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OPTIMAL SUPERVISORY CONTROL
OF REGULAR LANGUAGES

Abstract. This paper presents an algorithm for optimal control of regular languages,
realized as deterministic finite state automata (DFSA), with (possible) penalty on event
disabling. A signed real measure quantifies the behavior of controlled sublanguages based
on a state transition cost matrix and a characteristic vector as reported in an earlier
publication. The performance index for the proposed optimal policy is obtained by com-
bining the measure of the supervised plant language with the cost of disabled controllable
event(s). Synthesis of this optimal control policy requires at most n iterations, where
n is the number of states of the DFSA model generated from the unsupervised regular
language. The computational complexity of the optimal control synthesis is polynomial
in n. The control algorithms are illustrated with an application example of a twin-engine
surveillance aircraft.

1. Introduction

For discrete-event supervisory control, the dynamical behavior of a phys-
ical plant is often modeled as a regular language that can be realized by a
finite-state automaton [RW87). The sublanguage of a controlled plant could
be different under different supervisors that are constrained to satisfy dif-
ferent specifications. Such a partially ordered set of sublanguages requires a
quantitative measure for total ordering of their respective performance. To
address this issue, Wang and Ray [WR04] have developed a signed measure
of regular languages. This work was followed by Ray and Phoha [RP03] and
Surana and Ray [SR04] who have constructed a vector space of sublanguages
with a metric based on the total variation measure of the language.

Several researchers have proposed optimal control of deterministic fi-
nite state automata (DFSA) based on different assumptions. Some of these
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researchers have attempted to quantify the controller performance using dif-
ferent types of cost assigned to the individual events. Passino and Antsaklis
[PA89] proposed path costs associated with state transitions and hence opti-
mal control of a discrete event system is equivalent to following the shortest
path on the graph representing the uncontrolled system. Kumar and Garg
[KG95] introduced the concept of payoff and control costs that are incurred
only once regardless of the number of times the system visits the state asso-
ciated with the cost. Consequently, the resulting cost is not a function of the
dynamic behavior of the plant. Brave and Heymann [BH93] introduced the
concept of optimal attractors in discrete-event control. Sengupta and Lafor-
tune [SL98] used control cost in addition to the path cost in optimization of
the performance index for trade-off between finding the shortest path and
reducing the control cost. Although costs were assigned to the events, no
distinction was made for events generated at (or leading to) different states
that could be “good” or “bad”. These optimal control strategies have ad-
dressed performance enhancement of discrete-event control systems without
a quantitative measure of languages.

Fu et al. [FRLO4] have proposed a state-based approach to optimal
control of regular languages by selectively disabling controllable events so
that the resulting optimal policy can be realized as a controllable supervisor.
The performance index of the optimal policy is a signed real measure of the
supervised sublanguage, which is expressed in terms of a cost matrix and a
characteristic vector [SR04], but it does not assign any additional penalty
for event disabling.

This paper extends the earlier work of Fu et al. [FRLO04] on optimal
control to include the cost of event disabling. The rationale is that the
previously proposed optimal supervisor makes the best trade-off between
reaching good states and avoiding bad states, and achieves optimal per-
formance in terms of the language measure of the supervised plant. How-
ever, another supervisor that has a slightly inferior performance relative
to the above optimal controller may only require disabling of some other
controllable events, which is much less difficult to achieve. Therefore, with
due consideration to event disabling, the second controller may be prefer-
able.

From the above perspectives, the performance index for the optimal con-
trol policy proposed in this paper is obtained by combining the measure of
the supervised plant language with the cost of disabled event(s). Starting
with the (regular) language of an unsupervised plant automaton, the opti-
mal control policy makes a trade-off between the measure of the supervised
sublanguage and the associated event disabling cost to achieve the best per-
formance.
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The paper is organized in six sections including the present one. Section 2
reviews the previous work on language measure [SR04]. Section 3 presents
the optimal control policy without the event disabling cost and proofs of the
propositions are given in Appendix A. Section 4 modifies the performance
index to include the event disabling cost and formulates the algorithm of the
optimal control policy with event disabling cost as an extension of Section 3.
Proofs of the propositions are given in Appendix B. Section 5 presents an
application example to illustrate the concepts of optimal control without
and with event disabling cost. The paper is summarized and concluded in
Section 6 along with recommendations for future work.

2. Brief review of the language measure

This section briefly reviews the concept of signed real measure of reg-
ular languages [WRO04] [SR04]. Let the plant behavior be modeled as a
deterministic finite state automaton (DFSA) as:

(1) G:i= (Qa Ea51 Qi7Qm)

where Q) is the finite set of states with |@Q| = n excluding the dump state
[RW87] if any, and ¢; € Q is the initial state; ¥ is the (finite) alphabet
of events with |£| = m; X« is the set of all finite-length strings of events
including the empty string ¢; the (possibly partial) function § : Q x £ — @
represents state transitions and §* : Q x ¥* — @ is an extension of §; and
Qm C Q is the set of marked (i.e., accepted) states.

