DEMONSTRATIO MATHEMATICA
Vol. XXXVII No 4 2004

Miroslav Doupovec, Wlodzimierz M. Mikulski

HORIZONTAL EXTENSION OF CONNECTIONS INTO
(2)-CONNECTIONS

Abstract. We discuss the prolongation of connections to to some non product pre-
serving bundles. We introduce the concept of (r)-connection on a fibered manifold Y and

for a given connection I" on Y we construct its horizontal extension I'?). We also prove
that I'? is the unique (2)-connection on Y canonically dependent on T'.

0. Introduction
Let T(") M be the r-th order tangent vector bundle defined by T(" M =
(JT(M,R)p)*. We recall that a general connection on a fibered manifold
p:Y — M is a smooth section I' : Y — J'Y of the first jet prolongation
of Y, which can be also interpreted as the lifting map (denoted by the same
symbol)
L:YxyTM —-TY.

DEFINITION. An (r)-connection on a fibered manifold p: Y — M is a fiber
linear map

T:Y xyTOM - TOY
over the identity of Y such that T()p o Iy, v) = v for every (y,v) € Y x
TM.

Clearly, for » = 1 we obtain the notion of a connection, because there is
an identification TV M=TM. In this note, for a connection T : Y x s TM —
TY we introduce its horizontal extension I? : Y xp T®M — TY. The
main result is the following theorem.

THEOREM 1. The horizontal extension T® : Y xp TAM — TRY of T is
the unique (2)-connection on 'Y canonically dependent on T'.
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Section 1 is devoted to the problem of the existence of a natural op-
erator transforming connections on p : ¥ — M into connections on Fp :
FY — FM, where F is a non product preserving bundle functor. We intro-
duce examples of such natural operators for concrete non product preserving
functors. In Section 2 we construct the horizontal extension of a connection
Fonp:Y — M. Section 3 is devoted to the proof of Theorem 1.

All manifolds and maps are assumed to be of class C*°. Unless otherwise
specified, we use the terminology and notation from the book [2].

1. Prolongation of connections to some non product preserving

bundles

The motivation of the present paper is the following. Let F' be a bundle
functor on the category Mf of smooth manifolds and all smooth maps
and let T : Y — J'Y be a general connection on the fibered manifold
p:Y — M. It is well known that if F' preserves products, then I' induces
a connection on Fp : FY — FM, see [2]. By the general theory, every
product preserving functor F on Mf is a Weil functor F = T4 determined
by a Weil algebra A. In what follows the connection on T4p : TAY — TAM
induced by a connection I on p : Y — M will be denoted by T4T. Clearly,
TAT : TAY — JTAY and the lifting map is of the form

TAT : TAY xpapy TTAM — TTAY.

We remark that the connection 74T has been constructed by I. Kolaf, {1],
in the case of higher order velocities functors and then by J. Slovék, [3], in
the general case of an arbitrary Weil functor.

Write FM for the category of fibered manifolds and fibered manifold
morphisms. Denoting by B : FM — M [ the base functor, the geometrical
construction of a connection on Fp : FY — FM by means of a connection
on p:Y — M is a natural operator of the form J* ~ JY(F — FB).
By [2], if the functor F' does not preserve products, then there is an open
problem on the existence of a natural operator J* ~ J1(F — FB). Now
we present examples of such natural operators for concrete non product
preserving functors.

EXAMPLE 1. Let Q be a fixed manifold and define a bundle functor F'@ on
Mf by

FOM =M xQ, F9f=fxidg:F?M — F@N.
If card(Q) > 1, then F? is a non product preserving bundle functor of

order zero. Conversely, an arbitrary bundle functor F' on M f of order zero
is naturally equivalent to some F?. Given a connection I : ¥ — J'Y on
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p:Y — M, we can define a map
A%(M) =T xidg:Y x Q — J'Y x Q c J(Y x Q),
where the inclusion J'Y x Q C J}(Y x Q) is given by (jlo,q) — j(lm,q)(o X

idg). Clearly, A?(I") : Y xQ — J*(Y x Q) is a connection on F9p : FRY —
FeM.

