

Miroslav Doušovec, Włodzimierz M. Mikulski

HORIZONTAL EXTENSION OF CONNECTIONS INTO (2)-CONNECTIONS

Abstract. We discuss the prolongation of connections to some non product preserving bundles. We introduce the concept of (r) -connection on a fibered manifold Y and for a given connection Γ on Y we construct its horizontal extension $\Gamma^{(2)}$. We also prove that $\Gamma^{(2)}$ is the unique (2)-connection on Y canonically dependent on Γ .

0. Introduction

Let $T^{(r)}M$ be the r -th order tangent vector bundle defined by $T^{(r)}M = (J^r(M, \mathbb{R})_0)^*$. We recall that a general connection on a fibered manifold $p : Y \rightarrow M$ is a smooth section $\Gamma : Y \rightarrow J^1Y$ of the first jet prolongation of Y , which can be also interpreted as the lifting map (denoted by the same symbol)

$$\Gamma : Y \times_M TM \rightarrow TY.$$

DEFINITION. An (r) -connection on a fibered manifold $p : Y \rightarrow M$ is a fiber linear map

$$\tilde{\Gamma} : Y \times_M T^{(r)}M \rightarrow T^{(r)}Y$$

over the identity of Y such that $T^{(r)}p \circ \tilde{\Gamma}(y, v) = v$ for every $(y, v) \in Y \times_M T^{(r)}M$.

Clearly, for $r = 1$ we obtain the notion of a connection, because there is an identification $T^{(1)}M \cong TM$. In this note, for a connection $\Gamma : Y \times_M TM \rightarrow TY$ we introduce its horizontal extension $\Gamma^{(2)} : Y \times_M T^{(2)}M \rightarrow T^{(2)}Y$. The main result is the following theorem.

THEOREM 1. *The horizontal extension $\Gamma^{(2)} : Y \times_M T^{(2)}M \rightarrow T^{(2)}Y$ of Γ is the unique (2)-connection on Y canonically dependent on Γ .*

The first author was supported by a grant of the GA ČR No. 201/02/0225.

Key words and phrases: connection, (r) -connection, natural operator.

1991 *Mathematics Subject Classification:* 58A20.

Section 1 is devoted to the problem of the existence of a natural operator transforming connections on $p : Y \rightarrow M$ into connections on $Fp : FY \rightarrow FM$, where F is a non product preserving bundle functor. We introduce examples of such natural operators for concrete non product preserving functors. In Section 2 we construct the horizontal extension of a connection Γ on $p : Y \rightarrow M$. Section 3 is devoted to the proof of Theorem 1.

All manifolds and maps are assumed to be of class C^∞ . Unless otherwise specified, we use the terminology and notation from the book [2].

1. Prolongation of connections to some non product preserving bundles

The motivation of the present paper is the following. Let F be a bundle functor on the category $\mathcal{M}f$ of smooth manifolds and all smooth maps and let $\Gamma : Y \rightarrow J^1Y$ be a general connection on the fibered manifold $p : Y \rightarrow M$. It is well known that if F preserves products, then Γ induces a connection on $Fp : FY \rightarrow FM$, see [2]. By the general theory, every product preserving functor F on $\mathcal{M}f$ is a Weil functor $F = T^A$ determined by a Weil algebra A . In what follows the connection on $T^A p : T^A Y \rightarrow T^A M$ induced by a connection Γ on $p : Y \rightarrow M$ will be denoted by $T^A \Gamma$. Clearly, $T^A \Gamma : T^A Y \rightarrow J^1 T^A Y$ and the lifting map is of the form

$$T^A \Gamma : T^A Y \times_{T^A M} TT^A M \rightarrow TT^A Y.$$

We remark that the connection $T^A \Gamma$ has been constructed by I. Kolář, [1], in the case of higher order velocities functors and then by J. Slovák, [3], in the general case of an arbitrary Weil functor.

Write \mathcal{FM} for the category of fibered manifolds and fibered manifold morphisms. Denoting by $B : \mathcal{FM} \rightarrow \mathcal{M}f$ the base functor, the geometrical construction of a connection on $Fp : FY \rightarrow FM$ by means of a connection on $p : Y \rightarrow M$ is a natural operator of the form $J^1 \rightsquigarrow J^1(F \rightarrow FB)$. By [2], if the functor F does not preserve products, then there is an open problem on the existence of a natural operator $J^1 \rightsquigarrow J^1(F \rightarrow FB)$. Now we present examples of such natural operators for concrete non product preserving functors.

EXAMPLE 1. Let Q be a fixed manifold and define a bundle functor F^Q on $\mathcal{M}f$ by

$$F^Q M = M \times Q, \quad F^Q f = f \times \text{id}_Q : F^Q M \rightarrow F^Q N.$$

If $\text{card}(Q) > 1$, then F^Q is a non product preserving bundle functor of order zero. Conversely, an arbitrary bundle functor F on $\mathcal{M}f$ of order zero is naturally equivalent to some F^Q . Given a connection $\Gamma : Y \rightarrow J^1Y$ on

$p : Y \rightarrow M$, we can define a map

$$A^Q(\Gamma) = \Gamma \times \text{id}_Q : Y \times Q \rightarrow J^1 Y \times Q \subset J^1(Y \times Q),$$

where the inclusion $J^1 Y \times Q \subset J^1(Y \times Q)$ is given by $(j_x^1 \sigma, q) \mapsto j_{(x,q)}^1(\sigma \times \text{id}_Q)$. Clearly, $A^Q(\Gamma) : Y \times Q \rightarrow J^1(Y \times Q)$ is a connection on $F^Q p : F^Q Y \rightarrow F^Q M$.

