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EQUIPOWER AND EQUICHORDAL EXTENSION

Abstract. In this paper we consider the possibility of extension of a concave function
f :{0,a] — [0,+00) to equipower convex curve or equichordal convex curve with axis of
symmetry. The extension is possible if and only if f satisfies a differential inequality of
the second degree.

1. Introduction

Let C be a convex curve bounding a convex region D. The following
definitions hold:

DEFINITION 1. C is called an equipower curve if there exists a point O in
the region D with the following property:

if a chord PQ of C passes through O, then
|OP}|0Q] = ¢ = const.

and the product does not depend on the choice of a chord.
The point O is called the equipower point of C and c is called the
equipower constant.

DEFINITION 2. A point O of D is called an equichordal point if all chords
passing through this point have the same length.

DEFINITION 3. C is called an equichordal curve if D contains an equichordal
point.

E. J. Rosenbaum [6] asked how many distinct interior power points in a
convex body D have ensured that it is a disk. J.B. Kelly [4] showed that if
the boundary C of D has a unique tangent line at each of its points then
two interior power points are sufficient to ensure that a convex region D
is a disk. One interior power point may not be sufficient in this problem.
A counterexample was already given by K.Yanagihara in [10], [11]. Further,
L. Zuccheri in [12] proved that any convex region with two interior power
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points is a disk, without further assumption on its boundary, and extended
the question to exterior points.

The well-known equichordal problem from geometry asks whether there
exists an equichordal curve in the plane that admits two distinct equichordal
points. The problem was posed by Fujiwara in 1916 [3] and independently by
Blaschke, Rothe and Weitzenbéck in 1917 [1]. Many papers are devoted to
equichordal curves, e.g.: A Dirac [2], E.-Wirsing {9],V.Klee [5], R.Schéfke and
H.Volkmer [8]. M.Rychlik [7] solved the equichordal problem. Namely, he
proved that the equichordal curve in the plane with two distinct equichordal
points does not exist.

2. Preliminaries for equipower extension

Let € denote the family of all equipower curves with the axis of symmetry
and with the equipower point lying on that axis of symmetry. We may
assume that the z-axis is the axis of symmetry and the origin O is the
equipower point.

Denote by £(c) the subfamily of £ such that

1° the part of graph of a curve I' € £ lying in the upper-plane is a graph
of some function,

2°the equipower constant is equal to c,

3° all curves are of the class C2, possibly without points of intersection
with the axis of symmetry,

4° all curves are strictly convex.

Let ' € £. We assume that the graph of a function f : [‘TC, a] — [0, +00],
where a,c are fixed positive numbers, is the graph of the curve I' in the
upper-plane. Obviously, the complete graph grI’ of I' is formed by graphs
of the f and —f. We consider a chord v of I' passing through the origin
and a point (z, f (z)) € grT',z # 0. We denote by (¢ (), —~f (¢ (z))) the
coordinates of end-point of ~.

Then we have the following relations

fle(z) _ f(=) —c
(1) o ~ 3 for ze] - ,0) U (0,q]
and
2 Vet 1@ @+ r @) =e

Hence we get immediately

—cz —c

3 r)=———— forze|—, a.
@ o= G B
It is easy to see that ¢ is a strictly decreasing function.




Equipower and equichordal extension 927

3. Equipower extension

We fix two positive numbers ¢ and a. Let F denote the family of all
functions f : [0, a] — [0, +00) satisfying the following conditions:
4  fl@=0, [f(0)=+r,
(5) f(zy>0  forze (0,a),
6) feC?(0,a),
(7)  there exist lim f'(z), lim f"(z),

z—04 r—04

(8) lim limf'(z) = —oo,

©)  22f(2)f ()< f(z)’-<® forze(0,a),
(10) f"(z)<0 forze€ (0,a).
Considerations provided below justify above conditions.
With each function f € F we associate the function ¢ : [0,a] — [0, +00)
given by (3). Since
22+ 20f (2) £ () - f (2)°
(@ + f (z)°)2

so the condition (9) means that ¢ is a strictly decreasing function.We have

(11) o' (x)=c for z € (0,a),

(12) p(0)=0 and p(a)=—,
so ¢ transforms the interval [0, a] onto [‘Tc, 0] and
(13) ¢ (04) = lim ¢'(z) = -1.