EXAMPLE 2. Consider a Weil functor T2 and the functor F¥ from Ex-
ample 1. Then the composition F = F? o T8 is a non product preserv-
ing bundle functor. Let TBT : TBY — J'TBY be the connection on
TBp : TBY — TBM determined by the connection Tonp : ¥ — M,
[2]. Write
AZB(I) = A%(TBD).

Obviously, A2:(T") is the connection on Fp : FY — FM and the geo-
metrical construction I' — A®B(T) is an example of a natural operator
transforming connections to non product preserving bundles.

We recall that a bundle functor F on Mf is said to have the point
property, if F'(pt) = pt, where pt denote a one-point manifold. For example,
every product preserving bundle functor F = T has the point property,
while the functors F@ and F? o T? from Example 1 and Example 2 have
not. Using such a point of view, the problem on the existence of a natural
operator J! ~» J}(F — FB) reduces to the following question:

Does there exist a natural operator transforming connections onp:Y —
M into connections on Fp : FY — FM for any concrete non product
preserving functor F : Mf — FM with the point property?

The simple example of such a functor is the second order tangent functor
T, So there is a problem on the existence of a connection

AT : TPY xp@y TTPM - TTAY

on T@p : TAY — T M canonically dependent on a connection T on
Y — M. If such A(T) exists, then we can construct a (2)-connection A(T") :
Y xpyuy TOM - TAY onY by

fi(l“)(y, v) = pry 0 A(T)(0 0y + tv)), (y,v) € Yy X Tf)M, TEM,

Y a-it=o(
where 0, € T!SQ)Y and 0, € TSP M are the zero elements, pr, : TOyT(2)Yé

T,Y x T,Sz)Y - T,fz)Y is the projection onto the second factor and = is the
obvious identification

T,Y x TY 3 (u,w)=T®@4(0,) + % J[(tw) € T, T?Y.
t= ‘
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Here T(4 denote the flow prolongation of a vector field & € X(Y) with
i(y) = u. Clearly, T(?(0,) is independent of the choice of & with @(y) = u.
The above construction indicates that Theorem 1 may be the first step in
direction to solve the problem formulated above.

2. Construction of the horizontal extension
First we prove the following general assertion.

PROPOSITION 1. (a) Given an element w = j2 v € T2 M (TP M )*, To €
M,~v: M - R, v(z,) = 0, define two maps ®,, : X(M) —» R and ¥, :
X(M)x X(M)— R by

84(V) = V(o) and Wu(V; W) = 5 (VWr(z.) + WV(2))

for VW € X(M). Then ®,, is linear over R, ¥,, is symmetric and 2-linear
over R,

1) (V) = F(z)0u(V)
for Ve X(M) and f € C*°(M) and

@) VulfVigW) = L@V a(a0)BulW) + 9z )W (20)20(V)
+ f(z0)g(zo) ¥u(V, W)

for VW € X(M) and f,g € C*°(M).

(b) Conversely, suppose that we have a linear (over R) map & : X(M) —
R and a symmetric 2-linear (over R) map ¥ : X(M) x X(M) — R such
that for some z, € M

1" O(fV) = f(zo)®(V)
for Ve X(M), f € C°(M) and

@) WIVigW) = 5(F @)V ol@o)BW) +g(zo)W f()2(V))
+ F(z)o(za) UV, W)

for V,\W € X(M) and f,g € C®(M). Then there exists one and only one
element w € T3:M such that ® = &, and ¥ = ¥,,.

Proof. Clearly, it suffices to prove the part (b). Since ®(V) and ¥(V, W)
depend only on germ. (V) and germ, (W), we can assume that M = R™
and z, = 0. Define w = j2v by

m 0 _ 0
VRSB, A0)=0 v =2(5%)
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92 ~(0) = ¥ 0 0
3:2‘3:1:1 8z’ Oxd

fori,j = 1,..., m. Obviously, the definition of w is correct as ¥ is symmetric.
It remains to prove that = &, and ¥ = ¥,,. We see that <I>(3%-) =
B, (z2:) and ¥(52:, 32) = Vu(z2r, 52 ) for 4,5 = 1,...,m. Further, using
conditions (1), (2), (1) and (2’) and the linearity we can see that ®(V) =
&, (V) and ¥(V, W) = U, (V,W) forany V=3 fig2r and W = ¥ gi 5=
The proof of Proposition 1 is complete. =

and

Using Proposition 1 we can present the following construction of a (2)-
connection by means of a general connection I : ¥ xpy TM — TY on a
fibered manifold p: Y — M.

