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HORIZONTAL EXTENSION OF CONNECTIONS INTO 
(2)-CONNECTIONS 

Abstract. We discuss the prolongation of connections to to some non product pre-
serving bundles. We introduce the concept of (r)-connection on a fibered manifold Y and 
for a given connection r on Y we construct its horizontal extension T^2 .̂ We also prove 
that r ( 2 ) is the unique (2)-connection on V canonically dependent on I\ 

0. Introduction 
Let T ^ M be the r-th order tangent vector bundle defined by T ^ M = 

(Jr(M, R)o)*- We recall that a general connection on a fibered manifold 
p : Y —> M is a smooth section r : Y —• JlY of the first jet prolongation 
of y , which can be also interpreted as the lifting map (denoted by the same 
symbol) 

T : Y xm TM —» TY. 
DEFINITION. An (r)-connection on a fibered manifold p : Y —• M is a fiber 
linear map 

f :Y XMT^M 
over the identity of Y such that T^p o F(y, v) = v for every (y, v) € Y x ¡4 
T^M. 

Clearly, for r = 1 we obtain the notion of a connection, because there is 
an identification T ^ M = T M . In this note, for a connection F : F x M T M —• 
TY we introduce its horizontal extension r^2) :YxM T^M T ( 2 ) F. The 
main result is the following theorem. 
T H E O R E M 1. The horizontal extension R<2> : Y xM T ( 2 ) M T^Y ofTis 
the unique (2)-connection on Y canonically dependent on T. 
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Section 1 is devoted to the problem of the existence of a natural op-
erator transforming connections on p : Y —» M into connections on Fp : 
FY —• FM, where F is a non product preserving bundle functor. We intro-
duce examples of such natural operators for concrete non product preserving 
functors. In Section 2 we construct the horizontal extension of a connection 
r on p : Y —> M. Section 3 is devoted to the proof of Theorem 1. 

All manifolds and maps are assumed to be of class C°°. Unless otherwise 
specified, we use the terminology and notation from the book [2]. 

1. Prolongation of connections to some non product preserving 
bundles 
The motivation of the present paper is the following. Let F be a bundle 

functor on the category Mf of smooth manifolds and all smooth maps 
and let T : Y —> JlY be a general connection on the fibered manifold 
p : Y —> M. It is well known that if F preserves products, then T induces 
a connection on Fp : FY —> FM, see [2]. By the general theory, every 
product preserving functor F on Mf is a Weil functor F = TA determined 
by a Weil algebra A. In what follows the connection on TAp : TAY —> TAM 
induced by a connection r on p : Y —> M will be denoted by TAT. Clearly, 
TAr : TAY -» JXTAY and the lifting map is of the form 

TaT : TaY XtAm TTaM TTaY. 

We remark that the connection TAT has been constructed by I. Kolaf, [1], 
in the case of higher order velocities functors and then by J. Slovak, [3], in 
the general case of an arbitrary Weil functor. 

Write TM for the category of fibered manifolds and fibered manifold 
morphisms. Denoting by B : TM. —> Mf the base functor, the geometrical 
construction of a connection on Fp : FY —• FM by means of a connection 
on p : Y —* M is a natural operator of the form J1 —> JX(F —> FB). 
By [2], if the functor F does not preserve products, then there is an open 
problem on the existence of a natural operator J 1 Jl(F —> FB). Now 
we present examples of such natural operators for concrete non product 
preserving functors. 

EXAMPLE 1. Let Q be a fixed manifold and define a bundle functor FQ on 
Mf by 

FQM = M X Q, FQf = / x idQ : FQM FQN. 

If card(Q) > 1, then F® is a non product preserving bundle functor of 
order zero. Conversely, an arbitrary bundle functor F on Mf of order zero 
is naturally equivalent to some F^. Given a connection r : Y —> JlY on 
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p : Y —> M, we can define a map 

AQ(T) = T x idQ : Y x Q -> JlY x Q c J 1 ^ x Q), 

where the inclusion JlY x Q C J1(Y x Q) is given by (j*cr, q) h-> x 

idQ). Clearly, : Y x Q Jl(Yx Q) is a connection on F^p : F^Y 

FQM. 

