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A MODULUS AND AN EXTREMAL FORM
OF A FOLIATION

Abstract. We prove that the p-modulus of the foliation is conformal invariant. We
study the problem of existing of the extremal form for a foliaton on Riemannian manifold.
We also compute the value of p-modulus and the extremal form for k-dimensional foliation
given by a submersion.

1. Introduction

The idea of modulus is directly connected with the concept of ertremal
length of curves in R? introduced by Beurling and Ahlfors [AhBe] in the
beginning of 50-ties. In 1957 Fuglede generalized this notion to the modulus
of k-dimensional surface families in R™. It was very usefull tool in the theory
of conformal and quasiconformal maps, extremely popular in 60-ties and
70-ties.

Using a geometric characterization Suominen [Su] extended the modulus
to the case of an arbitrary differential Riemannian manifold, and in 1979
Krivov [Kr] defined generalized p-modulus for a family of k-forms.

The modulus of a foliation, introduced by the author in [Bl], connects
Fuglede’s and Krivov’s ideas. We used the fact that the foliation of Rieman-
nian manifold may be defined as a family of surfaces or by a family of forms.
The modulus of the foliation is just a modulus in the Krivov’s sence of the
family of forms characteristic for the foliation. For these forms, by Hodge
star, arises the family of dual forms. Both these classes seem to characterize
pairs of foliations orthogonal to each other, but this is an open problem yet.

In this paper we prove, that the p-modulus of the foliation is conformal
invariant. We study the problem of existing of the extremal form for a folia-
ton on Riemannian manifold. We also compute the value of p-modulus and
find the extremal form for k-dimensional foliation given by a submersion.
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2. Preliminaries
2.1. Foliations

Let F be a smooth oriented k-dimensional foliation on smooth oriented
Riemannian n-manifold M.

DEFINITION 2.1. A foliated chart on M is a pair (U, ¢), where U C M is
open, ¢ = (¢1,¢2) : U — B; x By, is a diffeomorphism and B,, By are open
rectangular neighborhoods is R* and R! respectively.

Sets Py, = ¢ 1(B: x {y}), y € By are called plagues, and S, =
¢~ ({z} x Ba), © € B, — transversals of the foliated chart.

If M admits an atlas Y = {(Uq,; @a)}aeca of foliated charts and for each
a € Aand each z € M L; NU, is a union of plaques, then U is said to be
a foliated atlas associated to F.

DEFINITION 2.2. A foliated atlas U = {(Ua, $a)}aca is said to be regular if

1. for each a € A, U, is a compact subset of a foliated chart (Wy, 1) € U
and ¢ = Yalve,

2. the cover {U, }aeu is locally finite,

3. if (Ua, ¢a) and (Ug, ¢g) belong to U, each plaque from U, meets at
most one plaque in Ug.

In [CaCo] one can find that for every foliated manifold (M, F) there
exists a regular foliated atlas associated with F.
Moreover, if U = {(Uq, ¢a)}aca is a regular atlas on M, then the map

9ap = da 0 85" 63(Ua NUp) — ¢a(Ua N Up)
has the form

9a8((98)1, (¥8)2) = (Pap((98)1, (#5)2); Yap((¥5)2)) ,

where 7,4 is a diffeomorphism from (¢g)2(Ua NUg) to (¢a)2(Ua NUg). The
family v = {vo,8}a,8c.4 satisfies the cocycle condition, that is for every
a, 3,6 € A and for each z € U, NUg NUs

Ve, 8(€) = Va8 © 1,6(2) -
We will call this family the holonomy cocycle of the regular foliated atlas U.

REMARK 2.3 ([CaCo]). The submersion (¢q), : Ua — R’ let us to identify
all transversals Sy, for each = € U,, so we can use S, instead of Suz-
Therefore, if o, 8 € A and U, N Ug # 0, we view v, 3 as a diffeomorphism
from an open subset of Sg onto an open subset of S,. It is clear that y
belongs to the domain of -y, g if and only if the plaque P, C Up intersects a
unique plaque P, C Uy, where P, N S, = {z} and v 8(y) = 2.
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2.2. Modulus

Let(M, F) be a smooth oriented foliated Riemannian n-manifold and
dimF = k. We denote by IL’;(M ) (p > 1) the space of measurable and
p-integrable k-forms w on M with norm

ol = ( § o(a)Pou)?,

M
where o)z is the volume form of M.

