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OPTIMAL SUPERVISORY CONTROL 
OF REGULAR LANGUAGES 

A b s t r a c t . This paper presents an algorithm for optimal control of regular languages, 
realized as deterministic finite state automata (DFSA), with (possible) penalty on event 
disabling. A signed real measure quantifies the behavior of controlled sublanguages based 
on a state transition cost matrix and a characteristic vector as reported in an earlier 
publication. The performance index for the proposed optimal policy is obtained by com-
bining the measure of the supervised plant language with the cost of disabled controllable 
event(s). Synthesis of this optimal control policy requires at most n iterations, where 
n is the number of states of the DFSA model generated from the unsupervised regular 
language. The computational complexity of the optimal control synthesis is polynomial 
in n. The control algorithms are illustrated with an application example of a twin-engine 
surveillance aircraft. 

1. Introduction 
For discrete-event supervisory control, the dynamical behavior of a phys-

ical plant is often modeled as a regular language that can be realized by a 
finite-state automaton [RW87]. The sublanguage of a controlled plant could 
be different under different supervisors that are constrained to satisfy dif-
ferent specifications. Such a partially ordered set of sublanguages requires a 
quantitative measure for total ordering of their respective performance. To 
address this issue, Wang and Ray [WR04] have developed a signed measure 
of regular languages. This work was followed by Ray and Phoha [RP03] and 
Surana and Ray [SR04] who have constructed a vector space of sublanguages 
with a metric based on the total variation measure of the language. 

Several researchers have proposed optimal control of deterministic fi-
nite state automata (DFSA) based on different assumptions. Some of these 

Key words and phrases: discrete event supervisory control, performance measure, 
formal languages. 

This work has been supported in part by Army Research Office (ARO) under 
Grant No. DAAD19-01-1-0646; and NASA Glenn Research Center under Grant No. 
NNC04GA49G. 



992 A. Ray, J. Fu, C. Lagoa 

researchers have attempted to quantify the controller performance using dif-
ferent types of cost assigned to the individual events. Passino and Antsaklis 
[PA89] proposed path costs associated with state transitions and hence opti-
mal control of a discrete event system is equivalent to following the shortest 
path on the graph representing the uncontrolled system. Kumar and Garg 
[KG95] introduced the concept of payoff and control costs that are incurred 
only once regardless of the number of times the system visits the state asso-
ciated with the cost. Consequently, the resulting cost is not a function of the 
dynamic behavior of the plant. Brave and Heymann [BH93] introduced the 
concept of optimal attractors in discrete-event control. Sengupta and Lafor-
tune [SL98] used control cost in addition to the path cost in optimization of 
the performance index for trade-off between finding the shortest path and 
reducing the control cost. Although costs were assigned to the events, no 
distinction was made for events generated at (or leading to) different states 
that could be "good" or "bad". These optimal control strategies have ad-
dressed performance enhancement of discrete-event control systems without 
a quantitative measure of languages. 

Fu et al. [FRL04] have proposed a state-based approach to optimal 
control of regular languages by selectively disabling controllable events so 
that the resulting optimal policy can be realized as a controllable supervisor. 
The performance index of the optimal policy is a signed real measure of the 
supervised sublanguage, which is expressed in terms of a cost matrix and a 
characteristic vector [SR04], but it does not assign any additional penalty 
for event disabling. 

This paper extends the earlier work of Fu et al. [FRL04] on optimal 
control to include the cost of event disabling. The rationale is that the 
previously proposed optimal supervisor makes the best trade-off between 
reaching good states and avoiding bad states, and achieves optimal per-
formance in terms of the language measure of the supervised plant. How-
ever, another supervisor that has a slightly inferior performance relative 
to the above optimal controller may only require disabling of some other 
controllable events, which is much less difficult to achieve. Therefore, with 
due consideration to event disabling, the second controller may be prefer-
able. 

From the above perspectives, the performance index for the optimal con-
trol policy proposed in this paper is obtained by combining the measure of 
the supervised plant language with the cost of disabled event (s). Starting 
with the (regular) language of an unsupervised plant automaton, the opti-
mal control policy makes a trade-off between the measure of the supervised 
sublanguage and the associated event disabling cost to achieve the best per-
formance. 
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The paper is organized in six sections including the present one. Section 2 
reviews the previous work on language measure [SR04]. Section 3 presents 
the optimal control policy without the event disabling cost and proofs of the 
propositions are given in Appendix A. Section 4 modifies the performance 
index to include the event disabling cost and formulates the algorithm of the 
optimal control policy with event disabling cost as an extension of Section 3. 
Proofs of the propositions are given in Appendix B. Section 5 presents an 
application example to illustrate the concepts of optimal control without 
and with event disabling cost. The paper is summarized and concluded in 
Section 6 along with recommendations for future work. 

2. Brief review of the language measure 
This section briefly reviews the concept of signed real measure of reg-

ular languages [WR04] [SR04]. Let the plant behavior be modeled as a 
deterministic finite state automaton (DFSA) as: 

(1) Gi = (Q,i:,5,qitQm) 

where Q is the finite set of states with \Q\ = n excluding the dump state 
[RW87] if any, and qi € Q is the initial state; E is the (finite) alphabet 
of events with |E| = m; E* is the set of all finite-length strings of events 
including the empty string e; the (possibly partial) function S : Q x E —• Q 
represents state transitions and S* : Q x E* —> Q is an extension of 6; and 
Qm. Q Q is the set of marked (i.e., accepted) states. 

DEFINITION 1. The language L(Gi) generated by a D F S A G initialized at 
the state 6 Q is defined as: 

(2 ) L(Gi) = { s e X * \ S ' ( q i t 8 ) e Q } . 

DEFINITION 2. The language Lm(G f) marked by a D F S A Gi initialized at 
the state $ € Q is defined as: 

(3 ) Lm(Gi) = { s € E * | S*(qi, 8 ) € Q m } . 