DerINITION 1. The language L(G;) generated by a DFSA G initialized at
the state g; € Q is defined as:

(2) L(G:) = {s e X" | "(¢:,5) € @}

DEFINITION 2. The language L,,(G;) marked by a DFSA G; initialized at
the state ¢; € Q is defined as:

3) Lm(Gi) = {s € T% | 6%(gi, 8) € Qm}-

The language L(G;) is partitioned as the non-marked and the marked
languages, L°(G;) = L(G;)— Ln(G;) and L,,(G;), consisting of event strings
that, starting from ¢ € @, terminate at one of the non-marked states in
Q — Q. and one of the marked states in Q,,, respectively. The set Q,,
is partitioned into @7, and Q;,,, where Q. contains all good marked states
that we desire to reach and Qj, contains all bad marked states that we want
to avoid, although it may not always be possible to avoid the bad states
while attempting to reach the good states. The marked language Ln(G)
is further partitioned into L} (G) and L, (G;) consisting of good and bad
strings that, starting from g¢;, terminate on Q;, and Q,,, respectively.
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A signed real measure p : 2" — R = (—oo0, o0) is constructed for
quantitative evaluation of every event string s € X*. The language L(G;) is
decomposed into null, i.e., L°(G;), positive, i.e., L} (G;), and negative, i.e.,
L;,(G;) sublanguages.

DEFINITION 3. The language of all strings that, starting at a state ¢; € Q,
terminates on a state g; € Q, is denoted as L(g;, g;). That is,

(4) L(g:, ;) = {s € L(G;) : 6" (g, 8) = g;}-

DEFINITION 4. The characteristic function that assigns a signed real weight
to state-partitioned sublanguages L(g;, g;), 2 = 1,2,...,n is defined as: x :
@ — [-1, 1] such that

[_1, O) if q; € Q;z
x(g) € {0} if ¢;¢Qm

(0, 1 if g; € Q.
DEFINITION 5. The event cost is conditioned on a DFSA state at which
the event is generated, and is defined as 7© : £* x Q — [0, 1] such that
Vg; € Q,Vor € £,Vs € T¥,
° ﬁ[ak,qj] = ’I-Tjk € [0, 1); Zk ﬁ'jk < 1;
e 7o, q;] = 0 if §(gj, 0) is undefined; 7le,q;] = 1;
o 7loks, ¢;] = 7ok, 4;] 7[s, 8(gj, o))

The event cost matrix, denoted as [I-matrix, is defined as:

1 T2 ... Tim
~ M1 T ... Tom
o=

Ml T2 ... Tnm

An application of the induction principle to part (3) in Definition 5 shows
that

(st Qj] = s, g;]7[t, 6% (g5, s)]-
The condition ), 7;x < 1 provides a sufficient condition for the existence
of the real signed measure as discussed in [SR04] along with additional
comments on the physical interpretation of the event cost.
Now we define the measure of a sublanguage of the plant language L (G;)

in terms of the signed characteristic function x and the non-negative event
cost 7.



Optimal control of regular languages 995

DEFINITION 6. The signed real measure p of a singleton string set {s} C
L(gi,q;) € L(G;) € 2% is defined as:
[l:({S}) X(qJ 7I'(8, qt) VS € L(qqu)
The signed real measure of L(g;,g;) is defined as:
p(lig,g)= >, w({s}
s€L(gi,q5)
and the signed real measure of a DFSA G, initialized at the state ¢; € Q,

is denoted as:
i = p(L(Gy)) = ZJ. 1 (L(g, 45))-

DEFINITION 7. The state transition cost of the DFFSA is defined as a function
m:Q x Q — [0, 1) such that

Vgj, ¢ €Q, g, w)= Y, 0, ¢)= m
0€L:6(gj,0)=qk
and

The state transition cost matrix, denoted as II-matrix, is defined as:

11 T12 ... Tin

1 T2 ... 7o,
II =

Tl Tn2 ... Tpn

Wang and Ray [WR04] and Surana and Ray [SR04] have shown that the
measure u; = p(L(G;)) of the language L(G;), with the initial state g¢;, can
be expressed as: p; = 3, mi; j + xi Where x; = x(g). Equivalently, in vec-
tor notation: fi = IIfi+ x where the measure vector i = [u; u2 - - un)? and
the characteristic vector X = [x1 X2 - Xn]?. We delineate salient proper-
ties of the state transition cost matrix II,which are useful for constructing
the optimal control policy.

PROPERTY 1: Following Definitions 4 and 6, there exists § € (0, 1)such
that the induced infinity norm ||II||,, = max >, mj; = 1— 6. The matriz
1

operator [I —II] is invertible implying that the inverse [I —II] ! is a bounded
linear operator with its induced infinity norm ||[I ~ II}7!||o < 6~ [NS82).
Therefore, the language measure vector can be expressed as: i = [[-1I]" ¥,

where o € R®, and computational complexity of the measure is O(n3)
[SRO4].
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PROPERTY 2: The matriz operator [I —II)™* > 0 elementwise. By Taylor

o0
series ezpansion, [[ ~ I~ = ¥ [M]*and [I]F > 0 because II > 0.

k=0
PROPERTY 3: The determinant Det [I —II] is real positive because the eigen-
values of the real matriz [I — II] appear as real or compler conjugates and
they have positive real parts. Hence, the product of all eigenvalues of [I—II]
is real positive.

PROPERTY 4: An affine operator T : R® — R"can be defined as: T =
17 4 x for any arbitrary v € R™. As Il is a contraction, T is also a
contraction. Since R™ is a Banach space, there erists a unique fized point
of T [NS82] that is the measure vector i satisfying the condition T =
ii. Therefore, The language measure vector [ is uniquely determined as:
i = [I —T|1x, which can be interpreted as the unique fized point of a
contraction operator.

3. Optimal control without event disabling cost

This section presents the theoretical foundations of the optimal super-
visory control of DFSA plants by selectively disabling controllable events
so that the resulting optimal policy can be realized as a controllable su-
pervisor [FRLO04]. The plant model is first modified to satisfy the specified
operational constraints, if any. Then, starting with the (regular) language
of the unsupervised plant, the optimal policy maximizes the performance
of the controlled sublanguage of the supervised plant without any further
constraints. The performance index of the optimal policy is a signed real
measure of the supervised sublanguage, described in Section 2, which is ex-
pressed in terms of a state transition cost matrix II and a characteristic
vector ¥, , but it does not assign any additional penalty for event disabling.