DEFINITION 2.4. Let £ C F. By adm(L) we denote the family of all k-forms
on M such that

l.we IL’;(M )s

2. {yw > 1 for almost every leaf L € L,

3. w is almost everywhere positively defined (i.e. for almost every z € M
and for every orthonormal positive oriented base ey, ..., e, € T;F holds
w(ela teey ek) 2 0)

Elements of adm(L) we call admissible forms for L.
DEFINITION 2.5. The p-modulus of £ we define by
dp(M,L) = inf .
mody(M,0) = _inf _ [l
If there exists an admissible form w such that ||w|| = mod,(M, £) we call

it an eztremal form for £ and denote by wo(L). If £ = F we have a modulus
of a foliation F.

The modulus has some usefull properties [Bl]:
1. it is monotone and countable subadditive, i.e.
mody(M, £1) < modp(M, Ly), if L3 C L2,
and
(mody(M, £))P <Y (modp(M, L:))P, if L=|]Li,

iEN i€N
2. if N is an open subset of M and £ C F, then
mod,(M, L N N) < mod,(N, L|n),

where £|y = {LNN,L € L} and N is the saturation of N in F,
3. if £ C F and Ny, N3 are open subsets of M, such that for almost every
leaf L € £ we have LN N; # () and L N Ny # 0, then
(mody(M, £))T7 > (mody(Ni, Lln,)) ™5 + (mody(Na, £I,)

4. A family £ C F is p-exceptional if and only if there exists an admissible
form w for £ such that {; w = oo for almost all leaves L € L,

)T5F,
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5. If the volume of M is finite, then the family of leaves
L = {L € F; volL = oo} is p-exceptional.

2.3. Integrability of forms
In this paper we will need the following version of the Fubini theorem:

THEOREM 2.6 ([Pi]). Let M and N be Riemannian manifolds of dimension
m and n respectively (m > n), f: M — N a submersion, and J;— Jacobian
of the mapping df ()| (keraf(z))+ - If h: M — R is an integrable function on M
then for almost every y € N the integral

1
F)= | hyop

i 7
is finite, the function y v F(y) is measurable, integrable over N and
S hoy = S Fon.
M N
We will need also the following lemma.:

LEMMA 2.7. Let w be a k-form on M. For every leaf L of a foliation F an
inequality

| Sw| < S lw| oL

L L
holds, provided w and |w| are integrable over L.

Proof. Let U = {U;}iez be a locally finite cover of M and let z € Uj;, for
some ¢g € Z. Let us denote by e;y,...,e, an orthonormal basis of smooth
vector fields in Uj,, such as for every z € Uj, e1(x),...,ex() is a positively
oriented basis of T, F. Consider a k-form
w=2wi1...ike;’1/\---/\efk, 1<iy<---<ix<n
i1k

and assume that supp(w) C U;,. Than we have

S w= S wi..k€]A - -Aef, < S Zw?l,._ike{/\---/\e;= S lwloL
LﬂU,‘o LﬂUio LNU; 110 i LNU;

and consequently

(2.1) | § ol | Wwlos
LnU; LnU;

Now assume, that there is no ¢ € Z, such that supp(w) C U;. Let us
denote by {%s}sen a partition of unity subordinate to the cover U i.e. a
family of functions ¥s: M — R with supp(vs) C Us, satisfying for any x € M
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the two following conditions

0<p(@) <1 and Y oy(@)=1.
Then w = 3, (¢sw) and, using (2.1), we obtain that for any s
[§s| =] § o< | Wl = {lw].
L LU, LU, L