EXAMPLE 2. Consider a Weil functor T^B and the functor F^Q from Example 1. Then the composition $F = F^Q \circ T^B$ is a non product preserving bundle functor. Let $\mathcal{T}^B \Gamma : T^B Y \rightarrow J^1 T^B Y$ be the connection on $T^B p : T^B Y \rightarrow T^B M$ determined by the connection Γ on $p : Y \rightarrow M$, [2]. Write

$$A^{Q,B}(\Gamma) = A^Q(\mathcal{T}^B \Gamma).$$

Obviously, $A^{Q,B}(\Gamma)$ is the connection on $Fp : FY \rightarrow FM$ and the geometrical construction $\Gamma \mapsto A^{Q,B}(\Gamma)$ is an example of a natural operator transforming connections to non product preserving bundles.

We recall that a bundle functor F on $\mathcal{M}f$ is said to have the point property, if $F(\text{pt}) = \text{pt}$, where pt denote a one-point manifold. For example, every product preserving bundle functor $F = T^A$ has the point property, while the functors F^Q and $F^Q \circ T^B$ from Example 1 and Example 2 have not. Using such a point of view, the problem on the existence of a natural operator $J^1 \rightsquigarrow J^1(F \rightarrow FB)$ reduces to the following question:

Does there exist a natural operator transforming connections on $p : Y \rightarrow M$ into connections on $Fp : FY \rightarrow FM$ for any concrete non product preserving functor $F : \mathcal{M}f \rightarrow \mathcal{F}\mathcal{M}$ with the point property?

The simple example of such a functor is the second order tangent functor $T^{(2)}$. So there is a problem on the existence of a connection

$$A(\Gamma) : T^{(2)} Y \times_{T^{(2)} M} TT^{(2)} M \rightarrow TT^{(2)} Y$$

on $T^{(2)} p : T^{(2)} Y \rightarrow T^{(2)} M$ canonically dependent on a connection Γ on $Y \rightarrow M$. If such $A(\Gamma)$ exists, then we can construct a (2)-connection $\tilde{A}(\Gamma) : Y \times_M T^{(2)} M \rightarrow T^{(2)} Y$ on Y by

$$\tilde{A}(\Gamma)(y, v) = \text{pr}_2 \circ A(\Gamma)(0_y, \frac{d}{dt}_{t=0}(0_x + tv)), \quad (y, v) \in Y_x \times T_x^{(2)} M, \quad x \in M,$$

where $0_y \in T_y^{(2)} Y$ and $0_x \in T_x^{(2)} M$ are the zero elements, $\text{pr}_2 : T_{0_y} T^{(2)} Y \tilde{\equiv} T_y Y \times T_y^{(2)} Y \rightarrow T_y^{(2)} Y$ is the projection onto the second factor and $\tilde{\equiv}$ is the obvious identification

$$T_y Y \times T_y^{(2)} Y \ni (u, w) \tilde{\equiv} T^{(2)} \tilde{u}(0_y) + \frac{d}{dt}_{t=0}(tw) \in T_{0_y} T^{(2)} Y.$$

Here $T^{(2)}\tilde{u}$ denote the flow prolongation of a vector field $\tilde{u} \in \mathcal{X}(Y)$ with $\tilde{u}(y) = u$. Clearly, $T^{(2)}\tilde{u}(0_y)$ is independent of the choice of \tilde{u} with $\tilde{u}(y) = u$. The above construction indicates that Theorem 1 may be the first step in direction to solve the problem formulated above.

2. Construction of the horizontal extension

First we prove the following general assertion.

PROPOSITION 1. (a) *Given an element $w = j_{x_o}^2 \gamma \in T_{x_o}^{2*} M \tilde{=} (T_{x_o}^{(2)} M)^*$, $x_o \in M$, $\gamma : M \rightarrow \mathbb{R}$, $\gamma(x_o) = 0$, define two maps $\Phi_w : \mathcal{X}(M) \rightarrow \mathbb{R}$ and $\Psi_w : \mathcal{X}(M) \times \mathcal{X}(M) \rightarrow \mathbb{R}$ by*

$$\Phi_w(V) = V\gamma(x_o) \text{ and } \Psi_w(V, W) = \frac{1}{2}(VW\gamma(x_o) + WV\gamma(x_o))$$

for $V, W \in \mathcal{X}(M)$. Then Φ_w is linear over \mathbb{R} , Ψ_w is symmetric and 2-linear over \mathbb{R} ,

$$(1) \quad \Phi_w(fV) = f(x_o)\Phi_w(V)$$

for $V \in \mathcal{X}(M)$ and $f \in \mathcal{C}^\infty(M)$ and

$$(2) \quad \begin{aligned} \Psi_w(fV, gW) = & \frac{1}{2}(f(x_o)Vg(x_o)\Phi_w(W) + g(x_o)Wf(x_o)\Phi_w(V)) \\ & + f(x_o)g(x_o)\Psi_w(V, W) \end{aligned}$$

for $V, W \in \mathcal{X}(M)$ and $f, g \in \mathcal{C}^\infty(M)$.