The language L(Gi) is partitioned as the non-marked and the marked 
languages, L°(Gi) = L(G,)—Lm(Gj) and Lm(Gj), consisting of event strings 
that, starting from q € Q, terminate at one of the non-marked states in 
Q — Qm and one of the marked states in Qm, respectively. The set Qm 
is partitioned into Qm a n d Qmi where contains all good marked states 
that we desire to reach and contains all bad marked states that we want 
to avoid, although it may not always be possible to avoid the bad states 
while attempting to reach the good states. The marked language Lm(G) 
is further partitioned into L+ (G) and L~(G{) consisting of good and bad 
strings that, starting from qi, terminate on and , respectively. 
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A signed real measure /z : 2s* R = (-00, 00) is constructed for 
quantitative evaluation of every event string s e E*. The language L(G{) is 
decomposed into null, i.e., L°(Gi), positive, i.e., L+(Gj), and negative, i.e., 
L~ (Gi) sublanguages. 

DEFINITION 3. The language of all strings that, starting at a state € Q, 
terminates on a state qj 6 Q, is denoted as L(qi,qj). That is, 

(4) L(qu qj) = {s& L{Gi) : 6*(qu s) = qj}. 

DEFINITION 4. The characteristic function that assigns a signed real weight 
to state-partitioned sublanguages L(qi,qj), i — 1,2,... ,n is defined as: x '• 
Q -> [-1, 1] such that 

' [-1, 0) if qj e Q~ 
x(0j) 6 {0} if qj i Qrn 

k (0, 1] if qj € Q+. 

DEFINITION 5. The event cost is conditioned on a DFSA state at which 
the event is generated, and is defined as % : 2* x Q —> [0, 1] such that 
Vqj e Q, Vcrfe € E,Vs G E*, 

7r[<7k,qj] = 7Tjk e [0, l); <!; 
n[a, qj] = 0 if S(qj, a) is undefined; 7r[e, qj] = 1; 
7r[c7fcs, = tt[<Tk,qj] Tr[s,S(qj,ak)]. 

The event cost matrix, denoted as II-matrix, is defined as: 

n = 

7Tn 7T12 
7T21 K22 

7Tnl 7Tn2 

TTlm 
K2 m 

run 

An application of the induction principle to part (3) in Definition 5 shows 
that 

7T[si, qj] = TT[S, ^]7r[t, 6*(qj, a)]. 

The condition Ylk < 1 provides a sufficient condition for the existence 
of the real signed measure as discussed in [SR04] along with additional 
comments on the physical interpretation of the event cost. 

Now we define the measure of a sublanguage of the plant language L (Gi) 
in terms of the signed characteristic function x and the non-negative event 
COSt 7T. 
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DEFINITION 6. The signed real measure fi of a singleton string set {s} c 
L{qi,qj) C L{Gi) G 2s* is defined as: 

K{s}) = x(?j) *(«, qi) Vs 6 L(qh qj). 
The signed real measure of L(qi, qj) is defined as: 

s€L(qitqj) 

and the signed real measure of a DFSA Gi, initialized at the state qi € Q, 
is denoted as: 

Hi = v(L(Gi)) = J ^ / i (£(«,$•))• 

DEFINITION 7. The state transition cost of the D F S A is defined as a function 
7T: Q x Q [0, 1) such that 

V<?j, ?fc € Q, n(qj, qk) = J2 ^ = TTjfc 
<r€E:i(qj,a)=9fc 

and 
7Tjfc = 0 if {cr e S : <t) = = 0. 

The state transition cost matrix, denoted as II-matrix, is defined as: 

n = 

7TU 7Ti2 
7T21 7T22 

TTnl ""02 

TTln 
n 

TTnn 

Wang and Ray [WR04] and Surana and Ray [SR04] have shown that the 
measure ¡ii = /x(L(Gj)) of the language L(Gi), with the initial state qi, can 
be expressed as: Hi = Ylj nij Pj + X» where Xi = x(<7«)- Equivalently, in vec-
tor notation: p. = II/2 + x where the measure vector p,= [/j,i fi2 • • • Mn]Tand 
the characteristic vector x — [xi X2 • • • Xn]T- We delineate salient proper-
ties of the state transition cost matrix II,which are useful for constructing 
the optimal control policy. 

PROPERTY 1: Following Definitions 4 and 6, there exists 8 € (0, I)such 
that the induced infinity norm HIIH ,̂ = max Yhj nij = 1 — The matrix 
operator [/—II] is invertible implying that the inverse [/ — II] -1 is a bounded 
linear operator with its induced infinity norm ||[Z — II] -1 | |00 < [NS82]. 
Therefore, the language measure vector can be expressed as: p. = [/—II]-1x, 
where p € Rn, and computational complexity of the measure is 0(n3) 
[SR04]. 
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PROPERTY 2: The matrix operator [/ — n] 1 > 0 elementwise. By Taylor 
oo 

series expansion, [7 — II ] - 1 = ^ [n]fcand [II]fc > 0 because II > 0. 
fc=0 

PROPERTY 3: The determinant Det [/—II] is real positive because the eigen-
values of the real matrix [/ — II] appear as real or complex conjugates and 
they have positive real parts. Hence, the product of all eigenvalues of [I — II] 
is real positive. 

PROPERTY 4: An affine operator T : R71 —> R"can be defined as: Tu = 
UP + x for any arbitrary v € R n . As II is a contraction, T is also a 
contraction. Since Rn is a Banach space, there exists a unique fixed point 
of T [NS82] that is the measure vector p, satisfying the condition T p. = 
p. Therefore, The language measure vector p is uniquely determined as: 
p = [I — n]-1 x> which can be interpreted as the unique fixed point of a 
contraction operator. 

3. Optimal control without event disabling cost 
This section presents the theoretical foundations of the optimal super-

visory control of DFSA plants by selectively disabling controllable events 
so that the resulting optimal policy can be realized as a controllable su-
pervisor [FRL04]. The plant model is first modified to satisfy the specified 
operational constraints, if any. Then, starting with the (regular) language 
of the unsupervised plant, the optimal policy maximizes the performance 
of the controlled sublanguage of the supervised plant without any further 
constraints. The performance index of the optimal policy is a signed real 
measure of the supervised sublanguage, described in Section 2, which is ex-
pressed in terms of a state transition cost matrix II and a characteristic 
vector X) , but it does not assign any additional penalty for event disabling. 