EXAMPLE 2. Consider a Weil functor TB and the functor F® from Ex-
ample 1. Then the composition F = F® o TB is a non product preserv-
ing bundle functor. Let TBT : TBY JLTBY be the connection on 
TBp : TBY TBM determined by the connection r on p : Y -> M, 
[2]. Write 

= AQ{TBT). 

Obviously, is the connection on Fp : FY —> FM and the geo-
metrical construction F A^ ' B (T ) is an example of a natural operator 
transforming connections to non product preserving bundles. 

We recall that a bundle functor F on Mf is said to have the point 
property, if F(pt) = pt, where pt denote a one-point manifold. For example, 
every product preserving bundle functor F = TA has the point property, 
while the functors F® and F® o TB from Example 1 and Example 2 have 
not. Using such a point of view, the problem on the existence of a natural 
operator J1 J1 (F —> FB) reduces to the following question: 

Does there exist a natural operator transforming connections onp :Y —> 

M into connections on Fp : FY FM for any concrete non product 

preserving functor F : M f —> TM. with the point property? 

The simple example of such a functor is the second order tangent functor 
T™. So there is a problem on the existence of a connection 

xT(2) M TT^M —> TT^Y 

on T^p : T^Y —• T^M canonically dependent on a connection T on 
Y - * M . U such -A(r) exists, then we can construct a (2)-connection -A(r) : 
Y xM T&M T^Y on y by 

i ( r ) ( y , V ) = p r 2 o A ( r ) ( 0 y , ^ ( 0 x + tv)), (y,v)eYxxT™M, x€ M, 
at t=o 

where 0y G t£2)Y and 0X <= t P m are the zero elements, pr2 : T0yT^Y= 

TYY x TY^Y —• TY2^Y is the projection onto the second factor and = is the 
obvious identification 

TyY x T&Y 3 (u,w)=T^u(0y) + ^ (*») f T0vT^Y. 



966 M. D o u p o v e c , W . M. Mikulski 

Here T^u denote the flow prolongation of a vector field u € X(Y) with 
u(y) = u. Clearly, T^u(Oy) is independent of the choice of u with u(y) = u. 
The above construction indicates that Theorem 1 may be the first step in 
direction to solve the problem formulated above. 

2. Construction of the horizontal extension 
First we prove the following general assertion. 

PROPOSITION 1. (a) Given an element w = j\o7 € Tx*M=(Txf M)*, xa € 
M, 7 : M —• R, 7(2:0) = 0, define two maps : X(M) —> R and Vw : 
X{M) x X{M) —+M. by 

$W(V) = V 7 (x a ) and $ w (V,W) = ±(VW 7 (x 0 ) + WV7(x0)) 

for V, W € X(M). Then is linear over R, vl/̂  is symmetric and 2-linear 
over R, 

(1) $w(fV) = f(x0)*w(y) 

for V e X{M) and f e C°°(M) and 

(2) *w(fV,gW) = ¿(f(x0)Vg(x0)$w(W)+g(x0)Wf(x0)<t>w(V)) 

+ f(x0)g(x0)*w(V,W) 

for V, W e X(M) and f,g£ C°°{M). 
(b) Conversely, suppose that we have a linear (over R j map $ : X(M) —» 

R and a symmetric 2-linear (over R) map : X(M) x X(M) —> R such 
that for some xa 6 M 

(!') *(fV) = f(x0)$(V) 

for V e X(M), f € C°°(M) and 

(2') *(fV,gW) = \(f(x0)Vg(x0)*>(W) + g(x0)Wf{x0)*(V)) 

+ f(x0)g(x0)*(V,W) 

for V,W e X(M) and f,g € C°°(M). Then there exists one and only one 
element w € T%*M such that $ = and ^ = 