Therefore

[§uf = [§ Sl = | S fw] <« | fwew
525""8‘”"’L=25|¢sl|‘*’|"L=S(ZI¢3)leoL=§|w|aL,

SENL seENL L seN
what completes the proof. m

o <

3. Results
3.1. Conformal invariantness

Consider two n-dimensional Riemannian manifolds M; and M, and dif-
feomorphism f: M; — Mj. Let £ € M;. Denote by e,...,e, and €;,...,én
orthonormal basis of T; M; and Tj(,)M; respectively. Then there exist real
numbers A; > -+ > A, such that f*(€*) = A\e! and the number

Ks(f) = esssup M
€M An—.'z+1 cee An

is called s-dilatation of diffeomorphism f.

If \y =--- =X, then K1(f) =...= Kn(f) =1 and f is conformal.

In [Kr] Krivov proved that if p = n/k then for every family A € LE(Mp)
hold inequalities

Ki(H)™ Jof Inll < inf llwll < Kni(f) inf linll

We will use this fact to prove the following
THEOREM 3.1. Let (M3, F1), (Ma, F2) be n-dimensional foliated Riemannian
manifolds with dimFy, = dimFy = k. If f: My — Ms is a diffeomorphism
preserving orientation and foliation then for p = n/k we have

Ki(f) ! mody(Ma, Fo) < mody(My, F1) < Kn_i(f) mody(My, ).

Proof. Let (My,F1), (M2, F2) and f: M1 — M satisfy the assumptions of

the theorem. Let z € M, and (U, ¢) be a chart on M; around z. Denote

by ej,...,e, and €y, ..., €&, positive oriented orthonormal bases of smooth

vector fields in U and f(U), respectively, such that ej,...,ex € TF1|y and

€1,---,& € TFa|pw). Then f*(€*) = A\e} for some real numbers A; >
-+ 2 An. Notice that ); are positive, since f preserves orientation.
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We will show that
(31) f* (adm(]—'2)) = adm(]—'l)
Let w be an admissible k-form for F3. Then locally
wlU:Zwir"iké:l/\“'/\é:ka 1<ig<--<ig<n

iix
and
Fwlo) = (Y wipiy 8, A+ NEE)
iqeeig
= Z (Wiyi © F) FH(€% )iy Av o A FH(E )i
1101
= Z (wil“‘ik o f) Ay e }‘ik é;‘l Ao A é;k.
o
Hence

f*(w)(el, N ek) =A1--- A wl...k(f(.’l:)) >0,

and f*w is almost everywhere on M positively defined. Since w € ]L';(Mg)
we have

[FF @) = (3 iy - Mg wigein (F(2))2)P
i1-ig
< QD*P(Y Wi (F()))2
i1eig
< (\)*Plw(f(2)I* < oo,
whence f*w € L’;(Ml).
Moreover, because f preserves the foliation and w is admissible for Fy,
for almost every L € F; the relation
S ffw= S w>1
L (L)
holds and consequently f*w € adm(Fy).

Hence f*(adm(F2)) C adm(F;). Analogously we can prove that
adm(F1) € f*(adm(F2)) and the equality (3.1) holds. Now, applying the
Krivov’s theorem, mentioned above, to families adm(F;) and adm(F2) we
obtain

Ki(f) ! mody(My, F) < mody(M1, F1) < Kp—k(f) mody(Ma, F2)
what completes the proof. =

From Theorem 3.1 it follows immediately

COROLLARY 3.2. For p = n/k p-modulus of foliation is a conformal invari-
ant.
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3.2. The modulus of a foliation given by a submersion

Now we are going to find an extremal form and calculate a value of
modulus of foliation in a special case.

THEOREM 3.3. If a foliation F on M is given by a submersion f with con-
nected levels then

71 \lP
mod?(M,F)= | ({7 01.) " ogan,
f(M) Ls
and the k-form on M
1
J 7T
wo(e) = —L——oar,
§ JyrTop,

L.

is an p-extremal form for F.