Let S = {5°, Sl, • • • , SN} be the finite set of all supervisory con-
trol policies that selectively disables controllable events of the unsupervised 
plant DFSA G and can be realized as regular languages. Denoting IIfc = 
n (Sk), k € {1, 2, • • • , N}, the supervisor 5° is the null controller (i.e., no 
event is disabled) implying that L(S°/G) — L(G). Therefore the controller 
cost matrix 11(5°) = II0 = n p i a n i that is the II-matrix of the unsupervised 
plant automaton G.For a supervisor S\ i € {1, 2, • • • , N}, the control pol-
icy selectively disables certain controllable events by which the correspond-
ing elements of the II-matrix (see Definition 4) become zero. Therefore 
the (elementwise) inequality holds: and L(Sk/G) C L(G) VSk 6 S. The 
language measure vector of a supervised plant L(Sk/G)is expressed as: 

p,k = [ I - n f c ] _ 1 x 
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where the jth element of the vector p,k is denoted as fxk. In the sequel, 
/¿fc is chosen to be the performance measure for the optimal control policy 
without event disabling cost. 

PROPOSITION 1. Let j be such that fik = min £ e { l j 2 ) . . . ,n} I f V j < 0> then 
Xj < 0/ and tf Mj < 0» then Xj < 0. 

C o r o l l a r y 1. Let = m a x ^ j ^ . . . , « } / ^ - If ^ ^ 0; then Xj > 0 and if 
Hj > 0, then Xj > 0. 

P r o p o s i t i o n 2. Given U(Sk) = nfc and y.k = [I - I ^ ] " 1 * , let nfc+1 be 
generated from nfc for k > 0 by disabling or re-enabling the appropriate 
controllable events as follows: € {1, 2, • • • , n}, ijth element ofHk+1 

is modified as: 

> 7T*. if rf > 0 
- "I] '•> t~j 
— -n-k if ,,k _ = ti* if fi* = 0 (5) ^ _ 

< 7T * if $ < 0 

and nfc < n° Vk. Then, jlk+1 > ftk elementwise and equality holds if and 
only if Uk+1 = Uk. 

COROLLARY 2. For a given state qj, let fik < 0 and II f c + 1 be generated from 
Uk by disabling controllable events that lead to the state qj. Then, fik+i < 0. 

In Proposition 2, some elements of the jth column of IIfe are decreased 
(or increased) by disabling (or re-enabling) controllable events that lead 
to the states qj for which fj,k < 0 (or fik > 0). Next we show that an 
optimal supervisor can be achieved to yield best performance in terms of 
the language measure. 

PROPOSITION 3. Iterations of event disabling and re-enabling lead to a cost 
matrix II* that is optimal in the sense of maximizing the performance vector 
p.* = [I — I I * ] - 1 x elementwise. 

PROPOSITION 4. The control policy induced by the optimal II*-matrix in 
Proposition 3 is unique in the sense that the controlled language is most 
permissive (i.e., least restrictive) among all controllers) having the best 
performance. 

Propositions 3 and 4 suffice to conclude that the IF-matrix yields the 
most permissive controller with the best performance ¡1*. The optimal con-
trol policy (without event disabling cost) can be realized as: 

• All controllable events leading to the states qj, for which /z* < 0, are 
disabled; 
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• All controllable events leading to the states qj, for which /!*• > 0, are 
enabled. 

3.1. Construction of the optimal control policy without event disabling cost. 
We propose a procedure for construction of the optimal control policy that 
maximizes the performance of the controlled language of the DFSA (with-
out event disabling cost), starting from any initial state q 6 Q. Let G 
be a DFSA plant model without any constraint (i.e., operational specifi-
cations) and have the state transition cost matrix of the open loop plant 
as: W lant e and the characteristic vector as: x 6 Then, the 
performance vector at k = 0 is given as: pP = [fi® /x® • • • T = 

(I — II 0) - 1x, where the jth element of the vector is the perfor-
mance of the language, with state qj as the initial state. Then, $ < 0 
implies that, if the state qj is reached, then the plant will yield bad per-
formance thereafter. Intuitively, the control system should attempt to pre-
vent the automaton from reaching qj by disabling all controllable events 
that lead to this state. Therefore, the optimal control algorithm starts 
with disabling all controllable events that lead to every state qj for which 
fJj < 0. This is equivalent to reducing all elements of the correspond-
ing columns of the n°-matrix by disabling those controllable events. In 
the next iteration, i.e., k = 1, the updated cost matrix II1 is obtained as: 
n 1 = n° — A° where A° > 0 (the inequality being implied element-
wise) is composed of event costs corresponding to all controllable events 
that have been disabled. Using Proposition 2, pP < p} = [I — I I 1 ] x -
Although all controllable events leading to every state corresponding to a 
negative element of ¿t1 are disabled, some of the controllable events that 
were disabled at k = 0 may now lead to states corresponding to positive 
elements of n1. Performance could be further enhanced by re-enabling 
these controllable events. For k > 1, nfc+1 = IIfc + Afc where Afc > 0 
is composed of the state transition costs of all re-enabled controllable events 
at k. 

If /¿° > 0, i.e., there is no state qj such that < 0, then the plant 
performance cannot be improved by event disabling and the null controller 
S° (i.e., no disabled event) is the optimal controller for the given plant. 
Therefore, we consider the cases where //° < 0 for some state qj. 