Let S = {S° S, ..., SN} be the finite set of all supervisory con-
trol policies that selectively disables controllable events of the unsupervised
plant DFSA G and can be realized as regular languages. Denoting IT* =
I(s*), ke{1,2,---, N}, the supervisor S° is the null controller (i.e., no
event is disabled) implying that L(S°/G) = L(G). Therefore the controller
cost matrix I1(S®) = I1° = I1P!™ that is the II-matrix of the unsupervised
plant automaton G.For a supervisor S¢, i € {1, 2, ---, N}, the control pol-
icy selectively disables certain controllable events by which the correspond-
ing elements of the II-matrix (see Definition 4) become zero. Therefore
the (elementwise) inequality holds: and L(S*/G) C L(G) VS* € S. The
language measure vector of a supervised plant L(S*/G)is expressed as:

A =-T97'%
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where the j** element of the vector ii* is denoted as ,u;?. In the sequel,
p* is chosen to be the performance measure for the optimal control policy

without event disabling cost.

PROPOSITION 1. Let j be such that pu¥ = minge(y9,... ny uf. If 4% <0, then
x; £0; and if ,uf <0, then x; <0.

COROLLARY 1. Let u;? = MaXge(1,2, - ,n} ,uf. If ,u;? > 0, then x; > 0 and if
u;? > 0, then x; > 0.

PROPOSITION 2. Given II(S*) = II* and p*F = [I - ITF] "1k, let TI¥+! be
generated from IIF for k > 0 by disabling or re-enabling the appropriate
controllable events as follows: Vi,j € {1,2, ---, n}, ijth element of II*+1
is modified as:

>k if u;? >0
(5) 7r!°.+1 = 7k zf #;? =0
<wk  if ;L? <0

and IT* < TI° Vk. Then, gFt! > iF elementwise and equality holds if and
only if Ikl = 11%,

COROLLARY 2. For a given state q;, let ,u;? < 0 and IT**! be generated from
II* by disabling controllable events that lead to the state g;. Then, u?“ < 0.

In Proposition 2, some elements of the j** column of II* are decreased
(or increased) by disabling (or re-enabling) controllable events that lead
to the states g; for which ,u;? < 0 (or ,u;? > 0). Next we show that an
optimal supervisor can be achieved to yield best performance in terms of
the language measure.

PROPOSITION 3. Iterations of event disabling and re-enabling lead to a cost
matriz I1* that is optimal in the sense of mazimizing the performance vector

B* = [I -1I*]"'x elementwise.

PROPOSITION 4. The control policy induced by the optimal II*-matriz in
Proposition 3 is unique in the sense that the controlled language is most
permissive (i.e., least restrictive) among all controller(s) having the best
performance.

Propositions 3 and 4 suffice to conclude that the II*-matrix yields the
most permissive controller with the best performance z*. The optimal con-
trol policy (without event disabling cost) can be realized as:

o All controllable events leading to the states g;, for which p; <0, are
disabled;
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o All controllable events leading to the states g;, for which p; 2 0, are
enabled.

3.1. Construction of the optimal control policy without event disabling cost.
We propose a procedure for construction of the optimal control policy that
maximizes the performance of the controlled language of the DFSA (with-
out event disabling cost), starting from any initial state ¢ € Q. Let G
be a DFSA plant model without any constraint (i.e., operational specifi-
cations) and have the state transition cost matrix of the open loop plant
as: ITPlant ¢ RX" and the characteristic vector as: ¥ € R". Then, the
performance vector at k¥ = 0 is given as: 2% = [ud n§ --- 48] T =
(I — %1%, where the j** element ,u? of the vector u® is the perfor-
mance of the language, with state g; as the initial state. Then, px? < 0
implies that, if the state g; is reached, then the plant will yield bad per-
formance thereafter. Intuitively, the control system should attempt to pre-
vent the automaton from reaching g; by disabling all controllable events
that lead to this state. Therefore, the optimal control algorithm starts
with disabling all controllable events that lead to every state ¢; for which
u? < 0. This is equivalent to reducing all elements of the correspond-

ing columns of the IT%-matrix by disabling those controllable events. In
the next iteration, i.e., k = 1, the updated cost matrix II! is obtained as:
M = 1°— A° where A® > 0 (the inequality being implied element-
wise) is composed of event costs corresponding to all controllable events
that have been disabled. Using Proposition 2, z° < ! = [I — IT']1%.
Although all controllable events leading to every state corresponding to a
negative element of u! are disabled, some of the controllable events that
were disabled at £k = 0 may now lead to states corresponding to positive
elements of u!. Performance could be further enhanced by re-enabling
these controllable events. For k > 1, IT*¥*! = TII*F 4+ A* where A* > 0
is composed of the state transition costs of all re-enabled controllable events
at k.

If 2% > 0, i.e., there is no state g; such that u? < 0, then the plant
performance cannot be improved by event disabling and the null controller
S (i.e., no disabled event) is the optimal controller for the given plant.
Therefore, we consider the cases where ,u? < 0 for some state g;.