(b) *Conversely, suppose that we have a linear (over \mathbb{R}) map $\Phi : \mathcal{X}(M) \rightarrow \mathbb{R}$ and a symmetric 2-linear (over \mathbb{R}) map $\Psi : \mathcal{X}(M) \times \mathcal{X}(M) \rightarrow \mathbb{R}$ such that for some $x_o \in M$*

$$(1') \quad \Phi(fV) = f(x_o)\Phi(V)$$

for $V \in \mathcal{X}(M)$, $f \in \mathcal{C}^\infty(M)$ and

$$(2') \quad \begin{aligned} \Psi(fV, gW) = & \frac{1}{2}(f(x_o)Vg(x_o)\Phi(W) + g(x_o)Wf(x_o)\Phi(V)) \\ & + f(x_o)g(x_o)\Psi(V, W) \end{aligned}$$

for $V, W \in \mathcal{X}(M)$ and $f, g \in \mathcal{C}^\infty(M)$. Then there exists one and only one element $w \in T_{x_o}^{2} M$ such that $\Phi = \Phi_w$ and $\Psi = \Psi_w$.*

Proof. Clearly, it suffices to prove the part (b). Since $\Phi(V)$ and $\Psi(V, W)$ depend only on $germ_{x_o}(V)$ and $germ_{x_o}(W)$, we can assume that $M = \mathbb{R}^m$ and $x_o = 0$. Define $w = j_0^2 \gamma$ by

$$\gamma : \mathbb{R}^m \rightarrow \mathbb{R}, \quad \gamma(0) = 0, \quad \frac{\partial}{\partial x^i} \gamma(0) = \Phi\left(\frac{\partial}{\partial x^i}\right)$$

and

$$\frac{\partial^2}{\partial x^i \partial x^j} \gamma(0) = \Psi \left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \right)$$

for $i, j = 1, \dots, m$. Obviously, the definition of w is correct as Ψ is symmetric. It remains to prove that $\Phi = \Phi_w$ and $\Psi = \Psi_w$. We see that $\Phi(\frac{\partial}{\partial x^i}) = \Phi_w(\frac{\partial}{\partial x^i})$ and $\Psi(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}) = \Psi_w(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j})$ for $i, j = 1, \dots, m$. Further, using conditions (1), (2), (1') and (2') and the linearity we can see that $\Phi(V) = \Phi_w(V)$ and $\Psi(V, W) = \Psi_w(V, W)$ for any $V = \sum f_i \frac{\partial}{\partial x^i}$ and $W = \sum g_i \frac{\partial}{\partial x^i}$. The proof of Proposition 1 is complete. ■

Using Proposition 1 we can present the following construction of a (2)-connection by means of a general connection $\Gamma : Y \times_M TM \rightarrow TY$ on a fibered manifold $p : Y \rightarrow M$.

Consider $y_o \in Y_{x_o} = p^{-1}(x_o)$, $x_o \in M$ and take an arbitrary element $w \in T_{y_o}^{2*} Y$. Let $\Phi_w : \mathcal{X}(Y) \rightarrow \mathbb{R}$ and $\Psi_w : \mathcal{X}(Y) \times \mathcal{X}(Y) \rightarrow \mathbb{R}$ be the maps corresponding to w in the sense of Proposition 1. Define $\Phi_w^\Gamma : \mathcal{X}(M) \rightarrow \mathbb{R}$ and $\Psi_w^\Gamma : \mathcal{X}(M) \times \mathcal{X}(M) \rightarrow \mathbb{R}$ by

$$\Phi_w^\Gamma(V) = \Phi_w(V^\Gamma) \text{ and } \Psi_w^\Gamma(V, W) = \Psi_w(V^\Gamma, W^\Gamma), \quad V, W \in \mathcal{X}(M),$$

where $V^\Gamma \in \mathcal{X}(Y)$ is the Γ -horizontal lift of the vector field V .

LEMMA 1. *Maps $\Phi := \Phi_w^\Gamma$ and $\Psi := \Psi_w^\Gamma$ satisfy the assumptions of Proposition 1(b).*

Proof. Denote by $f^V := f \circ p : Y \rightarrow \mathbb{R}$ the vertical lift of a function $f : M \rightarrow \mathbb{R}$. Then the assertion follows from the properties of Φ_w and Ψ_w , from the linearity of the Γ -horizontal lift and from the formulas $(fW)^\Gamma = f^V W^\Gamma$ and $W^\Gamma f^V = (Wf)^V$, $W \in \mathcal{X}(M)$, $f \in C^\infty(M)$. ■

So, by Proposition 1 there is one and only one element $w^\Gamma \in T_{x_o}^{2*} M$ corresponding to $(\Phi_w^\Gamma, \Psi_w^\Gamma)$.

LEMMA 2. *The mapping $(\Gamma^{(2)})_{y_o}^* : T_{y_o}^{2*} Y \rightarrow T_{x_o}^{2*} M$, $(\Gamma^{(2)})_{y_o}^*(w) = w^\Gamma$, is linear.*

Proof. It follows from the fact that (Φ_w, Ψ_w) depends linearly on w . ■

Define a map $\Gamma^{(2)} : Y \times_M T^{(2)} M \rightarrow T^{(2)} Y$ as the dual map of $(\Gamma_y^{(2)})^*$ for any $y \in Y$.