Consider y, € Y, = p~1(z,), To € M and take an arbitrary element
w € T2Y. Let &, : X(Y) - Rand ¥y, : X(Y) x X(Y) — R be the maps
corresponding to w in the sense of Proposition 1. Define &L, : X(M) — R
and YL : X(M) x X(M) — R by

BL(V) = &, (VF) and WE(V, W) = U, (VE,WT), V,W € X(M),
where VT € X(Y) is the I-horizontal lift of the vector field V.

LEMMA 1. Maps & := ®L and ¥ := UL satisfy the assumptions of Proposi-
tion 1(b).

Proof. Denote by fV := fop:Y — R the vertical lift of a function f :
M — R. Then the assertion follows from the properties of &, and ¥,,, from
the linearity of the I'-horizontal lift and from the formulas (fW)T = fYWT
and WIf¥Y = (WH)V, W e X(M), f €C®(M). m

So, by Proposition 1 there is one and only one element w' € T2*M
corrwpondlng to (®F, L),
LEMMA 2. The mapping (T®)3 : T2Y — T2*M, (T®): (w) = wF, is
linear.

Proof. It follows from the fact that (®,,, ¥,,) depends linearly on w. =
Define a map I'® : Y xp T®M — T®Y as the dual map of (I'{))*
foranyyeY.

PROPOSITION 2. The mapping I® : Y xp TOM — TOY is a (2)-
connection on p:Y — M canonically dependent on the connection I'.

Proof. It remains to observe that T(?p o ' (y,v) = v for any (y,v) €
Y x T M and that we have not used charts in the construction of ['?). m
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DEFINITION. The (2)-connection I'?) is called the horizontal extension of T.

REMARK 1. Obviously, the restriction and corestriction of I'® to Y x
TM C Y xp T®M and TY ¢ TP?)Y is equal to I'. So I'® is in fact an
extension of I'.

3. Proof of Theorem 1

The existence has been already proved in Section 2, so that it suffices
to prove the uniqueness. Let A(T),B(I") : Y xp T@M — TAY be (2)-
connections canonically dependent on a connection I' : Y xpy TM — TY
on a fibered manifold p: Y — M with dim(M) = m and dim(Y) = m + n.
In other words, we have two F M, n-natural operators A : I’ — A(T") and
B : T — B(T) in the sense of the book [2].

ProrosIiTION 3. We have A = B.

The proof of Proposition 3 will occupy the rest of this section. From now
on let R™" = R™ x R™ be the trivial fiber bundle over R™ with fiber R",
and z!,...,2™,y},...,y" be the standard coordinates on R™".

Define a map &4 : Con(R™") x TémRm — R by
® 4(T,v) == (A(T)((0,0),v), 5,00%")
for any connection I' on R™" and any v € Téz)Rm.
LEMMA 3. If &4 = &p, then A= B.

Proof. It is a consequence of me n-naturality of A and B and of the
fact that the F M, ,-orbit of j(o O)y is dense in T2*Y for any F M, n-ob-
ject Y. m

LEMMA 4. Suppose that

QA(de Ot Y Y M@ g, (37" ) =

i=1 j=1 |a|+|B|<K

_QB(de ety T rhetvirte i ()

i=1 i=1 j=1 |a|+|B]<K

for any (j3z°)* € T( )Rm any K € N and any anﬂ fori, j, a, B as indicated,
where ((j22°)*)1<)pi<2 is the basis of Té )R™ dual to (j2xf)1<ipi<2- Then
A=B.