Proof. Let F be a foliation on M defined by a submersion with connected
levels and let w € adm(F). For each y € f(M) there exists £ € M such
that f~1(y) = L., where L, is the leaf of F passing through the point .
According to the Fubini theorem we have

1
flo@Pon= | ([ k@PF oz )ormn-
M (M) NLs f
By admissibility of w and by Lemma 2.7 for almost every = € M it holds
(§lw@orl)’21.
L
Using the Holder inequality we obtain

w(z o J 71 ()P >1,

I{,l()IJ()LZ(S, (2))

and consequently
= 1-p
(3.2) mod,P(M, F) > | ( | JE (2) UL,) T M)
F(M) L.
On the other hand the k-form
1
wo(z) = J{_‘:__l (=) oL,

§ Jpp-1(z) oL,
La

on M is admissible for F. Indeed, wy is almost everywhere positively defined
(f is the submersion, so its Jacobian J¢(x) is everywhere positive) and for



946 D. Blachowska
almost every z € M
1
Jir-1(z
Jwo=§ f.l_ @)
L. L § I T(z)or,
L,

o, =1.

Moreover

ool = § loo(@P oae = | ( § ble)P 35 o) oo

M f(M) Ls
2_
Jer-1(zx
= ( ;f (z) abz) Of(M)
FM) ML ( LS Jy7=1(z) o, P Js(z)

. .
= | (VI @ o) P oz,
FM) Le

what means that wg € ]L’;(M ) and

1 -
mod,P(M,F) < | ( § J77 (2) aL,)l pcrf(M) .
f(M) Lz
The last inequality together with (3.1) completes the proof. =
As a simple consequence of the above theorem let us note the following
result.

COROLLARY 3.4. If F is a codimension one foliation given by a submersion
f:M - (a,b) C R with connected levels then

b
1—
mod,?(M, F) = | ( | llgrad fIIFT o1, " dt,
a [,
where f(z) =t and the (n — 1)-form on M

1
llgrad f||>-1

1
3 lgrad f7=2 o,

wo(z) = oL

z

is an p-extremal form for the foliation F.

3.3. Extremal forms

Let (M, F) be an n-dimensional oriented foliated Riemannian manifold
and dimF = k.
LEMMA 3.5. For each almost everywhere positively defined k-form wEL’;(M )
the function f: M — R given by
z— S w
Lq
is measurable on M.
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Proof. Let U = {(Ua, $a) }aca be a regular atlas of (M, F). Let (Up, ¢o) €
U. For each z € Uy we will denote by:

C(z,r) — a chain {P,..., P} with the beginning at = such that P, €
UO)

Cm(z) — the set of all chains C(z,r) with r <m,

Py, (z) — the set of all plaques of chains from Cp,(z),
and

Bm(z) = Upep,.(z) P
From the regularity of U it follows that Cp,(z) and Pn(z) are finite.

Let w € ]L"; (M) be a continuous k-form defined in Uy by

w(z) = Z Wiy ip (Z)diy A -+ Adziy, 1< < -~ <4 <,
i1k

where (dzi,...,dz,) is a basis of T; M dual to the basis 52—1, cee 3% of
T:M, such that (dzy,...,dz;) span T, F.

We are going to prove that the real function f,, defined on M by

= S w
B (z)

is measurable for any m € N. For this purpose we will show that for each
t € R the set A; = {z; fr(z) > t} is open in M.

Let m € N and t € R. Take z € Up such that f,(z) > t. According to
Remark 2.3 for any chain C(z,r) € Cix(z) there exists a diffeomorphism

c__c c c c .
hY =% 19 1r-2° " 910 Yii-1 €7, t€N

from an open (in Sp) neighborhood Dom(h®) of z to an open subset of
the transversal S,. Moreover, for every chain C(z,r) = {Py, P,,..., P} and
each y € Dom(hC) there exists a unique chain C(y,7) = {Qo,Q1,.-.,Qr}
such that P, C U; and Q; C U; for ¢ = 0,...,r. From now on we will call
the chain C(y,r) suitable for the chain C(z,r) and the plaque Q; suitable
for the plaque P, 1 =0,...,r.