Starting with k = 0 and II° = [IP!e™ the control policy is constructed

by the following two-step procedure:
Step 1. For every state g; for which ,ug-’ < 0, disable controllable events
leading to g;. Now, IT! = II° — A% where A% > 0 is composed of event
costs corresponding to all controllable events, leading to ¢; for which ,ug <0,
which have been disabled at k = 0.
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Step 2: For k > 1, if p;? > 0, re-enable all controllable events leading to
gj, which were disabled in Step 1. The cost matrix is updated as: IT¥+! =
II* + A* for k > 1, where A* > 0 is composed of event costs corresponding
to all currently re-enabled controllable events. The iteration is terminated
if no controllable event leading to g; remains disabled for which ,u;? > 0. At
this stage, the optimal performance g* = [I — IT*] " %.

PROPOSITION 5. The number of iterations needed to arrive at the optimal

control law without event disabling cost does not exceed the number, n, of
states of the DFSA.

Since each iteration in the synthesis of the optimal control requires a
single Gaussian elimination of n unknowns from n linear algebraic equations,
computational complexity of the control algorithm is polynomial in n.

4. Optimal control with event disabling cost

This section presents the optimal control policy with event disabling cost
by including the cost of all (controllable) events, disabled by the supervisor,
in the performance cost. As the cost of disabled event(s) approaches zero,
the optimal control policy with event disabling cost converges to the optimal
control policy without event disabling cost, described in Section .

DEFINITION 8. Let the cost of disabling a (controllable) event o; that causes
transition from g; be denoted as ¢;; where ¢;; € [0, 1]. The (n x m) disabling
cost matrix is denoted as C = [c;;].

Since the (controllable) supervisor never disables any uncontrollable

event, the entries c;; for uncontrollable events have no importance. For
implementation, they can be set to an arbitrarily large positive M < oo.

DEFINITION 9. The action of disabling a (controllable) event o; at state g;
by a supervisor S is defined as:

s _ } 1 if o; is disabled at state ¢;
e 0 otherwise.

The (n x m) action matrix of disabling controllable events by a supervisor
S is denoted as: DS = [df’; .

DEFINITION 10. The event disabling cost characteristic of a supervisor S
that selectively disables controllable events o; at state g; is defined as:

S _ -
Vi = Z Gij Tij-
3: dfj=1

The disabling cost characteristic is proportional to event cost of the control-
lable event disabled by the supervisor S.
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The (n x 1) disabling cost characteristic vector of a supervisor S is de-
noted as: ¥° = [77 73 -+ "l

DEFINITION 11. The modified characteristic of a state ¢; € Q is defined as:
X;i=xi—%-

The (n x 1) modified characteristic vector under a supervisor S is defined

as:
=S

X—7

23
where x° = [x? x5 - x3)%.
DEFINITION 12. The disabling cost measure vector under a supervisor S is
defined as: B

0°=[I-11°1"'%
with 67 being the it" element of %, which is the disabling cost incurred by
the state.

DEFINITION 13. The performance measure vector of a supervisor Sis defined
as:

,,—’s = [I _ Hs]—l)—cs
with 7} being the i** element of 7°.

The performance index vector 7°of a supervisor S can be interpreted
as the difference between the measure vector °of the supervised language
L(S/G) of the DFSA G and the respective disabling cost measure vector 6°.
That is,

T—]s — ﬁs _ 0‘3.
Following the approach taken for optimal control without event disabling
cost in Section 3, let S = {S°, S, ..., SN} be the finite set of supervi-

sory control policies that can be realized as regular languages. For a su-
pervisor S¥ € S, the control policy selectively disables certain controllable
events. Consequently, the corresponding elements of the II-matrix become
zero and those of the event disabling characteristic vector 4° are entered
in the modified characteristic vector x* as seen in Definition 10; therefore,
L(S*/G) C L(G)VS* € S. Denoting IT* = TI(S*), ke {1,2,---, N}, the
performance measure vector (with event disabling cost) of the supervised
plant L(S*/G)is expressed as:
7= [ - (x - 7°)

where 7* = ﬁsk and ¥* = f‘ysk; and the j** element of the vector 7* is denoted
as 77;9. The null supervisor S° (i.e., no disabled event) has zero disabling

cost, i.e., 7% = 0 and consequently 7° = fi°. We extend the optimal policy
construction to include the event disabling cost.
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4.1. Construction of the optimal control policy with event disabling cost.
This subsection formulates an optimal control policy with event disabling
cost, which maximizes all elements of the performance vector 7° of the super-
vised language of a DFSA G with event cost matrix IT € R**™; state transi-
tion cost matrix IT € R™*"; characteristic vector ¥ € R"; and the disabling
cost matrix C € R"*™. For the unsupervised plant, we set II° = [Iplent,
%° = % 7% = 0; D% = 0 (no event disabled so far). For optimal con-
trol without event disabling cost in Section 3.1, we disable all controllable
events leading to states gy for which pg < 0 and subsequently, for k£ > 1,
re-enable all previously disabled controllable events leading to g; if ,u.;? >0.
In contrast, for optimal control with event disabling cost, we disable all con-
trollable events o; leading to states g for which n0 < —c;; with 6(gi, 05) = g,
and subsequently, for £ > 1, re-enable these disabled events if nf > —cij.
The rationale is that disabling of states with small negative  performance
may not be advantageous because of incurring additional event disabling
cost.

The control policy with event disabling cost is formulated according to
the following two-step procedure:

Step 1: Starting at k = 0, disable all controllable events o, leading to each
state gq if the inequality: n) < —c;; with 6(gi,0;) = ¢ is satisfied. The
algorithm for dealing with this inequality is delineated below:

e If the inequality is not satisfied for any single case, stop the iterative
procedure. No event disabling can improve the plant performance be-
yond that of the open loop plant, i.e., the null supervisor S° achieves
optimal control.

o If the inequality is satisfied for at least one case, disable the qualified
event(s) and update the state transition cost matrix to IT! < TI° (ele-
mentwise); the disabling matrix to D! for generating the cost charac-
teristic function 4!; and the modified characteristic vector x! = x — .
Go to Step 2.