Proof . Clearly, it suffices to prove the part (b). Since $(V) and \I>(V, W) 
depend only on germXo(V) and germXo(W), we can assume that M = Rm 

and xa = 0. Define w = jo7 by 

7 : R m - > R , 7(0) = 0, ¿ 7 ( 0 ) = * ( ^ j ) 
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and 

y d x ^ d x i ) 

for i, j = 1 , . . . , m. Obviously, the definition of w is correct as ^ is symmetric. 
It remains to prove that $ = and \I> = We see that = 

and £ 7 ) = for i,j = 1, . . . ,m. Further, using 
conditions (1), (2), (1') and (2') and the linearity we can see that $(V) = 
*W(V) a n d W) = *W(V, W) f o r a n y V = £ & & a n d W = Z&ih-
The proof of Proposition 1 is complete. • 

Using Proposition 1 we can present the following construction of a (2)-
connection by means of a general connection r : Y xm TM —> TY on a 
fibered manifold p : Y —> M. 

Consider yQ G YXo = p_ 1(x0), xQ & M and take an arbitrary element 
w € T^*Y. Let : X(Y) R and : X(Y) x X{Y) R be the maps 
corresponding to w in the sense of Proposition 1. Define : X(M) —• R 
and : X(M) x X(M) -» R by 

K ( V ) = and W) = W r ) , V, W € X(M), 

where V r € X(Y) is the IP-horizontal lift of the vector field V. 

LEMMA 1. Maps $ := and ^ := satisfy the assumptions of Proposi-
tion 1 ( b ) . 

Proof . Denote by fv := / op : Y —> R the vertical lift of a function / : 
M —• R. Then the assertion follows from the properties of and ^u,, from 
the linearity of the T-horizontal lift and from the formulas ( f W ) r = f v W r 

and W r f v = ( W f ) v , W e X(M), f € C°°(M). • 

So, by Proposition 1 there is one and only one element wr 6 T%*M 
corresponding to 

LEMMA 2. The mapping (R( 2 ) ) ; O : T2
o*Y -» T%*M, (R(2));o(w) = wr, is 

linear. 

Proof . It follows from the fact that depends linearly on w. m 

Define a map r<2> : Y x M T&M -> T&Y as the dual map of ( I ^ ) * 
for any y EY. 

PROPOSITION 2. The mapping r< 2) : Y x M T^M - » T^Y is a ( 2 ) -
connection on p : Y —* M canonically dependent on the connection I\ 

Proof . It remains to observe that T^p oT^(y,v) = v for any (y,v) 6 
Y xmT^M and that we have not used charts in the construction of • 
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DEFINITION. The (2)-connection r̂ 2^ is called the horizontal extension ofF. 

REMARK 1. Obviously, the restriction and corestriction of T^2) to Y XM 

TM C Y XmTWM and TY C T&Y is equal to F. So r<2> is in fact an 
extension of I \ 

3. Proof of Theorem 1 
The existence has been already proved in Section 2, so that it suffices 

to prove the uniqueness. Let A(F),B{F) : Y x M T^M -> T^Y be (2)-
connections canonically dependent on a connection F : Y XM TM —> TY 
on a fibered manifold p :Y M with dim(M) = m and dim(y) = m + n. 
In other words, we have two -F-Mm^-natural operators A : T —* ^4(r) and 
B : T -» B(F) in the sense of the book [2]. 

PROPOSITION 3. We have A = B. 

The proof of Proposition 3 will occupy the rest of this section. Prom now 
on let Rm>" = l m x E " be the trivial fiber bundle over Mm with fiber Rn , 
and x 1 , . . . , xm, y1,..., yn be the standard coordinates on Mm,n. 

Define a map : Con(Rm 'n) x T0
(2)Rm —• R by 

*A(r,v) := (-A(r)((0,0),t>), j^o ojy1) 

for any connection F on R m , n and any v e T0
(2)Rm. 