Starting with k = 0 and 11° = lPZant, the control policy is constructed 
by the following two-step procedure: 
Step 1: For every state qj for which < 0, disable controllable events 
leading to qj. Now, II1 = 11° — A°, where A° > 0 is composed of event 
costs corresponding to all controllable events, leading to qj for which fi® < 0, 
which have been disabled at k = 0. 
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Step 2: For k > 1, if /xjf > 0, re-enable all controllable events leading to 
qj, which were disabled in Step 1. The cost matrix is updated as: IIfc+1 = 
IIfc + Afc for k > 1, where Afc > 0 is composed of event costs corresponding 
to all currently re-enabled controllable events. The iteration is terminated 
if no controllable event leading to qj remains disabled for which ^ > 0. At 
this stage, the optimal performance p,* = [I — II*] ~lx-
P R O P O S I T I O N 5 . The number of iterations needed to arrive at the optimal 
control law without event disabling cost does not exceed the number, n, of 
states of the DFSA. 

Since each iteration in the synthesis of the optimal control requires a 
single Gaussian elimination of n unknowns from n linear algebraic equations, 
computational complexity of the control algorithm is polynomial in n. 

4. Optimal control with event disabling cost 
This section presents the optimal control policy with event disabling cost 

by including the cost of all (controllable) events, disabled by the supervisor, 
in the performance cost. As the cost of disabled event(s) approaches zero, 
the optimal control policy with event disabling cost converges to the optimal 
control policy without event disabling cost, described in Section . 
D E F I N I T I O N 8 . Let the cost of disabling a (controllable) event a j that causes 
transition from qi be denoted as Qj where Cjj € [0, 1]. The (n x m) disabling 
cost matrix is denoted as C = [cij]. 

Since the (controllable) supervisor never disables any uncontrollable 
event, the entries Ci3 for uncontrollable events have no importance. For 
implementation, they can be set to an arbitrarily large positive M < oo. 
D E F I N I T I O N 9 . The action of disabling a (controllable) event Oj at state qi 
by a supervisor S is defined as: 

g i 1 if a j is disabled at state qi 
13 1 0 otherwise. 

The (n x m) action matrix of disabling controllable events by a supervisor 
S is denoted as: Ds = [d?]. 
D E F I N I T I O N 1 0 . The event disabling cost characteristic of a supervisor S 
that selectively disables cont™11aWo " at state qi is defined as: 

The disabling cost characteristic is proportional to event cost of the control-
lable event disabled by the supervisor S. 
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The (n x 1) disabling cost characteristic vector of a supervisor S is de-
noted as: 7s = [ 7 f • • • 

DEFINITION 11. The modified characteristic of a state qi € Q is defined as: 

Xi = Xi ~ li • 

The (n x 1) modified characteristic vector under a supervisor S is defined 
as: 

xs = X~ Is 

where xs = [x • xt • • • Xnf • 

DEFINITION 12. The disabling cost measure vector under a supervisor S is 
defined as: 

es = [ i - n 5 ] - 1 ^ 

with Of being the ith element of 6s, which is the disabling cost incurred by 
the state. 

DEFINITION 13. The performance measure vector of a supervisor Sis defined 
as: 

j f E t z - n ' R V 

with 77? being the ith element of ijs. 

The performance index vector fjsof a supervisor S can be interpreted 
as the difference between the measure vector /2sof the supervised language 
L(S/G) of the DFSA G and the respective disabling cost measure vector 6s. 
That is, 

ijs = p,s-6s. 

Following the approach taken for optimal control without event disabling 
cost in Section 3, let S = {5°, 51, • • • , SN} be the finite set of supervi-
sory control policies that can be realized as regular languages. For a su-
pervisor Sk G S, the control policy selectively disables certain controllable 
events. Consequently, the corresponding elements of the II-matrix become 
zero and those of the event disabling characteristic vector j s are entered 
in the modified characteristic vector xs 35 s e e n in Definition 10; therefore, 
L(Sk/G) C L(G)VSk e S. Denoting Uk = U(Sk), k e {1, 2, • • • , N}, the 
performance measure vector (with event disabling cost) of the supervised 
plant L{Sk/G)is expressed as: 

where fjk = fjsk and jk = y3*! and the jth element of the vector fjk is denoted 
as T]k. The null supervisor 5° (i.e., no disabled event) has zero disabling 
cost, i.e., 70 = 0 and consequently ff = pP. We extend the optimal policy 
construction to include the event disabling cost. 
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4.1. Construction of the optimal control policy with event disabling cost. 
This subsection formulates an optimal control policy with event disabling 
cost, which maximizes all elements of the performance vector fjs of the super-
vised language of a DFSA G with event cost matrix II G 5ftnXm; state transi-
tion cost matrix II 6 K" x n ; characteristic vector x G 3R"; and the disabling 
cost matrix C G 3ftnxm. For the unsupervised plant, we set n 0 = n p i a n t ; 
x° = X! 7° = 0; D° = 0 (no event disabled so far). For optimal con-
trol without event disabling cost in Section 3.1, we disable all controllable 
events leading to states qe for which < 0 and subsequently, for k > 1, 
re-enable all previously disabled controllable events leading to qj if fij > 0. 
In contrast, for optimal control with event disabling cost, we disable all con-
trollable events Oj leading to states qe for which 77° < —Cjj with 5(qi, aj) = qe, 
and subsequently, for k > 1, re-enable these disabled events if ^ > — c^. 
The rationale is that disabling of states with small negative performance 
may not be advantageous because of incurring additional event disabling 
cost. 

The control policy with event disabling cost is formulated according to 
the following two-step procedure: 

Step 1: Starting at k = 0, disable all controllable events a j , leading to each 
state qe if the inequality: rf̂  < —ĉ - with 5(qi, Uj) = qi is satisfied. The 
algorithm for dealing with this inequality is delineated below: 

• If the inequality is not satisfied for any single case, stop the iterative 
procedure. No event disabling can improve the plant performance be-
yond that of the open loop plant, i.e., the null supervisor S° achieves 
optimal control. 

• If the inequality is satisfied for at least one case, disable the qualified 
event(s) and update the state transition cost matrix to II1 < II0 (ele-
mentwise); the disabling matrix to D1 for generating the cost charac-
teristic function 71; and the modified characteristic vector x1 = x — 71 . 
Go to Step 2. 