PROPOSITION 2. *The mapping $\Gamma^{(2)} : Y \times_M T^{(2)} M \rightarrow T^{(2)} Y$ is a (2)-connection on $p : Y \rightarrow M$ canonically dependent on the connection Γ .*

Proof. It remains to observe that $T^{(2)} p \circ \Gamma^{(2)}(y, v) = v$ for any $(y, v) \in Y \times_M T^{(2)} M$ and that we have not used charts in the construction of $\Gamma^{(2)}$. ■

DEFINITION. The (2)-connection $\Gamma^{(2)}$ is called *the horizontal extension of Γ* .

REMARK 1. Obviously, the restriction and corestriction of $\Gamma^{(2)}$ to $Y \times_M TM \subset Y \times_M T^{(2)}M$ and $TY \subset T^{(2)}Y$ is equal to Γ . So $\Gamma^{(2)}$ is in fact an extension of Γ .

3. Proof of Theorem 1

The existence has been already proved in Section 2, so that it suffices to prove the uniqueness. Let $A(\Gamma), B(\Gamma) : Y \times_M T^{(2)}M \rightarrow T^{(2)}Y$ be (2)-connections canonically dependent on a connection $\Gamma : Y \times_M TM \rightarrow TY$ on a fibered manifold $p : Y \rightarrow M$ with $\dim(M) = m$ and $\dim(Y) = m + n$. In other words, we have two $\mathcal{FM}_{m,n}$ -natural operators $A : \Gamma \rightarrow A(\Gamma)$ and $B : \Gamma \rightarrow B(\Gamma)$ in the sense of the book [2].

PROPOSITION 3. *We have $A = B$.*

The proof of Proposition 3 will occupy the rest of this section. From now on let $\mathbb{R}^{m,n} = \mathbb{R}^m \times \mathbb{R}^n$ be the trivial fiber bundle over \mathbb{R}^m with fiber \mathbb{R}^n , and $x^1, \dots, x^m, y^1, \dots, y^n$ be the standard coordinates on $\mathbb{R}^{m,n}$.

Define a map $\Phi_A : \text{Con}(\mathbb{R}^{m,n}) \times T_0^{(2)}\mathbb{R}^m \rightarrow \mathbb{R}$ by

$$\Phi_A(\Gamma, v) := \langle A(\Gamma)((0, 0), v), j_{(0,0)}^2 y^1 \rangle$$

for any connection Γ on $\mathbb{R}^{m,n}$ and any $v \in T_0^{(2)}\mathbb{R}^m$.

LEMMA 3. *If $\Phi_A = \Phi_B$, then $A = B$.*

Proof. It is a consequence of $\mathcal{FM}_{m,n}$ -naturality of A and B and of the fact that the $\mathcal{FM}_{m,n}$ -orbit of $j_{(0,0)}^2 y^1$ is dense in $T^{2*}Y$ for any $\mathcal{FM}_{m,n}$ -object Y . ■

LEMMA 4. *Suppose that*

$$\begin{aligned} \Phi_A & \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + \sum_{i=1}^m \sum_{j=1}^n \sum_{|\alpha|+|\beta| \leq K} \Gamma_{i\alpha\beta}^j x^\alpha y^\beta dx^i \otimes \frac{\partial}{\partial y^j}, (j_0^2 x^\rho)^* \right) = \\ & = \Phi_B \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + \sum_{i=1}^m \sum_{j=1}^n \sum_{|\alpha|+|\beta| \leq K} \Gamma_{i\alpha\beta}^j x^\alpha y^\beta dx^i \otimes \frac{\partial}{\partial y^j}, (j_0^2 x^\rho)^* \right) \end{aligned}$$

for any $(j_0^2 x^\rho)^* \in T_0^{(2)}\mathbb{R}^m$, any $K \in \mathbb{N}$ and any $\Gamma_{i\alpha\beta}^j$ for i, j, α, β as indicated, where $((j_0^2 x^\rho)^*)_{1 \leq |\rho| \leq 2}$ is the basis of $T_0^{(2)}\mathbb{R}^m$ dual to $(j_0^2 x^\rho)_{1 \leq |\rho| \leq 2}$. Then $A = B$.

Proof. It follows from Lemma 3 and from the corollary of non-linear Peetre theorem (Corollary 19.8 in [2]). ■

LEMMA 5. Suppose that

$$\begin{aligned} \Phi_A \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + \sum_{i=1}^m \sum_{j=1}^n \sum_{|\alpha|+|\beta| \leq 1} \Gamma_{i\alpha\beta}^j x^\alpha y^\beta dx^i \otimes \frac{\partial}{\partial y^j}, (j_0^2 x^\rho)^* \right) = \\ = \Phi_B \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + \sum_{i=1}^m \sum_{j=1}^n \sum_{|\alpha|+|\beta| \leq 1} \Gamma_{i\alpha\beta}^j x^\alpha y^\beta dx^i \otimes \frac{\partial}{\partial y^j}, (j_0^2 x^\rho)^* \right) \end{aligned}$$

for any $(j_0^2 x^\rho)^* \in T_0^{(2)} \mathbb{R}^m$ and any $\Gamma_{i\alpha\beta}^j$ for i, j, α, β as indicated. Then $A = B$.