Denote by D = Ncegpn(z) Dom(hC). Then for every y € D the set B, (y)
crosses all domains of charts containing plaques from B,,(z) and conse-
quently Pn(z) < Pr(y).

Let y € D. Consider suitable plaques P; € B(z,m) and Q; € B(y,m)
contained in (U;, ¢;) for some 0 < 7 < r. From the regularity of i and mono-
tone continuity of w on T it follows that for every €; > 0 there exists 6; > 0
such that if [$i2(P;) — #i2(Q:)| < 81 then for each z € ¢;1(U;) the inequality

(3.3) lw o ¢71(z, ¢i2(P)) — w o ¢; (2, $12(Qi))] < &1
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holds. Moreover

| S w = S ‘*'-’I = | S Wik dz1 - -dzg — S W1k AT -+ - - dzg]
P‘i Qi Pz Q‘i
=| | wkodiEdn(P) do - dr
$:1(Us) X di2(P;)
- wrkod (2 00(Q) dur - da
i1 (U)X #i2(Qs)
< | w1k © ¢z, ¢ia(P)) — wr.k
¢ (Ui) x@i2(P;)
o ¢7 (2, $i2(Q))| d1 - - - day,
< S €1 = €1 :u’k(‘BT)-
dir (Us)x 2 (Fs)

Now consider two pairs (P;, Q;), (Pj, @;) for some 0 < %, j < r of suitable
plaques P;, P; € B(z,m) and Q;,Q; € B(y,m) contained in domains of
(Ui, ¢3), (U;, ¢;), respectively, and such that P,N P; # 0 and Q; N Q; # 0.
Since U is regular then for every e > 0 there exists §; > 0 such that

(3.4) p(Pin(Pi N Pj) \ 6a(Qi N Qj)) < €2
whenever |¢ia(P; N Pj) — ¢2(Qi N Q;)| < ba.
Whence, for each € > 0, there exists § > 0 such that if |pio(P; N Pj) —
di2(Qi N Q])I < § then
I S w — S w‘ < €.
PNP; Q:NQ;
Indeed, for every € > 0 we can take ¢; = m and €g = W-

Then there exist 61, 62 > 0 such that inequalities (3.3) and (3.4) hold. Hence
if |¢i2(P; N P;) — ¢i2(Qi N Q;)| < min{dy, 2} then

| fw- § wl=| [ wik 067 @a(PiN Py)) day - - doit
PNP;  QiNQ; #i1(PiNP;) X gia (PiNF;)
- { wi..k © ] (2, $i2(Qi N Q;)) day - - - dy l
$i1(Q:iNQ;) X $:2(Q:NQ;)
< | (wi.k © 67 (2, ia(Ps N P;))

(@i (PiNP;)Nei1 (Q:NQ5)) X di2 (PiNP5)
— Wik 0 7 12, $i2(Qi N Q;))) dzy - - - dzy I

+ { Wik © 67 (2, ¢ia(P; N Py)) dy - - dzy |
(9:1 (PinPj)\¢:1(Q:NQ;)) X ia(PiNF;)
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+ l { Wlwk°¢;1(z7¢i2(QimQj))d-Tl"'dxkl
(#i1(Q:iNQ;)\ i1 (PinP;)) X di2( PN P;)
< e1- p(Pit (PN P3) N i (Qi NQj)) + 2e2 - sup lw] < e
t 2

One can show that analogous inequality holds for every finite number
r € N of pairs (P;,Q;), i = 1,...,r of suitable plaques P; € B(z,m) and
Q: € B(y,m) contained in domains of (U;, ¢;), respectively, and such that
PNn---NP.#0and @1 N---NQ. #0.