Proof. It follows from Lemma 3 and from the corollary of non-linear Peetre
theorem (Corollary 19.8 in [2]).
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LEMMA 5. Suppose that

¢4za® 1Y T et e () ) =

i=1 3—1 Ial+lﬂl<1

. 0 9 e
=<I>B( : mﬂ.’L‘ *yPdg ®E , (j2zP) )
i=1 i=1 j=1 |a|+|B|<L1

for any (j3z*)* € Téz)Rm and any Ffaﬁ for i,3,a,8 as indicated. Then
A=B.

Proof. Using the invariance of A with respect to the homotheties % idgm.n
for t # 0 we obtain the homogeneity condition

(ZM@ D T e et e O (R))

i=1 j= 1Ia|+|ﬂ|<K
= tlel— lq)A(de
i=1 i=1 j=1 |a|+|B|<K

N R
zaﬂm yﬂdx"' ® -6?7 (ngp) )

for t > 0. Since 1 < |p| < 2, the homogeneous function theorem (see [2})
reads

@A(id:g*
i=1

- @A(
i=1

From this equality for A and for B instead of A in the assumption of our
lemma there follows the assumption of Lemma 4, and applying Lemma 4 we
complete the proof. m

m

i 0 2 *
taﬁz yﬂdm ® _6;7.-’ (JOzp) ) =
i=1 j=1 |a|+|ﬁ|<K

N R
1=yl ® 5—1-»(.7333'0) ))-
i=1 j=1 ol +1BI<1 4

LEMMA 6. Suppose that

m ; ; m n a
(3) @A(Zld:c ®—+:z ko g ®——+;;:11‘ yldst ®W , (72z°)" )
— 9 io v 25 X 3 0 22, p\*
@B(;da: ® e -+ F 202 6yj,(]0:1: ) )

for any io ko, =1,...,m, jo,=1,...,n, any I‘fl € R for i,j,1 as indicated
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and any (j2z°)* € TSPR™. Suppose also that

(4) q’A(de ®-—+da:"’®6—J+Z1 zzlrdyldz ®a_;a(.70$p) )
=12

= @B(Zd:c ® 5 +dz' ® 5o+ Z Z Ty'ds' ® —, (jaz )*)
i=1 4,l=1
foranyi,=1,...,m, jo=1,...,n, any I"“ € R for i,j,1 as indicated and
any (jaz*)* € Téz)]R’". Then A= B.

Proof. By the invariance of A with respect to fiber homotheties (z!,...,z™,
ty',...,ty") for t 76 0 we obtain the homogeneity condition

QA(de ® 2 +ZZ Y. T pzeyfda’ ®5—J,(Jow”))

=1 j=1 |a|+w1<1
. o
o (Saro Sy ¥ mevute o)
i=1 i=]1 j=1 |a|+|F|<L1 4

for t > 0. By the homogeneous function theorem,

m
B (
i=1

is a linear combination of I‘faﬂ for |8] = 0 with coefficients being smooth

maps in 7 g for |B] = 1. Write e, = (0,...,0,1,0,...,0) and (0) =
(,...,0). Clearly, if |8 =0 (i.e. B = (0)), then we have |a| =1lor|al=

This ylelds
®a =) C*Ti, 0+ 2 DiThoyo)

where the coefficients C;.e" and D;. are smooth maps of all I‘f(o) g With |8 = 1.
Obviously, I‘z g (0

I‘io(o)(o) =1 and all other I‘f a(0) = 0 correspond to (4). Therefore Lemma 6
is a simple consequence of Lemma 5. =

ig 0 .
1577y dz ®@;a(33$”)‘)
i=1 j=1 |a|+|8|<1

y = 1 and all other I‘Za(o) = 0 correspond to (3) and

LEMMA 7. Suppose that

0 0
(I’A(Zdl' ® 5+ godzie ® e’ (J'g-’ﬂ”)')

i=1

. F) . d
= @B( dr' @ —— + grodzie @ —, (jng')‘)
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for any ig, ko = 1,...,m, jo = 1,...,n and any (j3z*)* € Téz)]R"‘. Then
A=B.