LEMMA 3. If$A = then A = B. 

P r o o f . It is a consequence of .F.A/imin-naturality of A and B and of the 
fact that the .F.Mm)n-orbit of j2

0 ^y1 is dense in T2*Y for any TMm,n-oh-
ject Y. m 

LEMMA 4. Suppose that 

for any {JQXp)* G T^R™, any K € N and any F1^ for i, j, a, ¡3 as indicated, 
where (OO :E'>)*)I<|P |<2 ™ the basis of T0

(2) R m dual to (joxP)i<|p|<2- Then 
A = B. 

P r o o f. It follows from Lemma 3 and from the corollary of non-linear Peetre 
theorem (Corollary 19.8 in [2]). • 
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LEMMA 5. Suppose that 

(771 rj 771 TO A \ 

¿=1 «=1 ¿=l|a|+|/3|<l W 7 

(m A m n A \ 

t=l »=1 ¿=1 |a|+|/3|<l y 7 

/or any (j'qXp)* 6 Tq^R"1 and any r3ia/3 for i,j,a,(3 as indicated. Then 

A = B. 

Proo f . Using the invariance of A with respect to the homotheties | idjtm.n 
for t t̂  0 we obtain the homogeneity condition 

771 q 771 TO n 

¿=1 ¿=1 ¿=1 |a|+|/3|<if * 

(m a m n « \ 

i=1 i=l j=l |Q|+|/3|<K * ' 

for i > 0. Since 1 < < 2, the homogeneous function theorem (see [2]) 
reads 

(771 r\ m n rx \ 

E ^ 4 + E E E = »=1 i=l ¿=1 H+|/3|<JC y y 

(m r\ m n £1 \ 

E ^ è + E E E r v v ^ ^ ^ - . O o V r ) . ¿=1 i=l ¿=1 |Q|+|/J|<1 » 7 

Prom this equality for A and for B instead of A in the assumption of our 
lemma there follows the assumption of Lemma 4, and applying Lemma 4 we 
complete the proof. • 

LEMMA 6. Suppose that 

(771 rj rj 771 TO r» \ 

£ ̂  0 + x»-dxi* * + ̂  Y, rWd** ® ̂  ufrr 
i= 1 y t=l j,/=l y ' 

( m a Q m 71 Q \ 

+ r ® ( f c v r j 
/or any = 1,..., m, ja = 1, . . . , n, any € M for i, j, I as indicated 
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and any (joXp)* € T0
(2)Rm. Suppose also that 

( m n m TL r, v 

£ rte + * + £ y: r W d j ® 0 0 V ) * 
<=i y ¿=1 1 y ' 

(m n r\ m n „ \ 

£ 0 + dxi« + 0 — , VIyr ) 
t=l a i=l j,l=1 * ' 

/or any ia = 1 , . . . , m, j0 = 1 , . . . , n, any € M for i, j, I as indicated, and 
any O ' f c T € T0

(2)Rm. Then A = B. 
P r o o f. By the invariance of A with respect to fiber homotheties (x 1 , . . . , xm, 
ty1,..tyn) for t ^ 0 we obtain the homogeneity condition 

/ n i n m n n \ 

v i = l i=l J=1 (o|+|j9t<l y ' 
¿=1 ¿=1 j=l |a|+|/3|<l y ' 

for t > 0. By the homogeneous function theorem, 

(m n m n « \ 

t=l i=l j= l |a|+|/3|<l y ' 

is a linear combination of for \(3\ = 0 with coefficients being smooth 
maps in r3

ia/3 for \/3\ = 1. Write ek = (0, . . . ,0 ,1 ,0 , . . . ,0 ) and (0) = 
(0 , . . . , 0). Clearly, if |/?| = 0 (i.e. ¡3 = (0)), then we have |a | = 1 or |a | = 0. 
This yields 

where the coefficients CjCfc and are smooth maps of all with |/3| = 1. 
Obviously, r j e f c ^ = 1 and all other = 0 correspond to (3) and 
rg ( 0 ) ( 0 ) = 1 and all other = 0 correspond to (4). Therefore Lemma 6 
is a simple consequence of Lemma 5. • 

LEMMA 7. Suppose that 

( m 9 d \ 

+ xk°dxi° ® ÂX' <JS*V) 
i= 1 ' 

(m r\ n \ 
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for any i0,k0 = 1 , . . . , m, j0 = 1 , . . . , n and any {joXp)* 6 T^R™. Then 
A = B. 