Now let A = fp,(z) —t and s = P,(z). From above abbreviations it
follows that choosing D smaller, if necessary, we can assume that for any
y € D hold inequalities

Ié.w—é,wl<% for i=1,...,s
and
| jw- S“’|<§A; for 4;=1,...,5; <5,

igr jgr

where Q; € P, (y) are suitable plaques to P, € Py, (z) for:=1,.
Since w is almost everywhere positively defined we have

(o3 fom £ forrellf £ furtcri o
0 (o T =t ney e
N s (Sw_i)+"'+(_1)k+lz ( §w+(—1)ki)+
i=1 “P; 2s i<t 28
. ] i<y k

[T Y | ﬂ ng

HD( fut )= fe-n(@++ )

ﬁ P B (z)
i=1

> Sw—A=t
B (z)
Therefore z is contained in A; together with the open neighborhood D x Py
and, consequently, A; is open in M.
Since for every z € M
lim S w= S w

m—0o0

Bm(z) L:
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then the function f : M — R defined by z — §;_w is measurable on M as
the limit of the sequence (fm)men of measurable functions.

Now letw € ]L’; (M). The set of all continuous forms is dense in ]L’; (M), so
there exists a sequence (wp)nen of continuous forms convergent to w. Since
all functions z + §; w, are measurable on M we obtain that the function
f : M — R defined by

Ir— S w
Ls
is also measurable on M. =

THEOREM 3.6. If M has finite volume and F is given by a submersion with
connected level sets then adm(F) is closed in ]L’;(M )-

Proof. Let f : M — B C R be a submersion. Consider a convergent
sequence (wm)men of admissible k-forms for F. Denote its limit by w and
suppose that w & adm(F). By completness of ]L’;(M ), w belongs to L’;(M ).
Moreover, (wm)men includes a subsequence convergent almost everywhere to
w(z). It means, in particular, that w is almost everywhere on M positively
defined. Therefore w is not admissible for F if the set

A={L€.7-':Sw<1}

is of nonzero measure. By Lemma 3.5 the real function h : z — §; w
is measurable on M, so A = h™!(—o0,1) is also measurable on M and,
consequently, u(A4) > 0.

Since level sets of f are connected we have

f(A)={z€B: S w<1}.
f~4=)
This set, by the Fubini theorem, is measurable as preimage of (—o0,1) by

measurable function B > z — {;_1(,yw € R and us(f(A)) > 0.
Hence

fwnfop= | ( | w)UB< | 1o5=us(f(4))
A fA) 42 f(4)
and for each m € N we have
fumAfop= | (| wn)op2 | lop=un(f(4))
A ) fYz) f(4)
Denote by

e=up(fA)- | (| w)os
) 1z
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Then for all m € N we obtain
0<e=pp(f(A)~ § (| w)os

4 Y2
< S ( S wm)aB-— s ( S w)aB
14 f=1(2) 4 ()
= | ( | wm—w)03=| { ( | Wm—W)UBI-
f(4) -1 f4) (2

By Fubini theorem and Hoélder inequality we have

€< | S(wm - w) /\f"aBI < S |(wm = w) A froBlom
A A
< S |(wm —w) A f*oBlom
M
< § lom —w|-|f*o8| oM
M

1 P p-1
< (§ lom = wlP orr)” - ({10817 om) * .
M M
. . . =B -1 .
Since M has the finite volume then for ¢ = ({;, | f*oB|?~T op) 7 we obtain
an inequality
lom — wlf 2 ec™?,
what is a contrary to the assumptions. »

Krivov in [Kr] proved that a family A of k-forms has a unique p-extremal
form if A is closed and convex in ]L’;(M ). Since the convexity of the family
admF is obvious, by the above theorem it follows directly

COROLLARY 3.7. If (M, F) satisfies assumptions of Theorem 3.6 then there
ezists a unique p-extremal form for the foliation F.