Proof. It remains to verify the assumptions of Lemma 6.

Step 1. The first assumption of Lemma 6. By the invariance of A with
respect to the homotheties (1z!,...,1z™ ry!,. .., 7y") fort #0and 7 #0
we obtain the homogeneity condition

17}
2 _ ko J.to
(5) @A(de ® g + Ttaztdr @ 5
+ Z Z try'ds’ © —‘,(Joxp) )
i=1 j,l=1
moo d X a2
— Iz t — ko Jnio
Tt @A(gdax ®8a:" + azx®°dz ®6y1'o
! 0 P
+ZZF,1ydz ®— (7o)
i=1 j l=1

fort > 0, 7 > 0. Then by the homogeneous function theorem

0 ;0 9 o
QA(Zda: ®(—9—-—+m lly’dw’@-é—?ﬁ,(_ygzz:”) )

i=1 i=1j,i=1

io

| X 0
= ‘I)A(Z dr* ® B + zkedzie 52'/'3:’ (jgzp)*)
i=1

if |p| = 2, and

N R
0u(Lro g+ a0z + 3 3t o 50 o)) =0

i=1 j,l=1

if |p| = 1. Using this fact for A and for B instead of A we see that the
assumption of our lemma implies the first assumption of Lemma 6.

Further, write ¢ = 1 in the homogeneity condition (5). Then &, is linear
in a with coefficients being smooth maps of the remaining terms. For a =0
we obtain

(6) QA(Zd:c ® =— +Z Z ry'des ® —,(Jozﬂ) )
i=1 jl=1
for any (j2z°)* € TSOR™.

Step 2. The second assumption of Lemma 6. By the invariance of A
with respect to (z!,...,z™,yl,...,y% — z*,...,4") (only j,-position is
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exceptional) we obtain

QA( o : a ]»(]Ozp) )
=1 j,l=1
m n ‘ 9
_@A<de Q@ — +Z Z F yld$1®a—yj,(jg$p)*)
i=1 j,l=1

+ 6] ((j2z)*, jdx'e)
= 8o ((j3zP)*, j2z').

Here 6%° denote the Kronecker delta and we have also used (6) and the fact
that A(T") is a (2)-connection. The similar is true also for B instead of A.
This proves our claim. =

LEMMA 8. Suppose that
o idmi ® 2 + zkedgio @ i , (Ga(ztozk))*
4 £ ozt dydo> M0

0
—¢B<de @5tz "dac"’®(9 —, (3 (z'oa*))" )

i=1

foranyio ko, =1,...,mand j,=1,...,n. Then A= B.

Proof. By the invariance of A with respect to (—%—:cl, ,t,l,, ,TYL, .
LTy") for t = (¢,...,t™) € (R4 \ {0})™ and 7 # 0 we obtain the

homogeneity condition

@A(Zdz ® -(-9-(?— + rtietheazke drio @ aaj ,(jgwp)*)

=1

='rtp¢>A<Zda: ®8i + azFodzt ®i.,(]0:r”) )
i=1

for any t € (R4 \ {0})™ and 7 > 0. Then by the homogeneous function
theorem

>, 0 i)
D4 (Z dz' ® e + gkodzte ® v (ngp)*) =0
i=1

if only 2P # zFexto. The similar fact holds for B instead of A. Hence Lemma
8 is a simple consequence of Lemma 7. =
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LEMMA 9. Suppose that

0
de [+ 3t @ o +atedeh @ 5 (3 e)) =

Oyde
0 o Jnto 0 io 0 27 do koY) *

_Qg(gdx ®a——+z dzx ® 5yn T2 dxko ® s , (G2 (@ zFo))*)
for any iy ko=1,...,m and j,=1,...,n. Then A= B.
Proof. By the invariance of A with respect to (z*,...,z™,ty},..., ty") for
t # 0 we obtain the homogeneity condition

io a io 0 io Ko

@A(de +ta:c dx ®a——-+tbx dzke ®8_ , (G2 (ztox )))