P r o o f . It remains to verify the assumptions of Lemma 6. 

Step 1. The first assumption of Lemma 6. By the invariance of A with 
respect to the homotheties ( j x l , . . . , \ x m , r y 1 , r y n ) for t / 0 and r / 0 
we obtain the homogeneity condition 

(m d d 
y^ dx i ® t t - t + Tt2axkodx i o ® ——— 

ox1 ay!" 

m n r\ \ 

+ E E ® ( j f r r ) 

(m d d 

axk°dx i o ® 
f—^ ox1 ay3° m n o \ 

¿=i j,i=i y 7 

for t > 0, r > 0. Then by the homogeneous function theorem 

(m r\ Q m n £) \ 

(m d d \ 
dé ® — + ® , u v r ) 

if |/>| = 2, and 

(m ^ ^ m n ^ \ 

£ 0 + x K d x i 0 0 + J - £ r i y i < t e i 0 f 0 û 2 x p r = 0 i=l y t=l j,i=X U ' 
if |p| = 1. Using this fact for A and for B instead of A we see that the 
assumption of our lemma implies the first assumption of Lemma 6. 

Further, write t = 1 in the homogeneity condition (5). Then is linear 
in a with coefficients being smooth maps of the remaining terms. For a = 0 
we obtain 

n m n o \ 

X > l ^ + E E 1 ^ ® w O o V r j = o 

for any ( j fe? ) * € T 0 ( 2 )Rm . 

Step 2. The second assumption of Lemma 6. By the invariance of A 
with respect to (re1 , . . . , xm, y1,..., — x l ° , . . . , yn) (only jQ-position is 
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exceptional) we obtain 

("i p\ o m n p. x 

E •** ® s ? + ^ ^ ® w 0 o V r ) ¿=1 y i=1 j,l=l y y (77i ^ m n q \ 

+ ® ^ (JoV)* 1=1 ¿=1 j,i=l y ' 

+H°(uixpyjoxi°) 

= 4°(UoXp)*Joxio)-

Here denote the Kronecker delta and we have also used (6) and the fact 
that -A(r) is a (2)-connection. The similar is true also for B instead of A. 
This proves our claim. • 

LEMMA 8. Suppose that 

(m a q \ 

£ —+x«°dxi° ® u ^ x ^ r j 

(m 0 d \ 

+ x k ° d x i o ® s r . 
¿=1 ' for any ia, ka = 1,..., m and ja = 1,..., n. Then A = B. 

P r o o f . By the invariance of A with respect to (^-x 1 , . . . , —xm,Tyi,... 
...,ryn) for t = (i1,.--,*™) € (R+ \ {0})m and r ^ 0 we obtain the 
homogeneity condition 

(ra o o \ 

E ^ ® a? + rtH^ax^dx^ ® (jfar)*) Z=1 " ' (m o O \ 

E ^ ® ft? + ® <**)-) 
for any t € (R+ \ {0})m and r > 0. Then by the homogeneous function 
theorem 

(TTl rj r\ \ 

E d x i ® ^ r + ^ ^ ® fl^T' = o 

if only xp xkox%°. The similar fact holds for B instead of A. Hence Lemma 
8 is a simple consequence of Lemma 7. • 
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LEMMA 9. Suppose that 

d i f- x _ _ 
dxi ~ " dyi° ' w <9yJ 

TTl q Q Q 

= « M E ^ ® ^ + x^dx'- ® ^ + s^dx*" ® ( i o ^ S ^ ) ) * ) 

m f ) f ) f ) 

® + * f cod* i o ® s s : + x i ° d x f e ° 0 tôO^**-))*) = 
¿=1 

/ o r any ia, ka = 1 , . . . , m a n d = 1 , . . . , n . Then A = B. 