In last two theorems we describe some properties of an extremal form.
THEOREM 3.8. If wg is an extremal form of a family L C F then for almost
all leaves L € L we have

S wp=1.
L

Proof. Let £ be a family of leaves of the foliation F and let wy be an
p-extremal form for £. Suppose that the set
A={zeM;L €L and | wo>1}
Lz
has nonzero measure. By Lemma 3.5 A is measurable, so u(A4) > 0. Consider
a cover {Cp,}men of the set f(A) defined for each m € N in the following
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way

cm='(1+—1—,1+i]u(m+1,m+2].
2m m

Since the measure of A is positive there exists mg € N such that the set
f~Y(Cm,) has also positive measure. Moreover the measure of B = AN
FY((Cymy) is positive, too. Now consider the form

2m_ , B
= { Tmp+1¥0 T €D,
w(z) {wglo z€M\B.
Since wg is admissible for £ then the form w is almost everywhere on M
positively defined and for almost all leaves L € £\ B we have
Sw = Swo 2 1.
L L
By the definition of w it follows that for L € £ N B we have
2my 2mg ( 1 )
= 1 =1
é“’ 2m0+1§“’°>2m0+1 T ome) =
so {; w > 1 for almost all leaves L € £. Moreover,

2my

”w”p = S Iw(m)lp oM = S 2m0-|- 1(4)0(:[,‘) pO’M + S I(UO(.'E)lp oM =
M B M\B
= 2m0 g x o wol\T a 73/
= (5me1) Sl o + | ()P o < ool?

what means that w € L’;(M ) and, simultanously, contradicts with the as-
sumption of extremality of wp. =

THEOREM 3.9. If an extremal form wy of a foliation F is continuous then
for all vector fields X1, ..., Xn-x € TF we have

*wo( X1, ..., Xn-k) =0.

That means, in particular, that for each leaf L € F there exists a real func-
tion fr, on M such that

‘-‘JOIL = fL ‘0L,
where oy, is the volume form of L.

Proof. Let wy be an extremal k-form for F. Suppose that there exists
Tp € M and vector fields Xy, ..., X,,—x € TF such that

(3.5) *wo(Xl, e ,Xn_k)(mo) ;é 0.

Consider a chart (U, ¢) around zo and denote by ey, ..., e, an orthonormal
positively oriented basis of smooth vector fields on U such that for any x € U
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vectors e)(z), ..., ex(z) span T F. Then

w=2w,~1...ike;~'l/\--~/\e’{k, 1<i1<-- < <n
il"'ik
and
*w = Z Wiyiy - SENO (21, .-, 2k, J1, - - - ,jn_k)e;fl Ao A e;n_k ,
i1eige
where j1,...,dn-k € {1,...,n}\ {iy.- ik}, 1 £ j1 < - < jnk <1
and o(¢1,...,%,J1,---,Jn-k) IS a permutation of (i1,...,%,J1,.-.,Jn—k)-
By continuity of w, choosing U smaller, if necessary, we can assume that the

condition (3.5) holds in whole U. Since Xj,..., X, € TF then for every
z € U we have

(Wik €1 A Aep)( Xy, .., Xnk)(z) =0.

This condition together with (3.5) gives the existence of a multiindex 2y - - - i
# 1---k such that w;,..;, (z) # 0.

Now let W be an open subset of U such that W c U. Consider a conti-
nous function f: M — R defined by

_ 1 dlaze M\,
fle) = {-é— dlazeW.
Then
w= flwo —wi.k€] A - ANep)+wr.ke] A---Aej

is continous, positively defined k-form on M identical with wp on M \ U.
Since

w=wy.ke] A - Aeg + Z [rwi il Ao ANej
i i FE Lk
11k

we have

Sw: S w+ S w= S wo + S wl...ke’{/\---/\e}‘;=§wo
L L\U LU LW LAU L

for any leaf L of F. Moreover, for all z € U the inequality
lw@)P =wf i@+ Y (F - wiin(@)?

iy--igFEl-k
ipeerig
<wi @)+ Y wi_ i (z)=|wo(z)® holds.
it #Elek

iyeeeig
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Therefore w is admissible for F and

WP = § lw@)P oy = | |w@)Pou + | lw(z)lP om

M M\U U
< | |wo(@)P om + § lwo(@)IP omr < [lwol?,
M\U U

what contradicts with extremality of wp. =

[AhBe]
Bl

[{CaCo)
(Fu]

(Kr]

(Pi)

(Su]
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