Proof. Using the invariance of A with respect to the homotheties $\frac{1}{t} \text{id}_{\mathbb{R}^{m,n}}$ for $t \neq 0$ we obtain the homogeneity condition

$$\begin{aligned} \Phi_A \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + \sum_{i=1}^m \sum_{j=1}^n \sum_{|\alpha|+|\beta| \leq K} t^{|\alpha|+|\beta|} \Gamma_{i\alpha\beta}^j x^\alpha y^\beta dx^i \otimes \frac{\partial}{\partial y^j}, (j_0^2 x^\rho)^* \right) \\ = t^{|\rho|-1} \Phi_A \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + \sum_{i=1}^m \sum_{j=1}^n \sum_{|\alpha|+|\beta| \leq K} \Gamma_{i\alpha\beta}^j x^\alpha y^\beta dx^i \otimes \frac{\partial}{\partial y^j}, (j_0^2 x^\rho)^* \right) \end{aligned}$$

for $t > 0$. Since $1 \leq |\rho| \leq 2$, the homogeneous function theorem (see [2]) reads

$$\begin{aligned} \Phi_A \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + \sum_{i=1}^m \sum_{j=1}^n \sum_{|\alpha|+|\beta| \leq K} \Gamma_{i\alpha\beta}^j x^\alpha y^\beta dx^i \otimes \frac{\partial}{\partial y^j}, (j_0^2 x^\rho)^* \right) = \\ = \Phi_A \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + \sum_{i=1}^m \sum_{j=1}^n \sum_{|\alpha|+|\beta| \leq 1} \Gamma_{i\alpha\beta}^j x^\alpha y^\beta dx^i \otimes \frac{\partial}{\partial y^j}, (j_0^2 x^\rho)^* \right). \end{aligned}$$

From this equality for A and for B instead of A in the assumption of our lemma there follows the assumption of Lemma 4, and applying Lemma 4 we complete the proof. ■

LEMMA 6. Suppose that

$$\begin{aligned} (3) \quad \Phi_A \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + x^{k_o} dx^{i_o} \otimes \frac{\partial}{\partial y^{j_o}} + \sum_{i=1}^m \sum_{j,l=1}^n \Gamma_{il}^j y^l dx^i \otimes \frac{\partial}{\partial y^j}, (j_0^2 x^\rho)^* \right) \\ = \Phi_B \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + x^{k_o} dx^{i_o} \otimes \frac{\partial}{\partial y^{j_o}} + \sum_{i=1}^m \sum_{j,l=1}^n \Gamma_{il}^j y^l dx^i \otimes \frac{\partial}{\partial y^j}, (j_0^2 x^\rho)^* \right) \end{aligned}$$

for any $i_o, k_o = 1, \dots, m$, $j_o = 1, \dots, n$, any $\Gamma_{il}^j \in \mathbb{R}$ for i, j, l as indicated

and any $(j_0^2 x^\rho)^* \in T_0^{(2)} \mathbb{R}^m$. Suppose also that

$$(4) \quad \begin{aligned} & \Phi_A \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + dx^{i_o} \otimes \frac{\partial}{\partial y^{i_o}} + \sum_{i=1}^m \sum_{j,l=1}^n \Gamma_{il}^j y^l dx^i \otimes \frac{\partial}{\partial y^j}, (j_0^2 x^\rho)^* \right) \\ &= \Phi_B \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + dx^{i_o} \otimes \frac{\partial}{\partial y^{i_o}} + \sum_{i=1}^m \sum_{j,l=1}^n \Gamma_{il}^j y^l dx^i \otimes \frac{\partial}{\partial y^j}, (j_0^2 x^\rho)^* \right) \end{aligned}$$

for any $i_o = 1, \dots, m$, $j_o = 1, \dots, n$, any $\Gamma_{il}^j \in \mathbb{R}$ for i, j, l as indicated and any $(j_0^2 x^\rho)^* \in T_0^{(2)} \mathbb{R}^m$. Then $A = B$.

Proof. By the invariance of A with respect to fiber homotheties $(x^1, \dots, x^m, ty^1, \dots, ty^n)$ for $t \neq 0$ we obtain the homogeneity condition

$$\begin{aligned} & \Phi_A \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + \sum_{i=1}^m \sum_{j=1}^n \sum_{|\alpha|+|\beta| \leq 1} t^{1-|\beta|} \Gamma_{i\alpha\beta}^j x^\alpha y^\beta dx^i \otimes \frac{\partial}{\partial y^j}, (j_0^2 x^\rho)^* \right) \\ &= t \Phi_A \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + \sum_{i=1}^m \sum_{j=1}^n \sum_{|\alpha|+|\beta| \leq 1} \Gamma_{i\alpha\beta}^j x^\alpha y^\beta dx^i \otimes \frac{\partial}{\partial y^j}, (j_0^2 x^\rho)^* \right) \end{aligned}$$

for $t > 0$. By the homogeneous function theorem,

$$\Phi_A \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + \sum_{i=1}^m \sum_{j=1}^n \sum_{|\alpha|+|\beta| \leq 1} \Gamma_{i\alpha\beta}^j x^\alpha y^\beta dx^i \otimes \frac{\partial}{\partial y^j}, (j_0^2 x^\rho)^* \right)$$

