y*) V ((x* V y) A (x V y*) A y) V y = 
= (x A y*) V y 

for all x,y e R, and if + = +2 then 
xA y* = ((x +2 y) +2 y) A y* = 

= {{{x V y) A {x* V y*)) V y) A ((x* A y*) V (x A y) V y*) A y* = 
= (x V y) A y* 

for ail x, y G P. Hence any two elements of L(7?.) commute showing that 
L(72.) is a Boolean algebra which together with + = +1 or + = +2 implies 
that K is a Boolean ring. The rest of the proof is obvious. • 

3. Symmetric cryptographic GBQRs 
THEOREM 3.1. Every cryptographic GBQR (R,+a,+ß,-,p,s) satisfying 
+1 < + a < +2 is symmetric. 

Proof . Let VQ and Aa denote the lattice operations of L((P, +<*, •)). Then 
P= (p+ap) +ß S = (((p +a p) +a p) +ß s)+ßS = 

= ( ( ( p A a p*) +Q p) +ß s)+ßS = ( ( ( p A q p*r Aa p) + /? s) +ß s = 

= (({p* VQ p) Aa p) +ß s)+ßs = {p +ß s)+ßs = 

= ((Ö + a p) +ß s) +ß s = 0 +ß S = S. • 
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COROLLARY 3 .1 . IfV, = ( # , + , • ) is a G B Q R satisfying + 1 < + < + 2 and 
for every p € R there exists an s € R such that (x + p) + s = x for all x G R 
then 7Z is a completely symmetric cryptographic G B Q R . 

DEFINITION 3.1. For every lattice (L, V, A,*) with an involutory antiauto-
morphism we define a binary relation C on L by 

xC y if and only if x = (x A y) V (x A y*). 

We observe that if a € L and x C a for all x 6 L then 

x = (z*)* = ((x* A a) V (x* A a*))* = (x V a*) A (x V a) = (x V a) A (x V a*) 

for all x € L. 

LEMMA 3.1. If {R, +<*,-) and (R,+p,-) are GBQRs satisfying +1 < +a, 
+/J < +2> a,s £ R, s A s* = 0 and aCs then (a +Q s) +¿3 s = a. 

Proof . Since s A s* = 0 we have s V s* = 1 and hence (by using the 
distributive inequalities) 

a = (a A s*) V (a A s) = (a A s*) V (a* A s A s*) V (a* A s* A s) V (a A s) < 
< (((a A s*) V (a* A s)) A s*) V (((a* A s*) V (a A s)) A s) = 

= ((a + x s) A s*) V ((a + 2 s)* A s) < ((a + Q s) A a*) V ((a +Q s)* A s) = 
= (a + Q s) +1 s < (a + Q s) s < (a +Q s) +2 s = 
= ((a +a s) V s) A ((a + a s)* V s*) < ((a + 2 s) V s) A ((a +1 s)* V s*) = 
= (((a V s) A (a* V s*)) V s) A (((a* V s) A (a V s*)) V s*) < 
< (a V s) A (a* V s* V s) A (a* V s V s*) A (a V s*) = 
= ( a V s ) A ( a V s * ) = a 

which shows (a +Q s) +0 s = a. • 

THEOREM 3.2. // (R, +a, •) and (R, +p, •) are GBQRs satisfying < +Q, 
+/? < +2> s € R and xCs for all x € R then (R, +Q, +p, •,s) is a crypto-
graphic GBQR. 

Proof . The result follows from Lemma 3.1 by observing that s A s* = 
(0 V s) A (0 V s*) = 0. • 

LEMMA 3 .2 . Let (R, +, •) be a G B Q R and a,s 6 R. Then any single of the 
following conditions implies aCs: 

( a + i s) +1 s = a, 
(a + 2 s) +1 s = a, 
(a* +2 s) +2 s = a* and 
(a* +1 s) + 2 s = a*. 
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Proof . Since for i,j = 1,2 one has (a* +3_j s) +3-j s = ((a +j s) +j s)* the 
equalities (a +j s) +j s = a and (a* + 3 s ) +3-j s = a* are equivalent. First 
assume (a +1 s) +1 s = a. Put 

b := ((0 A s*) V (a* A s)) A s* and 
c := (aVs*) As. 

Then 
a = (a +1 s) +1 s = b V ((a* V s) A (a V s*) A s*) = b V e 

and hence 6, c < a. From this it follows that 

aAs*<b<aAs* and 
aAs<c<aAs 

which shows (a A s*) V (a A s) = b V c = a proving a C s. 
Now assume (a +2 s) +1 s = a. Put 

d := (a V 5) A s* and 
e := ((a* As*) V (a A s)) A s. 

Then 

a = (a + 2 s) +1 s = ((a V s) A (a* V s*) A s*) V e = d V e 

and hence d,e < a which yields 

a A s* < d < a As* and 
aAs<e<aAs 

showing (a A s*) V (a A s) = d V e = a, i. e. a C s. • 

T h e o r e m 3.3. Lei ( # , + , • ) be a G B Q R , i,j e { 1 , 2 } and s € R. Then 
(R, + + j , •, s) is a cryptographic G B Q R if and only if x C s for all x 6 R. 

Proof . The result follows from Theorem 3.2 and Lemma 3.2. • 
Theorem 3.2 shows that any GBQRs (i?, +Q, •) and (R, •) satisfy-

ing +1 < +Q, +0 < +2 defined by means of an ortholattice that contains 
an element s such that x C s for all x € R can serve as an example of a 
cryptographic GBQR. (For the structure of such lattices cf. e. g. [7].) 

An example of a bounded lattice (L, V, A,*, 0,1) with an involutory an-
tiautomorphism that is not an ortholattice and contains an element s ^ 0,1 
such that x C s for all x € L is given in Fig. 3.1: 
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Fig. 3.1 

Starting from a bounded lattice (L, V, A,* , 0,1) with an involutory anti-
automorphism with the property that there exists an element s of L with 
x C s for all x E L one can obtain different GBQRs by differently extend-
ing the operation © to + a and respectively. Performing direct products 
of (a large number of) copies of small lattices with the appropriate prop-
erties and assigning GBQRs to these direct products the direct products 
of the GBQRs obtained this way can serve for cryptographic purposes. If 
one needs completely symmetric cryptographic GBQRs one can start with 
orthomodular lattices like in Example 2.1 or with Boolean algebras. 
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