Step 2: The performance measure vector for k > 1 is 

nk = [ i - nfe j - 1 ^ = [ i - n V (x - 7fc), 

re-enable all previously (at k = 0) disabled controllable events a j , leading 
to states qe if the inequality rfe > — c^-with S(qi, <7j) = qe is satisfied. The 
algorithm for dealing with this inequality is as follows: 
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• If the inequality is not satisfied for any single case, an optimal control 
is achieved and the iterative procedure is complete. No further event 
re-enabling can improve the controlled plant performance beyond that 
of the current supervisor that is the optimal controller. 

• If the inequality is satisfied for at least one case, re-enable all qualified 
events and update the state transition cost matrix to IIfc+1 > (ele-
mentwise); the disabling matrix to Dk\ the cost characteristic function 
to 7fc+1; and the modified characteristic vector xk+l = X ~ 7fc+1- Up-
date k <— (k +1) and repeat Step 2 until the inequality rft > —Cij with 
5(qi,aj) = qi is not satisfied for all j and t. Then, the current super-
visor is optimal in terms of the performance measure in Definition 12. 

The above procedure for optimal control with event disabling cost fs'afa 
extension of that without event disabling cost described in Section 3.1. For 
zero event disabling cost, the two procedures become identical. Following 
the rationale of Proposition 5, the computational complexity of the control 
synthesis with disabling cost is also polynomial in n. 

We present the underlying theory of unconstrained optimal control with 
event disabling cost as two new propositions, which simultaneously maxi-
mize all elements of the performance vector f j . 

PROPOSITION 6. For all supervisors Sk in the iterative procedure, rj +l > rj 
elementwise. 

PROPOSITION 7. The supervisor S generated upon completion of the algo-
rithm in Section 4 is optimal in terms of the performance in Definition 13. 

5. Example of discrete event optimal supervisory control 
This section presents an example of the above discrete-event optimal 

control policies for the design of discrete-event optimal supervisors for a 
twin-engine unmanned aircraft that is used for surveillance and data collec-
tion. Engine health and operating conditions, which are monitored in real 
time based on avionic sensor information, are classified into three mutually 
exclusive and exhaustive categories: good; unhealthy (but operable); and 
inoperable. Upon occurrence of any observed abnormality, the supervisor 
decides to continue or abort the mission. 

The control objective is to enhance engine safety operation. Engine 
health and operating conditions, which are monitored in real time based 
on avionic sensor information, are classified into three mutually exclusive 
and exhaustive categories: (i) good; (ii) unhealthy (but operable)] and (iii) 
inoperable. Upon occurrence of any observed abnormality, the supervisor 
decides to continue or abort the mission. 
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Table 1. Plant Automaton States 
State Description 

1 Safe in base 
2 Mission executing - two good engines 
3 One engine unhealthy during mission execution 
4 Mission executing - one good and one unhealthy engine 
5 Both engines unhealthy during mission execution 
6 One engine good and one engine inoperable 
7 Mission execution with two unhealthy engines 
8 Mission execution with only one good engine 
9 One engine unhealthy and one engine inoperable 
10 Mission execution with only one unhealthy engine 
11 Mission aborted /not completed (Bad Marked State) 
12 Mission successful (Good Marked State) 
13 Aircraft destroyed (Bad Marked State) 

Table 2. Plant Event Alphabet 

Event Event Description Controllable Events 

s start and take-off y/ 
b a good engine becoming unhealthy 
t an unhealthy engine becoming inoperable 
V a good engine becoming inoperable 
k keep engine(s) running V 
a mission abortion V 
f mission completion 
d destroyed aircraft 
I landing V 

The deterministic finite state automaton model of the (unsupervised) 
plant (i.e., engine operation) has 13 states, of which three are marked (i.e., 
accepted) states, and nine events, of which four are controllable. The dump 
state is not included as it is not of interest in the supervisory control syn-
thesis [RW87] [FRL04]. All events are assumed to be observable. The states 
and events of the plant model are listed in Table 1 and Table 2, respectively. 
As indicated in Table 1, the marked states are: 11, 12 and 13, of which the 
states 11 and 13 are bad marked states, and the state 12 is a good marked 
state. 

The state transition function S (see the beginning of Section 2), the en-
tries 7Tij (see Definition 4) of the event cost matrix II, and the entries c¿, 
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Table 3.- State Transition <5 Event Cost fl and Disabling Cost C Matrices 
« b t 1» k » f d I 

1 (2) 
0.500 
0.000 

(1 ) 
0.020 
0.005 

2 (3) 
0.050 
N / A 

(6) 
0.010 
N / A 

(12) 
0.800 
N / A 

(3) 
0.100 
N / A 

3 ( 4 ) 
0.450 
0.050 

(11) 
0.450 
0.005 

4 (5) 
0.120 
N / A 

( 6 ) 
0.160 
N / A 

m 
0.100 
N / A 

(12) 
0.500 
N / A 

(13) 
0.120 
N / A 

5 (7 ) 
0.450 
0.080 

(11) 
0.450 
0.002 

6 (8) 
0.450 
0.010 

( H ) 
0.450 
0.004 

7 (9) 
0.250 
N / A 

(12) 
0.500 
N / A 

(13) 
0.200 
N / A 

8 (9) 
0.200 
N / A 

(13) 
0.010 
N / A 

(12) 
0.300 
N / A 

(13) 
0.400 
N / A 

9 (10) 
0.450 
0.35 

(11) 
0.450 
0.002 

10 (13) 
0.350 
N / A 

(12) 
0.200 
N / A 

(13) 
0.400 
N / A 

11 (1) 
0.95 

0.000 
12 (1) 

0.95 
0.000 

13 

Characteristic Vector x = [0 0 0 0 0 0 0 0 0 - 0.05 0.25 - 1.0]T 

(See Definition 4) 