is a linear combination of $\Gamma_{i\alpha\beta}^j$ for $|\beta| = 0$ with coefficients being smooth maps in $\Gamma_{i\alpha\beta}^j$ for $|\beta| = 1$. Write $e_k = (0, \dots, 0, 1, 0, \dots, 0)$ and $(0) = (0, \dots, 0)$. Clearly, if $|\beta| = 0$ (i.e. $\beta = (0)$), then we have $|\alpha| = 1$ or $|\alpha| = 0$. This yields

$$\Phi_A = \sum C_j^{ie_k} \Gamma_{ie_k(0)}^j + \sum D_j^i \Gamma_{i(0)(0)}^j$$

where the coefficients $C_j^{ie_k}$ and D_j^i are smooth maps of all $\Gamma_{i(0)\beta}^j$ with $|\beta| = 1$. Obviously, $\Gamma_{i_0 e_{k_0}(0)}^{j_0} = 1$ and all other $\Gamma_{i(0)(0)}^j = 0$ correspond to (3) and $\Gamma_{i_0(0)(0)}^{j_0} = 1$ and all other $\Gamma_{i(0)(0)}^j = 0$ correspond to (4). Therefore Lemma 6 is a simple consequence of Lemma 5. ■

LEMMA 7. Suppose that

$$\begin{aligned} & \Phi_A \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + x^{k_o} dx^{i_o} \otimes \frac{\partial}{\partial y^{i_o}}, (j_0^2 x^\rho)^* \right) \\ &= \Phi_B \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + x^{k_o} dx^{i_o} \otimes \frac{\partial}{\partial y^{i_o}}, (j_0^2 x^\rho)^* \right) \end{aligned}$$

for any $i_o, k_o = 1, \dots, m$, $j_o = 1, \dots, n$ and any $(j_0^2 x^\rho)^* \in T_0^{(2)} \mathbb{R}^m$. Then $A = B$.

Proof. It remains to verify the assumptions of Lemma 6.

Step 1. *The first assumption of Lemma 6.* By the invariance of A with respect to the homotheties $(\frac{1}{t}x^1, \dots, \frac{1}{t}x^m, \tau y^1, \dots, \tau y^n)$ for $t \neq 0$ and $\tau \neq 0$ we obtain the homogeneity condition

$$\begin{aligned}
 (5) \quad \Phi_A \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + \tau t^2 a x^{k_o} dx^{i_o} \otimes \frac{\partial}{\partial y^{j_o}} \right. \\
 \left. + \sum_{i=1}^m \sum_{j,l=1}^n t \Gamma_{il}^j y^l dx^i \otimes \frac{\partial}{\partial y^j}, (j_0^2 x^\rho)^* \right) \\
 = \tau t^{|\rho|} \Phi_A \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + a x^{k_o} dx^{i_o} \otimes \frac{\partial}{\partial y^{j_o}} \right. \\
 \left. + \sum_{i=1}^m \sum_{j,l=1}^n \Gamma_{il}^j y^l dx^i \otimes \frac{\partial}{\partial y^j}, (j_0^2 x^\rho)^* \right)
 \end{aligned}$$

for $t > 0$, $\tau > 0$. Then by the homogeneous function theorem

$$\begin{aligned}
 \Phi_A \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + x^{k_o} dx^{i_o} \otimes \frac{\partial}{\partial y^{j_o}} + \sum_{i=1}^m \sum_{j,l=1}^n \Gamma_{il}^j y^l dx^i \otimes \frac{\partial}{\partial y^j}, (j_0^2 x^\rho)^* \right) \\
 = \Phi_A \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + x^{k_o} dx^{i_o} \otimes \frac{\partial}{\partial y^{j_o}}, (j_0^2 x^\rho)^* \right)
 \end{aligned}$$

if $|\rho| = 2$, and

$$\Phi_A \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + x^{k_o} dx^{i_o} \otimes \frac{\partial}{\partial y^{j_o}} + \sum_{i=1}^m \sum_{j,l=1}^n \Gamma_{il}^j y^l dx^i \otimes \frac{\partial}{\partial y^j}, (j_0^2 x^\rho)^* \right) = 0$$

if $|\rho| = 1$. Using this fact for A and for B instead of A we see that the assumption of our lemma implies the first assumption of Lemma 6.

Further, write $t = 1$ in the homogeneity condition (5). Then Φ_A is linear in a with coefficients being smooth maps of the remaining terms. For $a = 0$ we obtain

$$(6) \quad \Phi_A \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + \sum_{i=1}^m \sum_{j,l=1}^n \Gamma_{il}^j y^l dx^i \otimes \frac{\partial}{\partial y^j}, (j_0^2 x^\rho)^* \right) = 0$$

for any $(j_0^2 x^\rho)^* \in T_0^{(2)} \mathbb{R}^m$.