P r o o f. By the invariance of A with respect to (x 1 , . . . , xm, ty1,..., tyn) for 
i ^ O w e obtain the homogeneity condition 

(m d d d \ 
Y^dx* ® + taxk°dxio ® -x-r- + tbxiodxk° ® —-—, (jo(xio xk°))* ) 
f—j ox1 oy3" oy3° J 

(m d d d \ ypdxi®-—^ + axk°dxio ® -^-r- + bxiodxk° ® ^-r-, (j'o(xioxfco))* ). 
dxl dy3" dyJ° J 

Further, by the homogeneous function theorem we obtain 

( m d 0 d \ 
® ^ + xk°dxi° + xi°dxko ® ofi' Cj2(®V-))'J 

(TTl r\ r\ \ 

_ + dxi0 3 _ ( ^ V ) ) * j 

(TTl ^ q \ 

E ® a?
 + xi°dxk° ® OKxWj • 

By the invariance of >1 with respect to the change of coordinates xfc° and 
x to only we have 

® + ® (jg(x i°xk°)) 'J 

(m d d 
Y ^ d x * ® — ^ x'odx^ 0 (^(x i ox f c°)) 

Hence 
m ("* f ) f ) \ 

J ^ d x ' ® — ^ x^dx'o ® -^ J - , (j£(x ioxfc°))*J 

1 /" *** d ô d \ 
= 2 ( £ d x i ® fcî + ^ ^ ® ^ + x i ° d x f c o ® ( J o ( ^ k o ) r ) • 

Therefore Lemma 9 follows from Lemma 8. 
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LEMMA 10. Suppose that 

A ( Y d x i ® ° + d f ® J L ) - b( V dx{ <g> -¿T + df ® -^-r 
dx% J dyJ° J V^ dxl J dyJ° 

over (0,0) 6 R m x Rn for any f 6 C°°(Rm) and any ja = 1 , . . . , n. Then 
A = B. 

Proof. Prom the assumption for / = xkoxl° there follows the assumption 
of Lemma 9. Using Lemma 9 we complete the proof. • 

LEMMA 11. Suppose that 

d 
a( dx* ® + dx1 ®-JL-} =:BÎy^dxi®^ + dx1(gi 

V dx% dyi° J \ dxl dyi° 

over (0,0) e Rm x Mn for any ja = l,...,n. Then A = B. 

Proof. It remains to verify the assumption of Lemma 10. Because of the 
regularity of A and B we can assume that dof ^ 0. Then df = dx1 near 0 6 
Km modulo a diffeomorphism <p : Mm —• Mm. So Lemma 11 is a consequence 
of Lemma 10 because of the invariance of A and B with respect to ip. a 

We are now in position to prove Proposition 3. Let (j¡)XP)* € 
T0{2)Mm. We can write 

= 0(o,O)*T + E 
W + I 0 l < r , |/3|#0 

By the invariance of A with respect to (x 1 , . . . , xm, ty1,..., tyn) for t ^ 0 
we deduce that 

4ltdxi
 ® (jfrT)=^mxpy-

^ i=l ' 
Using this fact for A and for B instead of A we obtain 

(m F) \ / m Ft 

»=i 7 v ¿=i 
over (0,0). Now by the invariance of A and B with respect to (x 1 , . . . , xm, 
y1,.. .,yi° + x 1 , . . . yn) (only j0-position is exceptional) we have 

(m Q d \ f m d d 
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over (0,0) e R m X Rn for any ja = 1 , . . . , n. By Lemma 11, A = B and the 
proof of Proposition 3 is complete. • 

Theorem 1 is an immediate consequence of Propositions 2 and 3. 
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