(see Definition 8) of the event disabling cost matrix C are entered simultane-
ously in relevant cells of Table 3. The dump state and any transitions to the 
dumped state are not shown in Table 3. The empty cells in Table 3 imply 
that the state transition function S is undefined for the respective state and 
event. In each non-empty cell in Table 3, the positive integer in the first en-
try signifies the destination state of the transition; the non-negative fraction 
in the second entry is the state-based event cost -n -̂; and the non-negative 
fraction in the third entry is the state-based event disabling cost c^ of the 
four controllable events (i.e., events s, k, a and £); event disabling cost is not 
applicable to the remaining five uncontrollable events (i.e., events b, t, v, f 
and d) and the corresponding entries are marked as "N/A". (Note that the 
event cost tt^ and event disabling cost ĉ - of a given event could be different 
at different states.) 
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The values of iUj were selected by extensive simulation experiments on 
gas turbine engine models and were also based on experience of gas turbine 
engine operation and maintenance. The state-based event cost f i j such that 
each row sum of the event cost matrix n is strictly less than one as given 
in Definition 5 and explained in detail by in a previous publication [SR04]. 
The event disabling cost Cjj for controllable events indicates the difficulty 
of disabling from the respective states and the values were chosen based 
on operational experience. The elements of the characteristic vector (see 
Definition 4) are chosen as non-negative weights based on the perception 
of each marked state's role on the gas turbine system performance. In this 
simulation example, the characteristic value of the good marked state 12 is 
taken to be 0.25 and those of the bad marked states 11 and 13 are taken 
to be -0.05 and -1.0, respectively, to quantify their respective importance; 
each of the remaining non-marked states is assigned zero characteristic value 
as seen at the bottom of Table 3. The information provided in Table 3 is 
sufficient to generate the state transition cost matrix II (see Definition 7). 

Table 4. Synthesis without Event Disabling Cost 

Iterat ion 0 Iteration 1 Iteration 2 
0 .0823 0.0840 0.0850 
0 .1613 0.1646 0.1665 
0.0062 0.0134 0.0366 

-0 .0145 0.0500 0.0506 
-0 .0367 0.0134 0.0138 
-0 .1541 0.0134 0.0138 
-0 .1097 -0 .0317 -0 .0312 
-0 .3706 -0 .3084 -0 .3080 
-0 .2953 0.0134 0.0138 
-0 .6844 -0 .6840 -0.6839 
0.0282 0.0298 0.0307 
0 .3282 0.3298 0.3307 

-1 .0000 -1 .0000 -1.0000 

Based on the data given in Tables 1, 2 and 3, two optimal control poli-
cies - Case (a) without event disabling cost and the other Case (b) with 
event disabling cost have been synthesized following the respective two-step 
procedures in Sections 3 and 4. The results of optimal supervisor syntheses 
without and with event disabling cost are presented in Tables 4 and 5 sup-
ported by respective finite state machine diagrams in Figures 1(a) and 1(b). 
For Case(a), the event disabling cost matrix C (i.e., the relevant elements 
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Table 5. Synthesis with Event Disabling Cost 

Iteration 0 Iteration 1 Iteration 2 
0.0823 0.0839 0.0841 
0.1613 0.1645 0.1649 
0.0062 0.0134 0.0188 
-0.0145 0.0117 0.0118 
-0.0367 -0.0356 -0.0354 
-0.1541 0.0034 0.0035 
-0.1097 -0.1088 -0.1086 
-0.3706 -0.3700 -0.3699 
-0.2953 -0.2944 -0.2943 
-0.6844 -0.6841 -0.6840 
0.0282 0.0297 0.0299 
0.3282 0.3297 0.3299 
-1.0000 -1.0000 -1.0000 

(a) Supervision without Event Disabling (b) Supervision with Event Disabling Cost 
Cost 

Pig. 1. Finite State Machine Diagrams of Optimally Supervised Systems 

in Table 3) are set to zero for synthesis of the optimal control without event 
disabling cost. In contrast, for Case (b), all elements the event disabling cost 
matrix C in Table 3 are used for synthesis of the optimal control with event 
disabling cost. At successive iterations, Table 4 lists the performance vectors 
in Case (a): p° for the unsupervised (i.e., open loop) plant, p1 in iteration 
1, and p2 in iteration 2 when the synthesis is completed because of no sign 
change between elements of /21 and p2. Table 4 shows that p2 > p1 > p° 
elementwise. This is due to disabling the controllable event k leading to 
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states 7, 8 and 10 as indicated by the dashed arcs in the state transition 
diagram of Figure 1(a). Consequently, the states 7, 8, and 10 become iso-
lated as there are no other events leading to these states. Starting with the 
initial state 1, indicated by an external arrow in Figure 1(a), the optimal 
performance is 0.0850 that is the first element /if of the performance vector 
p? as seen in the top right hand corner in Table 4. 

The results are different for Case (b) because the event disabling cost 
is taken into account in optimal supervisor synthesis as seen in Table 5 
and Figure 1(b); in this case, only the state 8 is isolated due to disabling 
of the controllable event k at the state 6. At successive iterations, Table 
5 lists the performance vectors for this Case (b) where f}° = pP for the 
unsupervised (i.e., open loop) plant; fj1 in iteration 1, and fj2 in iteration 2 
when the synthesis is completed because of no sign change between elements 
of fj1 and fj2. (Note that, in general, the number of iterations needed for 
supervisor synthesis without and with event disabling cost may not be the 
same.) Table 5 shows that fj2 > fj1 > ff elementwise. This is due to 
disabling of the controllable event k leading to the state 8 as indicated by 
the dashed arcs in the state transition diagram of Figure 1 (b). Consequently, 
the state 8 (shown in a dotted circle in Figure 1 (b)) becomes isolated as 
there are no other events leading to this state. Starting with the initial state 
1, indicated by an arrow in Figure 1(b), the optimal performance is 0.0841 
that is the first element fj\ of the performance vector ff as seen in the top 
right hand corner in Table 5. Clearly, the performance of the supervisor in 
Case (b) is suboptimal with respect to Case (a). That is, the performance 
in Case (b) cannot excel that in Case (a)) where the event disabling cost is 
not taken into account. 