Step 2. *The second assumption of Lemma 6.* By the invariance of A with respect to $(x^1, \dots, x^m, y^1, \dots, y^{j_o} - x^{i_o}, \dots, y^n)$ (only j_o -position is

exceptional) we obtain

$$\begin{aligned}
 \Phi_A & \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + dx^{i_o} \otimes \frac{\partial}{\partial y^{j_o}} + \sum_{i=1}^m \sum_{j,l=1}^n \Gamma_{il}^j y^l dx^i \otimes \frac{\partial}{\partial y^j}, (j_0^2 x^\rho)^* \right) \\
 & = \Phi_A \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + \sum_{i=1}^m \sum_{j,l=1}^n \Gamma_{il}^j y^l dx^i \otimes \frac{\partial}{\partial y^j}, (j_0^2 x^\rho)^* \right) \\
 & \quad + \delta_1^{j_o} \langle (j_0^2 x^\rho)^*, j_0^2 x^{i_o} \rangle \\
 & = \delta_1^{j_o} \langle (j_0^2 x^\rho)^*, j_0^2 x^{i_o} \rangle.
 \end{aligned}$$

Here $\delta_1^{j_o}$ denote the Kronecker delta and we have also used (6) and the fact that $A(\Gamma)$ is a (2)-connection. The similar is true also for B instead of A . This proves our claim. ■

LEMMA 8. Suppose that

$$\begin{aligned}
 \Phi_A & \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + x^{k_o} dx^{i_o} \otimes \frac{\partial}{\partial y^{j_o}}, (j_0^2(x^{i_o} x^{k_o}))^* \right) \\
 & = \Phi_B \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + x^{k_o} dx^{i_o} \otimes \frac{\partial}{\partial y^{j_o}}, (j_0^2(x^{i_o} x^{k_o}))^* \right)
 \end{aligned}$$

for any $i_o, k_o = 1, \dots, m$ and $j_o = 1, \dots, n$. Then $A = B$.

Proof. By the invariance of A with respect to $(\frac{1}{t^1} x^1, \dots, \frac{1}{t^m} x^m, \tau y^1, \dots, \tau y^n)$ for $t = (t^1, \dots, t^m) \in (\mathbb{R}_+ \setminus \{0\})^m$ and $\tau \neq 0$ we obtain the homogeneity condition

$$\begin{aligned}
 \Phi_A & \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + \tau t^{i_o} t^{k_o} a x^{k_o} dx^{i_o} \otimes \frac{\partial}{\partial y^{j_o}}, (j_0^2 x^\rho)^* \right) \\
 & = \tau t^\rho \Phi_A \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + a x^{k_o} dx^{i_o} \otimes \frac{\partial}{\partial y^{j_o}}, (j_0^2 x^\rho)^* \right)
 \end{aligned}$$

for any $t \in (\mathbb{R}_+ \setminus \{0\})^m$ and $\tau > 0$. Then by the homogeneous function theorem

$$\Phi_A \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + x^{k_o} dx^{i_o} \otimes \frac{\partial}{\partial y^{j_o}}, (j_0^2 x^\rho)^* \right) = 0$$

if only $x^\rho \neq x^{k_o} x^{i_o}$. The similar fact holds for B instead of A . Hence Lemma 8 is a simple consequence of Lemma 7. ■

LEMMA 9. Suppose that

$$\begin{aligned} & \Phi_A \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + x^{k_o} dx^{i_o} \otimes \frac{\partial}{\partial y^{j_o}} + x^{i_o} dx^{k_o} \otimes \frac{\partial}{\partial y^{j_o}}, (j_0^2(x^{i_o} x^{k_o}))^* \right) = \\ & = \Phi_B \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + x^{k_o} dx^{i_o} \otimes \frac{\partial}{\partial y^{j_o}} + x^{i_o} dx^{k_o} \otimes \frac{\partial}{\partial y^{j_o}}, (j_0^2(x^{i_o} x^{k_o}))^* \right) \end{aligned}$$

for any $i_o, k_o = 1, \dots, m$ and $j_o = 1, \dots, n$. Then $A = B$.

Proof. By the invariance of A with respect to $(x^1, \dots, x^m, ty^1, \dots, ty^n)$ for $t \neq 0$ we obtain the homogeneity condition

$$\begin{aligned} & \Phi_A \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + tax^{k_o} dx^{i_o} \otimes \frac{\partial}{\partial y^{j_o}} + tbx^{i_o} dx^{k_o} \otimes \frac{\partial}{\partial y^{j_o}}, (j_0^2(x^{i_o} x^{k_o}))^* \right) \\ & = t\Phi_A \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + ax^{k_o} dx^{i_o} \otimes \frac{\partial}{\partial y^{j_o}} + bx^{i_o} dx^{k_o} \otimes \frac{\partial}{\partial y^{j_o}}, (j_0^2(x^{i_o} x^{k_o}))^* \right). \end{aligned}$$

Further, by the homogeneous function theorem we obtain

$$\begin{aligned} & \Phi_A \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + x^{k_o} dx^{i_o} \otimes \frac{\partial}{\partial y^{j_o}} + x^{i_o} dx^{k_o} \otimes \frac{\partial}{\partial y^{j_o}}, (j_0^2(x^{i_o} y^{j_o}))^* \right) \\ & = \Phi_A \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + x^{k_o} dx^{i_o} \otimes \frac{\partial}{\partial y^{j_o}}, (j_0^2(x^{i_o} y^{j_o}))^* \right) \\ & + \Phi_A \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + x^{i_o} dx^{k_o} \otimes \frac{\partial}{\partial y^{j_o}}, (j_0^2(x^{i_o} y^{j_o}))^* \right). \end{aligned}$$