Step 2: The performance measure vector for k > 1 is
7= [ -1 %" = 1 - 1*) 7 (k- 7%,

re-enable all previously (at k¥ = 0) disabled controllable events o;, leading
to states g, if the inequality nf' > —c;jwith 6(g;, 0;) = ge is satisfied. The

algorithm for dealing with this inequality is as follows:



1002 A. Ray, J. Fu, C. Lagoa

¢ If the inequality is not satisfied for any single case, an optimal control
is achieved and the iterative procedure is complete. No further event
re-enabling can improve the controlled plant performance beyond that
of the current supervisor that is the optimal controller.

e If the inequality is satisfied for at least one case, re-enable all qualified
events and update the state transition cost matrix to IT**1 > II¥ (ele-
mentwise); the disabling matrix to D¥; the cost characteristic function
to 4*t1; and the modified characteristic vector x**! = ¥ — 3¥+1. Up-
date k «— (k+ 1) and repeat Step 2 until the inequality nf > —c;; with
6(gi,05) = g¢ is not satisfied for all j and £. Then, the current super-
visor is optimal in terms of the performance measure in Definition 12.

The above procedure for optimal control with event disabling cost is'ah
extension of that without event disabling cost described in Section 3.1. For
zero event disabling cost, the two procedures become identical. Following
the rationale of Proposition 5, the computational complexity of the control
synthesis with disabling cost is also polynomial in n.

We present the underlying theory of unconstrained optimal control with
event disabling cost as two new propositions, which simultaneously maxi-
mize all elements of the performance vector 7.

PROPOSITION 6. For all supervisors S in the iterative procedure, 7*t1 > 7*
elementwise.

PROPOSITION 7. The supervisor S generated upon completion of the algo-
rithm in Section 4 is optimal in terms of the performance in Definition 13.

5. Example of discrete event optimal supervisory control

This section presents an example of the above discrete-event optimal
control policies for the design of discrete-event optimal supervisors for a
twin-engine unmanned aircraft that is used for surveillance and data collec-
tion. Engine health and operating conditions, which are monitored in real
time based on avionic sensor information, are classified into three mutually
exclusive and exhaustive categories: good; unhealthy (but operable); and
inoperable. Upon occurrence of any observed abnormality, the supervisor
decides to continue or abort the mission.

The control objective is to enhance engine safety operation. Engine
health and operating conditions, which are monitored in real time based
on avionic sensor information, are classified into three mutually exclusive
and exhaustive categories: (i) good; (ii) unhealthy (but operable); and (iii)
inoperable. Upon occurrence of any observed abnormality, the supervisor
decides to continue or abort the mission.
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Table 1. Plant Automaton States

l State | Description
1 Safe in base
2 Mission executing - two good engines
3 One engine unhealthy during mission execution
4 Mission executing - one good and one unhealthy engine
5 Both engines unhealthy during mission execution
6 One engine good and one engine inoperable
7 Mission execution with two unhealthy engines
8 Mission execution with only one good engine
9 One engine unhealthy and one engine inoperable
10 Mission execution with only one unhealthy engine
11 | Mission aborted /not completed (Bad Marked State)
12 Mission successful (Good Marked State)
13 Aircraft destroyed (Bad Marked State)

Table 2. Plant Event Alphabet

“ Event | Event Description

J Controllable Events

start and take-off

a good engine becoming unhealthy

an unhealthy engine becoming inoperable
a good engine becoming inoperable

keep engine(s) running

mission abortion

mission completion

destroyed aircraft

~ QA R ¥ S o+ O W

landing

v

v

1003

The deterministic finite state automaton model of the (unsupervised)
plant (i.e., engine operation) has 13 states, of which three are marked (i.e.,
accepted) states, and nine events, of which four are controllable. The dump
state is not included as it is not of interest in the supervisory control syn-
thesis [RW87] [FRLO04]. All events are assumed to be observable. The states
and events of the plant model are listed in Table 1 and Table 2, respectively.
As indicated in Table 1, the marked states are: 11, 12 and 13, of which the
states 11 and 13 are bad marked states, and the state 12 is a good marked

state.

The state transition function J (see the beginning of Section 2), the en-
tries 7;; (see Definition 4) of the event cost matrix II, and the entries c;;
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Table 3: State Transition § Event Cost II and Disabling Cost C Matrices

s b t ] v I k l a 1 I [ d ! ﬂ
1 (2) 1)
0.500 0.020
0.000 0.005
2 (3) (8) 12) (3)
0.050 0.010 0.800 0.100
N/A N/A N/A N/A

3 : @ (n
0.450 0.450
0.050 0.005
4 (5) ® ® 2 | (19)
0.120 | o.160 | 0.100 0.500 | 0.120
N/A | N/A | N/A N/A N/A
5 ) (11)
0.450 0.450
0.080 0.002
6 3) (11)
0.450 0.450
0.010 0.004
7 9) (12) (13)

0.250 0.500 0.200

N/A N/A | N/A

] (9) (13) 12) (13)
0.200 0.010 0.300 0.400

N/A N/A N/A N/A

9 (10 (11)
0.450 0.450
0.35 0.002
10 (13) (12) (13)
0.350 0.200 0.400
N/A N/A N/A
11 [33)

0.95
0.000
12 )

0.95
0.000

i3

Characteristic Vector x =[000000000 —0.05 0.25 —1.0]7
(See Definition 4)