6. Summary and Conclusions 
This paper presents the theory, formulation, and validation of optimal 

supervisory control policies for dynamical systems, modeled as determinis-
tic finite state automata (DFSA), which may have already been subjected 
to constraints such as control specifications. The synthesis procedure for 
optimal control without and with event disabling cost is quantitative and 
relies on a signed real measure of regular languages, which is based on a 
specified state transition cost matrix and a characteristic vector [SR04]. 

The state-based optimal control policy without event disabling cost max-
imizes the language measure vector /2 by attempting to selectively disable 
controllable events that may lead to bad marked states and simultaneously 
ensuring that the remaining controllable events are kept enabled. The goal 
is to maximize the measure of the controlled plant language without any 
further constraints. The control policy induced by the updated state transi-
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tion cost matrix yields maximal performance and is unique in the sense that 
the controlled language is most permissive (i.e., least restrictive) among all 
controller(s) having the optimal performance. 

The performance measure vector fj, for optimal control with disabling 
cost, is obtained as the language measure vector of the supervised plant 
minus the disabling cost characteristic vector. The optimal control policy 
maximizes the performance vector elementwise by attempting to avoid ter-
mination on bad marked states by selectively disabling controllable events 
with reasonable disabling costs, and simultaneously ensuring that the re-
maining controllable events are kept enabled. As the cost of event disabling 
approaches zero, the optimal control policy with event disabling cost con-
verges to that without event disabling cost. 

Derivation of the optimal supervisory control policies requires at most 
n iterations, where n is the number of states of the DFSA model and each 
iteration is required to solve a set of n simultaneous linear algebraic equa-
tions having complexity of 0(n3) [SR04]. As such computational complexity 
of the control synthesis procedure is polynomial in the number of DFSA 
model states. The procedure for synthesis of the optimal control algorithm 
has been validated on the DFSA model of a twin-engine surveillance aircraft. 

Future areas of research in optimal control include robustness of the con-
trol policy relative to unstructured and structured uncertainties in the plant 
model including variations in the language measure parameters [FLR03]. 

Appendix A. Proofs of Propositions: optimal control without 
event disabling cost 

This appendix presents the proofs of five propositions and two corollaries, 
presented in Section 3. 

P roo f of Proposition 1: The DFSA satisfies the identity 

¿€{1,2,-,n} 
that leads to the inequality 

> ( E n j e ) fj + i1 - E * i t ) ^ * Xi • 
i i 

The proof follows from (1 — Yht rft) > 0 ( s e e Definitions 5 and 7). • 

P roo f of Corollary to Proposition 1: The proof is similar to that of Propo-
sition 1. • 

P roof of Proposition 2: It follows from the the properties of the measure 
vector p, that: 
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- pk = ([/ - n f e + 1 ] _ 1 - [/ - n f c]_ 1)x 
= [/ - n f c + 1 ] - 1 ( [ / - nfc] - [ i - n f c + 1])[ j - n* ] - 1 * 
= [ i - u k + 1 ] - \ u k + 1 - u k ) p . k . 

Defining the matrix Afc = IIfc+1 — Uk, let the jth column of Afc be denoted 
as A^. Then, Ak < 0 if nk < 0 and A* > 0 if nk > 0, and the remaining 
columns of Ak are zero vectors. This implies that: Akpk = ^ Ak > 0. 

j 
Since nfe < n ° Vfc, [I - n f c + 1 ] _ 1 > 0 elementwise. Then, it follows that 
[I - Uk+1]~1Akpk > 0 pk+l > pk. For nk f 0 and Afc as defined above, 
A V = 0 if and only if Ak = 0. Then, n f c + 1 = nfc and p.k+1 = fik. m 

P r o o f of Corollary to Proposition 2: Since only jth column of [I — IIfc+1] 
is different from that of [I — nfc] and the remaining columns are the same, 
the jth row of the cofactor matrix of [I — IIfc+1] is the same as that of the 
cofactor matrix of [I — nfc]. Therefore, 

Det [I - Tlk+1}nk+1 = Det [I - Uk]nk. 

Since both determinants are real positive by Property 5 of the Il-matrix, fxk 

and n k + 1 have the same sign. • 

P r o o f of Proposition 3: Let us consider an arbitrary cost matrix n < II0 

and p. = [I — n] _ 1 x- It will be shown that p, < p,*. Let us rearrange the 
elements of the p.*-vector such that p* = [¡j.\ • • • n*e \ • • • Mn ]Tand 

>o ' <o ' 
the cost matrices II and II*are also rearranged in the order in which the 
p*-vector is arranged. 

According to Proposition 2, no controllable event leading to states 
k = 1, 2, • • • ,£ , is disabled and all controllable events leading to states 
qk, k = i + 1, i + 2, • • • , n, axe disabled. Therefore, the elements in the 
first t columns of II* are the same as those of the II0 and only the elements in 
the last (n—£) columns are decreased to the maximum permissible extent by 
disabling all controllable events. In contrast, the columns of EI are reduced 
by an arbitrary choice. Therefore, defining All* = [II — II*], the first £ 
columns of All < 0 and the last (n — £) columns of All > 0. 