By the invariance of A with respect to the change of coordinates x^{k_o} and x^{i_o} only we have

$$\begin{aligned} & \Phi_A \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + x^{k_o} dx^{i_o} \otimes \frac{\partial}{\partial y^{j_o}}, (j_0^2(x^{i_o} x^{k_o}))^* \right) \\ & = \Phi_A \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + x^{i_o} dx^{k_o} \otimes \frac{\partial}{\partial y^{j_o}}, (j_0^2(x^{i_o} x^{k_o}))^* \right). \end{aligned}$$

Hence

$$\begin{aligned} & \Phi_A \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + x^{k_o} dx^{i_o} \otimes \frac{\partial}{\partial y^{j_o}}, (j_0^2(x^{i_o} x^{k_o}))^* \right) \\ & = \frac{1}{2} \Phi_A \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + x^{k_o} dx^{i_o} \otimes \frac{\partial}{\partial y^{j_o}} + x^{i_o} dx^{k_o} \otimes \frac{\partial}{\partial y^{j_o}}, (j_0^2(x^{i_o} x^{k_o}))^* \right). \end{aligned}$$

Therefore Lemma 9 follows from Lemma 8. ■

LEMMA 10. Suppose that

$$A \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + df \otimes \frac{\partial}{\partial y^{j_o}} \right) = B \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + df \otimes \frac{\partial}{\partial y^{j_o}} \right)$$

over $(0,0) \in \mathbb{R}^m \times \mathbb{R}^n$ for any $f \in C^\infty(\mathbb{R}^m)$ and any $j_o = 1, \dots, n$. Then $A = B$.

Proof. From the assumption for $f = x^{k_o} x^{i_o}$ there follows the assumption of Lemma 9. Using Lemma 9 we complete the proof. ■

LEMMA 11. Suppose that

$$A \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + dx^1 \otimes \frac{\partial}{\partial y^{j_o}} \right) = B \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + dx^1 \otimes \frac{\partial}{\partial y^{j_o}} \right)$$

over $(0,0) \in \mathbb{R}^m \times \mathbb{R}^n$ for any $j_o = 1, \dots, n$. Then $A = B$.

Proof. It remains to verify the assumption of Lemma 10. Because of the regularity of A and B we can assume that $d_0 f \neq 0$. Then $df = dx^1$ near $0 \in \mathbb{R}^m$ modulo a diffeomorphism $\varphi : \mathbb{R}^m \rightarrow \mathbb{R}^m$. So Lemma 11 is a consequence of Lemma 10 because of the invariance of A and B with respect to φ . ■

We are now in position to prove Proposition 3. Let $(j_0^2 x^\rho)^* \in T_0^{(2)} \mathbb{R}^m$. We can write

$$\begin{aligned} A \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} \right) ((0,0), (j_0^2 x^\rho)^*) \\ = (j_{(0,0)}^2 x^\rho)^* + \sum_{|\alpha|+|\beta| \leq r, |\beta| \neq 0} a_{\alpha\beta} (j_{(0,0)}^2 (x^\alpha y^\beta))^*. \end{aligned}$$

By the invariance of A with respect to $(x^1, \dots, x^m, ty^1, \dots, ty^n)$ for $t \neq 0$ we deduce that

$$A \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} \right) ((0,0), (j_0^2 x^\rho)^*) = (j_{(0,0)}^2 x^\rho)^*.$$

Using this fact for A and for B instead of A we obtain

$$A \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} \right) = B \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} \right)$$

over $(0,0)$. Now by the invariance of A and B with respect to $(x^1, \dots, x^m, y^1, \dots, y^{j_o} + x^1, \dots, y^n)$ (only j_o -position is exceptional) we have

$$A \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + dx^1 \otimes \frac{\partial}{\partial y^{j_o}} \right) = B \left(\sum_{i=1}^m dx^i \otimes \frac{\partial}{\partial x^i} + dx^1 \otimes \frac{\partial}{\partial y^{j_o}} \right)$$

over $(0, 0) \in \mathbb{R}^m \times \mathbb{R}^n$ for any $j_o = 1, \dots, n$. By Lemma 11, $A = B$ and the proof of Proposition 3 is complete. ■

Theorem 1 is an immediate consequence of Propositions 2 and 3.

References

- [1] I. Kolář, *On generalized connections*, Beiträge zur Algebra und Geometrie 11 (1981), 29–34.
- [2] I. Kolář, P. W. Michor, J. Slovák, *Natural Operations in Differential Geometry*, Springer, Berlin, 1993.
- [3] J. Slovák, *Prolongations of connections and sprays with respect to Weil functors*, Suppl. Rend. Circ. Mat. Palermo, Serie II 14 (1987), 143–155.

Miroslav Doušová

DEPARTMENT OF MATHEMATICS
BRNO UNIVERSITY OF TECHNOLOGY
FSI VUT BRNO
Technická 2
616 69 BRNO, CZECH REPUBLIC
E-mail: doušová@um.fme.vutbr.cz

Włodzimierz M. Mikulski
INSTITUTE OF MATHEMATICS
JAGIELLONIAN UNIVERSITY
Reymonta 4
30-059 KRAKÓW, POLAND
E-mail: mikulski@im.uj.edu.pl

Received March 7, 2003.