(see Definition 8) of the event disabling cost matrix C are entered simultane-
ously in relevant cells of Table 3. The dump state and any transitions to the
dumped state are not shown in Table 3. The empty cells in Table 3 imply
that the state transition function 4 is undefined for the respective state and
event. In each non-empty cell in Table 3, the positive integer in the first en-
try signifies the destination state of the transition; the non-negative fraction
in the second entry is the state-based event cost 7;;; and the non-negative
fraction in the third entry is the state-based event disabling cost c;; of the
four controllable events (i.e., events s, k, a and £); event disabling cost is not
applicable to the remaining five uncontrollable events (i.e., events b, t, v, f
and d) and the corresponding entries are marked as "N/A”. (Note that the
event cost 7;; and event disabling cost ¢;; of a given event could be different
at different states.)
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The values of ;; were selected by extensive simulation experiments on
gas turbine engine models and were also based on experience of gas turbine
engine operation and maintenance. The state-based event cost 7;; such that
each row sum of the event cost matrix II is strictly less than one as given
in Definition 5 and explained in detail by in a previous publication [SR04].
The event disabling cost c;; for controllable events indicates the difficulty
of disabling from the respective states and the values were chosen based
on operational experience. The elements of the characteristic vector (see
Definition 4) are chosen as non-negative weights based on the perception
of each marked state’s role on the gas turbine system performance. In this
simulation example, the characteristic value of the good marked state 12 is
taken to be 0.25 and those of the bad marked states 11 and 13 are taken
to be —0.05 and —1.0, respectively, to quantify their respective importance;
each of the remaining non-marked states is assigned zero characteristic value
as seen at the bottom of Table 3. The information provided in Table 3 is
sufficient to generate the state transition cost matrix II (see Definition 7).

Table 4. Synthesis without Event Disabling Cost

Iteration O | Iteration 1 | Iteration 2
0.0823 0.0840 0.0850
0.1613 0.1646 0.1665
0.0062 0.0134 0.0366
-0.0145 0.0500 0.0506
-0.0367 0.0134 0.0138
-0.1541 0.0134 0.0138
-0.1097 -0.0317 -0.0312
-0.3706 -0.3084 -0.3080
-0.2953 0.0134 0.0138
-0.6844 -0.6840 -0.6839
0.0282 0.0298 0.0307
0.3282 0.3298 0.3307
-1.0000 -1.0000 -1.0000

Based on the data given in Tables 1, 2 and 3, two optimal control poli-
cies - Case (a) without event disabling cost and the other Case (b) with
event disabling cost have been synthesized following the respective two-step
procedures in Sections 3 and 4. The results of optimal supervisor syntheses
without and with event disabling cost are presented in Tables 4 and 5 sup-
ported by respective finite state machine diagrams in Figures 1(a) and 1(b).
For Case(a), the event disabling cost matrix C (i.e., the relevant elements
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Table 5. Synthesis with Event Disabling Cost

Iteration O | Iteration 1 | Iteration 2
0.0823 0.0839 0.0841
0.1613 0.1645 0.1649
0.0062 0.0134 0.0188
-0.0145 0.0117 0.0118
-0.0367 -0.0356 -0.0354
-0.1541 0.0034 0.0035
-0.1097 -0.1088 -0.1086
-0.3706 -0.3700 -0.3699
-0.2953 -0.2944 -0.2943
-0.6844 -0.6841 -0.6840
0.0282 0.0297 0.0299
0.3282 0.3297 0.3299
-1.0000 -1.0000 -1.0000

(a) Supervision without Event Disabling (b) Supervision with Event Disabling Cost
Cost

Fig. 1. Finite State Machine Diagrams of Optimally Supervised Systems

in Table 3) are set to zero for synthesis of the optimal control without event
disabling cost. In contrast, for Case (b), all elements the event disabling cost
matrix C in Table 3 are used for synthesis of the optimal control with event
disabling cost. At successive iterations, Table 4 lists the performance vectors
in Case (a): fi° for the unsupervised (i.e., open loop) plant, i! in iteration
1, and /2 in iteration 2 when the synthesis is completed because of no sign
change between elements of ! and 2. Table 4 shows that 2 > gl > g
elementwise. This is due to disabling the controllable event k leading to
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states 7, 8 and 10 as indicated by the dashed arcs in the state transition
diagram of Figure 1(a). Consequently, the states 7, 8, and 10 become iso-
lated as there are no other events leading to these states. Starting with the
initial state 1, indicated by an external arrow in Figure 1(a), the optimal
performance is 0.0850 that is the first element u? of the performance vector
fi% as seen in the top right hand corner in Table 4.

The results are different for Case (b) because the event disabling cost
is taken into account in optimal supervisor synthesis as seen in Table 5
and Figure 1(b); in this case, only the state 8 is isolated due to disabling
of the controllable event k at the state 6. At successive iterations, Table
5 lists the performance vectors for this Case (b) where 7° = fi° for the
unsupervised (i.e., open loop) plant; 7' in iteration 1, and #? in iteration 2
when the synthesis is completed because of no sign change between elements
of 7! and 7?. (Note that, in general, the number of iterations needed for
supervisor synthesis without and with event disabling cost may not be the
same.) Table 5 shows that 72 > 7! > 7° elementwise. This is due to
disabling of the controllable event k leading to the state 8 as indicated by
the dashed arcs in the state transition diagram of Figure 1(b). Consequently,
the state 8 (shown in a dotted circle in Figure 1 (b)) becomes isolated as
there are no other events leading to this state. Starting with the initial state
1, indicated by an arrow in Figure 1(b), the optimal performance is 0.0841
that is the first element 77 of the performance vector #? as seen in the top
right hand corner in Table 5. Clearly, the performance of the supervisor in
Case (b) is suboptimal with respect to Case (a). That is, the performance
in Case (b) cannot excel that in Case (a)) where the event disabling cost is
not taken into account.