Since p* = [/iJ • • • fig | n*e+, • • • ]T and [I — f t ] - 1 > 0 elementwise, ' v ' 
>o <o 

and p - p* = [I - n ] " 1 [n - n*] n*, it follows that 
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t n 
p. - pr = [i - n] -1 ( y : Coij -/i*+ Col3 • V j ) < 0 . 

j=i j=t+1 

<0 <0 
Therefore, p, < fi* for any arbitrary choice of 0 < Ê < II0. • 
P r o o f of Proposition 4: Disabling controllable event(s) leading to a state qj 
with performance measure /z*- = 0 does not alter the performance vector ft*. 
The optimal control does not disable any controllable event leading to the 
states with zero performance. This implies that, among all controllers with 
the identical performance p,*, the control policy induced by the IP-matrix 
is most permissive. • 

P roo f of Proposition 5: Following Proposition 2, the sequence of perfor-
mance vectors {IIfc} in successive iterations of the two-step procedure is 
monotonically increasing. The first iteration at k = 0 disables controllable 
events following Step 1 of the two-step procedure in Section 3.1. f a r ing 
each subsequent iteration in Step 2, the controllable events leading to at 
least one state are re-enabled. When Step 2 is terminated, there remains at 
least one negative element, < 0 by 2. Therefore, as the number of itera-
tions in Step 2 is at most n — 1, the total number of iterations to complete 
the two-step procedure does not exceed n. • 

Appendix B. Proofs of Propositions: optimal control with event 

This appendix presents the proofs of two propositions, presented in Sec-
tion 4. 

P roo f of Proposition 6: Given xk = X — 7fcand fjk = [I — IIfc]-1xfc, let us 
denote the change in event disabling characteristic vector as: 

= ys+l _ f = ^ _ -fc+1 

Notice that, elementwise 

I > 0 for event disabling 
a; < 

I < 0 for event re — enabling. 

The performance increment at iteration k is given by: 
nk+1 _ fjk = [7 _ jjfc+lj-l-fc+l n*]"1** 

= [/ - n ^ J - V - Ûk} - [ I - Uk]~1xk 

= ([/ - n ^ 1 ] - 1 - [/ - n*]"1) x k - [ i - n ^ 1 ] - 1 * * 
= [i - n ^ 1 ] - 1 [nfc+1 - nfc] [/ - n*]-1** - [i - nfc+1]-1ô>fc 

disabling cost 
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= - { [ / - n ^ 1 ] - 1 [nfc - nfc+1] nk + [i - n * * 1 ] - 1 ^ } . 

At k = 0, the state transition cost matrix changes from II0 to II1 as a result 
of disabling selected controllable events leading to states with sufficiently 
negative performance. Let us denote the ¿^column of a matrix A as (A)i, 
¿j^element of a matrix A as (A)ij, and the ith element of a vector v as (u)»; 
and I and j satisfy the following conditions: 

¿(qe, (?j) = qP and df- # df / + I . 

Then II1 < n°; wj = £ cej |n° - U1 ; and 

0fi1 - fj°)i = - ( [ / - n 1 ] - 1 ^ 0 - n1]^0 - [/ - n1]-1«0)« 
= - ¿ ( [ / - n 1 ] - 1 ) ^ + < * * « ) ) ) 

i P j 

= - £ ( [ ' - n 1 ] - 1 ) ^ E ( £ + <*)))• 
e p j 

Since [/ — II 1 ] - 1 > 0 elementwise and event disabling requires (ijp+cej) < 0 
for all admissible j and p, it follows from the above equation that fjl—fj° > 
0 elementwise. 

Next, iterations k > 1 are considered, for which some of the events 
disabled at k = 0 are (possibly) re-enabled 

j 

(fjfc+1 - fjk)i = ([/ - n*+ 1]-1[n f c + 1 - nfc] f j k - [ i - n * * 1 ] - 1 ^ 

t P i 

Since [I — n f c] - 1 > 0 elementwise and event re-enabling requires (Vp+Cej) > 
0 for all admissible £,j and p, it follows from the above equations that 

_ f\k > 0 for k > 0. 

Proof of Proposition 7: The optimal supervisor S is synthesized by dis-
abling and re-enabling certain controllable events at selected states. It is 
to be shown that the performance of any (controllable) supervisor S is not 
superior to that of S, i.e., f)s >fjs VS € S. 

Let an arbitrary supervisor S 6 «S disable controllable events <tj at se-
lected states qe, which are not disabled by S, i.e., (77* + cgj) > 0 with 
6(qe,<Tj) = qp, and enable some other controllable events <r~ at selected 
states qe, leading to state qp, which are disabled by 5, i.e., (rj| + cfj) < 0 
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with S(qe,(Tj) = qp where £, j and j satisfy the condition df- ± dfand 

Denoting the difference in event disabling characteristic vectors and the 
state transition cost matrices of S and S as: ui = 7 s — js = x s — Xs > the 
corresponding difference in performance vectors is obtained as: 

^ - ^ [ j - n V x 8 - ! / - ^ 

= [i- n 5 ] _ 1 x 5 - [ i - n 5 ] _ 1 [ x 5 -.s>] 

= ([/ - n 5 ] - 1 - [/ - n^]- 1 ) x 5 + [/ - n 5 ] - 1 * 

= [ j - n V P * - n s ] [ / - n 5 ] - 1 * 5 + [/ - n 5 ] - 1 * 

= [/ - u s } ~ l [ u s - n s ] f j s + \ i - n 5 ] - 1 * . 

Letting A = II 5 — II5 , the following equality conditions are defined: 

= fitj and A(p = - ^ n^ . 

j j 

Noting that the subscript p depends on both £ and j, and the subscript 
p depends on both t and j, the product of the matrix A G 3Rnx" and the 
performance vector fjs 6 is obtained as: 

(A • *f)t = E A W p + E = E (E Vp) - E (E tf) • 
p p p j P ~j 

The changes in the event disabling characteristic vector and the performance 

vector are then respectively expressed as follows: 

= E *liCti 

= E (E wi) - E 
p J p 

rSi-1/ ( i f - ^ = ( [ 7 -

= n 5 ] _ 1 ) t f ( A • ff + 0)e. 
I 

The ith element of the vector (A • fjs + us) is obtained as: 

(Ans + U)e = E (E - E (E 
P i P j 

+E (E w ) - E (Ev^) 
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^ VZ^ ̂  W + %)) - E ( E W + ^ 0 = £ ( F -
P j 

1 
i - n s >o because (77® + C£j) > 0 a n d (77? + c £ j ) < 0. The re fo re , s ince 

a n d (A f j s + Co) > 0 e lementwise , i t follows t h a t ( f j s — f j s ) > 0 e lementwise . 
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