7] 7] bS] .
= t@A(Zda: ® — Fy + azkedzio ® 3—y_ + bziedrke ® A (jg(x"’mk"))‘)-

1,._

Further, by the homogeneous function theorem we obtain

0 0 0
QA(Zdz ® 5+ ko date ® By + ziodzhe ® 5= ,(Jo(fc“’y"’)) )

i=1

—<I>A(2dz ® 55 +z °dz’°®—- (6 (a* yj°))*>

=1
a 3 i
+ &4 Zdz ® 5 + giodzhe ® 5 -, (G (a*y’))”

By the invariance of A with respect to the change of coordinates z* and
z* only we have

0 0
QA(Zda: ®-6— + gk dgt ®—.,(]O(x’°zk n* >

i=1

2
_QA(Zd:E ®6—+a:‘°d:v ®—.,(_70(a:‘°:1:’° )* )

1,_

Hence

0 0 .
0u( st 0 g+ atia 0 50 Gilaa*)')

i=1

1 . 0 . o} , o :
==® o —_— k to . to Jyko —_— i2( o pko))* .
5 A(;:l dz* ® 3 T2 By dz”® ® 3y-7°’('70(x T )))

Therefore Lemma 9 follows from Lemma 8. =
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LEMMA 10. Suppose that

(de®361+df® ) (de@ +df®a)

i=1
over (0,0) € R™ x R" for any f € C*°(R™) and any j, = 1,...,n. Then
A=B.

Proof. From the assumption for f = z*°x% there follows the assumption
of Lemma 9. Using Lemma 9 we complete the proof. =

LEMMA 11. S’uppose that

)
(Zdz ®a - +dz’ ®—)= (de ®a - + dz’ ®6—J)

i=1
over (0,0) € R™ x R™ for any j,=1,...,n. Then A= B.

Proof. It remains to verify the assumption of Lemma 10. Because of the
regularity of A and B we can assume that dof # 0. Then df = dz! near 0 €
R™ modulo a diffeomorphism ¢ : R™ — R™. So Lemma 11 is a consequence
of Lemma 10 because of the invariance of A and B with respect to . m

We are now in position to prove Proposition 3. Let (j2z°)* €
T(2)Rm. We can write

(Zdw ® ——)((o 0), (j22°)")

i=1

= (.7'(20,0)93")* + Z aaﬂ(j(zo,o)(xayﬁ))*-
lal+|8l<r, |8]£0

By the invariance of A with respect to (z!,...,z™,ty},...,ty") for t # 0

we deduce that
( ) (0.0),(82°)") = G ye)"
Using this fact for A and for B instead of A we obtain
A ida:i®i =B idﬂ@i
p ori ) —~ ort

over (0,0). Now by the invariance of A and B with respect to (z?,...,z™,
y', ..., 9% +x!,...y") (only j,-position is exceptional) we have

(,_1 aa ) (de ® = +dz! ®-587)
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over (0,0) € R™ x R™ for any j, =1,...,n. By Lemma 11, A = B and the
proof of Proposition 3 is complete. m

Theorem 1 is an immediate consequence of Propositions 2 and 3.

References

f1] I Kolat, On generalized connections, Beitrige zur Algebra und Geometrie 11 (1981),
29-34.

2] I Kolaf, P. W. Michor, J. Slovak, Natural Operations in Differential Geometry,
Springer, Berlin, 1993.

3] J. Slovak, Prolongations of connections and sprays with respect to Weil functors,
Suppl. Rend. Circ. Mat. Palermo, Serie II 14 (1987), 143-155.

Miroslav Doupovec

DEPARTMENT OF MATHEMATICS
BRNO UNIVERSITY OF TECHNOLOGY
FSI VUT BRNO

Technicka 2

616 69 BRNO, CZECH REPUBLIC
E-mail: doupovec@um.fme.vutbr.cz

Wilodzimierz M. Mikulski
INSTITUTE OF MATHEMATICS
JAGIELLONIAN UNIVERSITY
Reymonta 4

30-059 KRAKOW, POLAND
E-mail: mikulski@im.uj.edu.pl

Received March 7, 2005.