6. Summary and Conclusions

This paper presents the theory, formulation, and validation of optimal
supervisory control policies for dynamical systems, modeled as determinis-
tic finite state automata (DFSA), which may have already been subjected
to constraints such as control specifications. The synthesis procedure for
optimal control without and with event disabling cost is quantitative and
relies on a signed real measure of regular languages, which is based on a
specified state transition cost matrix and a characteristic vector [SR04]J.

The state-based optimal control policy without event disabling cost max-
imizes the language measure vector i by attempting to selectively disable
controllable events that may lead to bad marked states and simultaneously
ensuring that the remaining controllable events are kept enabled. The goal
is to maximize the measure of the controlled plant language without any
further constraints. The control policy induced by the updated state transi-
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tion cost matrix yields maximal performance and is unique in the sense that
the controlled language is most permissive (i.e., least restrictive) among all
controller(s) having the optimal performance.

The performance measure vector 7, for optimal control with disabling
cost, is obtained as the language measure vector of the supervised plant
minus the disabling cost characteristic vector. The optimal control policy
maximizes the performance vector elementwise by attempting to avoid ter-
mination on bad marked states by selectively disabling controllable events
with reasonable disabling costs, and simultaneously ensuring that the re-
maining controllable events are kept enabled. As the cost of event disabling
approaches zero, the optimal control policy with event disabling cost con-
verges to that without event disabling cost.

Derivation of the optimal supervisory control policies requires at most
n iterations, where n is the number of states of the DFSA model and each
iteration is required to solve a set of n simultaneous linear algebraic equa-
tions having complexity of O(n®)[SR04]. As such computational complexity
of the control synthesis procedure is polynomial in the number of DFSA
model states. The procedure for synthesis of the optimal control algorithm
has been validated on the DFSA model of a twin-engine surveillance aircraft.

Future areas of research in optimal control include robustness of the con-
trol policy relative to unstructured and structured uncertainties in the plant
model including variations in the language measure parameters [FLR03].

Appendix A. Proofs of Propositions: optimal control without
event disabling cost

This appendix presents the proofs of five propositions and two corollaries,
presented in Section 3.

Proof of Proposition 1: The DFSA satisfies the identity

k k k
B = Z Tje Mg + X
£e{1,2,--- ,n}
that leads to the inequality

k k k
i > (Zﬂr}‘e) i+ x5 = (L= mh) iy 2 xj-
£ 14

The proof follows from (1 -3, w;?e) > 0 (see Definitions 5 and 7). =

Proof of Corollary to Proposition 1: The proof is similar to that of Propo-
sition 1. =

Proof of Proposition 2: It follows from the the properties of the measure
vector i that:
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ﬂk+1 _ ,ﬁk — ([I _ Hk+1]—-1 _ [I _ H{C]—l))z
= [[ = I3[ - I — [T - T[T - 114
= [I - Hk+1]—1(nk+1 _ Hk)p,k.

Defining the matrix A* = II*+1_II¥, let the ** column of AF be denoted
as A;?. Then, A;? <O0if u;? < 0 and Af > 0if p;? > 0, and the remaining
columns of A* are zero vectors. This implies that: A¥j* = ZA;‘ pk > 0.

J

Since IT* < II° Vk, [I — IT**1]-1 > 0 elementwise. Then, it follows that
[I — I*+H-1AREE > 0 = p*+1 > k. For pf # 0 and A* as defined above,
Akp* = 0 if and only if A¥ = 0. Then, IT**! = 1% and g*+! = g*. »

Proof of Corollary to Proposition 2: Since only j®* column of [I — IT¥+!]
is different from that of [I ~ IT*] and the remaining columns are the same,
the j* row of the cofactor matrix of [I — IT**1] is the same as that of the
cofactor matrix of [I — IT¥]. Therefore,

Det [I — Hk+1]u§+1 = Det (I - Hk]p,_',-“.

Since both determinants are real positive by Property 5 of the II-matrix, u;?

and ;L;?"'l

have the same sign. =

Proof of Proposition 3: Let us consider an arbitrary cost matrix o<1
and ji = [I — IIJ7!%. It will be shown that i < fi*. Let us rearrange the
elements of the fi*-vector such that f* = [p] --- pj | wp,; -« pn Tand

>0 <0
the cost matrices II and II*are also rearranged in the order in which the
[i*-vector is arranged.

According to Proposition 2, no controllable event leading to states g,
k=1, 2,.--,¢, is disabled and all controllable events leading to states
9, k=4£€+1,£+2,---,n, are disabled. Therefore, the elements in the
first £ columns of IT* are the same as those of the I1° and only the elements in
the last (n—¢) columns are decreased to the maximum permissible extent by
disabling all controllable events. In contrast, the columns of II are reduced
by an arbitrary choice. Therefore, defining AIl* = [ﬁ — IT*], the first £
columns of AIl < 0 and the last (n — £) columns of AIIl > 0.

Since &* = [p] -+~ py | pgpq -+ 1 |7 and [I — I1)~! > 0 elementwise,
N e’ e’

20 <0
and fi — g* = [I — II}]7! [II — II*] u*, it follows that
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I4 n
p-p*=[I-17! Col; - 3 + Col; - pz) <0.

N~

<0 <o

> o

Therefore, ji < ji* for any arbitrary choice of 0 < 3| <II° a

Proof of Proposition 4: Disabling controllable event(s) leading to a state g;
with performance measure i = 0 does not alter the performance vector i*.
The optimal control does not disable any controllable event leading to the
states with zero performance. This implies that, among all controllers with
the identical performance ii*, the control policy induced by the IT*-matrix
is most permissive. m

Proof of Proposition 5: Following Proposition 2, the sequence of perfor-
mance vectors {II¥} in successive iterations of the two-step procedure is
monotonically increasing. The first iteration at k = 0 disables controllable
events following Step 1 of the two-step procedure in Section 3.1. Dpring
each subsequent iteration in Step 2, the controllable events leading to at
least one state are re-enabled. When Step 2 is terminated, there remains at
least one negative element, y;? < 0 by 2. Therefore, as the number of itera-
tions in Step 2 is at most n — 1, the total number of iterations to complete
the two-step procedure does not exceed n. m

Appendix B. Proofs of Propositions: optimal control with event
disabling cost

This appendix presents the proofs of two propositions, presented in Sec-
tion 4.
Proof of Proposition 6: Given x* = ¥ — ¥*and 7* = [I — IT¥]~1%*, let us
denote the change in event disabling characteristic vector as:
oF = FHL - 5k = gk - gt

Notice that, elementwise

—k { >0 for event disabling

@

<0 for event re — enabling.

The performance increment at iteration k is given by:
,r—’k+1 _ ﬁk — [I _ Hk+1]—l)-<k+l _ [I - Hk]—l)-(k
— [I _ Hk+1]_1[)2k _ ij] _ [I _ Hk]_l)zk '
= ([I - Hk+1]—1 _ [I _ nk]—l) )-(k _ [I _ Hk'H]_lu_)k
= [I _ Hk+1]—1 [Hk+1 _ Hk] [I _ Hk]_l)-(k _ [I _ Hk+1]_lu_.)k
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= —{[I _ Hk+1]—1 [Hk _ Hk+1] ﬁk + [I _ Hk+1]_1u_)k}.

At k = 0, the state transition cost matrix changes from II° to II! as a result
of disabling selected controllable events leading to states with sufficiently
negative performance. Let us denote the i**column of a matrix A as (A);,
ijthelement of a matrix A as (A);;, and the i** element of a vector v as (v);;
and £ and j satisfy the following conditions:

8(ge0) =g and  df #d5i .
Then IT! < 1% w? = 3" ¢y {ro - fIl} : and
i b
@ — 7% = —( -0 - R° - (1 - 1)~ 'e0);

=-3"(I- I'Il]'l)-;e( > (Z(ffej'?g + c‘fﬁ‘f)))
4

P J
== - 113 (X fs(n + i)} )-
? P J

Since [I —IT'] =1 > 0 elementwise and event disabling requires (nd+cej) <0
for all admissible ¢, j and p, it follows from the above equation that 71 —7° >
0 elementwise.

Next, iterations k& > 1 are considered, for which some of the events
disabled at k = 0 are (possibly) re-enabled

wf = - Z cej (IT+! — ﬁk)gj,
J
@ — %) = ([ - I I - 1h) 7 - [T - I~ lak),

= (-1, (3 (O 7ok + o).
? P j

Since [I — IT¥]~! > 0 elementwise and event re-enabling requires (171’; +cej) >
0 for all admissible ¢,j and p, it follows from the above equations that
Ftl — g%k >0fork > 0.

Proof of Proposition 7: The optimal supervisor S is synthesized by dis-
abling and re-enabling certain controllable events at selected states. It is
to be shown that the performance of any (controllable) supervisor S is not
superior to that of S, i.e, 7° > 7 VSe€S.

Let an arbitrary supervisor S € S disable controllable events o; at se-
lected states qy, which are not disabled by S, i.e., (n; + cej) = 0 with
0(qe,05) = gp, and enable some other controllable events o; at selected
states ge, leading to state g, which are disabled by S, ie., (73 +¢5;) <0
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with J(qe,ai) = @3 where ¢, j and j satisfy the condition d[Sj # dfj and
S S
dz; # dﬁ.
Denoting the difference in event disabling characteristic vectors and the
state transition cost matrices of S and S as: @ = 7° - 4° = ¥* — ¥°, the
corresponding difference in performance vectors is obtained as:

77" = [ -1°7'%° - (1 -] 5
= [[ - 05758 — (1 - 1) [ -]
= (-1 - ([~ ) + U -1
= [ - T[S — )T - 5)255 + [ - 1]
= [I - 08 Yms - 18)7° + 1 - 18] 1w,
Letting A = IS — e , the following equality conditions are defined:

Agp = Zﬁ'ej and Ag- = —Zfrlj.
J j

Noting that the subscript p depends on both £ and j, and the subscript
p depends on both £ and j, the product of the matrix A € R**"™ and the
performance vector 77° € R™ is obtained as:

e= D B+ 3 Agms = 3 (S weimg) = > (3 7 m).
P P P J P 7

The changes in the event disabling characteristic vector and the performance
vector are then respectively expressed as follows:

(@) = Zﬁeicez‘
= ; (Z ﬁgjcgj) — Z (Z frejce;),
j P j

(7 =7, = (T -7 +3));
= Z (U =TT (A 7° + D)

The £** element of the vector (A - 7° + @) is obtained as:

(AT +©)e = Z (Z e m5) = (Z o5 75)
+ ; (XJ: ﬁejCej) XP: (Z %%)
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= Z (Z Trej (Mp + czj)) - Z (Z 7o (5 + CG)) >0
4 J P 3

=11
because (7, +cgj) > 0 and (13 + ¢;;) < 0. Therefore, since [I - HS] >0
and (A7 +@) >0 eleméntwise, it follows that (ﬁs - 7’;3) > 0 elementwise.
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