The monotonity of the function ¢ allow us to extend the function f :
[0.a] — [0,400) to the function F : [=£,a] — [0, +0c) by the rule

f(z) for z € [0, a
(14) F(z)= { /S (p~1(z)) for 2 € [=2,0).

The main result in this part says that a curve I" obtained from the graphs
of the functions F' and —F is an element of the family £ (c).

We start with an explanation that F' € C! (‘Tc, a) . Let

—C

(15) & (z)= £ _

> 217 @7 for z € (0,a)

(16) p=F(0:)= lim f(a).
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Then we have
) — 0,2 F@I()
U0 2@ =2y e
(18) ¢"(z)
0oL+ ') + f(@) f"(@)(=® + f(2)*) — 4(z + £ (=) ['())?

(22 + f(2)?)3
for z € (0, a)
and
(19) @ (0,) = lim ¥ (z) = 2c7%,
(00 @"(0)= Jim ¥ (@)= [1+vEf" 04) - 3¢7].

From (14) we have
—F(p(z)) =0 (z) f(z) for z € (0,a), i.e. —Fop=®f.
Hence we obtain

(21) —p' Flop=0f+&f.

Making use of (13) and (19) we get
(22) F'(0-)=£'(0s).

It means that F € C! (=2, a). With respect to the condition (8) it is clear
that the curve I' obtained from the graphs of the F and —F' is a C'-curve.

4. Main theorem for equipower curves
Differentiating (11) we get

v g L F@R 4 (@) 2+ f@F (@)
RS N T e R (S

for z € (—_—(i,a> .
a

Employing (13) and (16) we have

(24) " (04) = \/—\/'
We want to show
(25) F"(0-) = f"(04).

For this purpose we differentiate (21) obtaining
(26) --(p”F’ op— (90’)2 F’o o= (If'”f + 2q)/fl + q’f”.
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If z — 04, then making use of (16),(19),(20),(22) and (24) we get
(27) f"(0+)‘7(1+P )-

The above condition guarantees that F' € C? (-‘a—, a) .
The conditions: I' is strictly convex curve and F” is negative are equiv-
alent, so with respect to (26) we have to verify that

2 11_21:('0 +2(P

(28)  Fogp"+= f+2w Lr+teso

Let
(29) L= F'opyp”
and
:1:24,0” — 2$<P, + 2‘P :up’ P Poen
(30) P= f+2———f +=f".
z3 z2 z

Substituting ¢, ¢’ and ¢” into (30) we obtain
(31) (4P
= 627f (f')’ ~ 4a®f' = 1222 = 27° (f')* = 2* " + fUf" - 62%f + 2f°.
Now we find the form of L with the help of (21)
Fopy' =FopyL.
and g

(32) 2fl _ 2$f f2f/

o2 4 2xff -
+4f°f +22% (f ) — 6z f2(f')? + 22% f f" + 22 1% f").
The inequality (28) can be written in the form

%(z2+f2)(L+P)>O,

O | =

(2 + ) L= (—223 + 6z f% — 1222 f'

i.e.
2 /I _ 2
I;f+2i:;.;l f 2 ( 21: +6.’l:f2 12$2ffl+4f3f/+2z3(f1)2

-6$f2 (F)* +22°Ff" + 20 f°f") + 622 (f)? — 4af' — 122 f2f'
_2f3(fl)2—x4f”+f4f”_6$2f+2f3>0-

The denominator z2 + 2z f f/ — f2 is negative, so we have

(z2f' ~22f — f2£') (=22° + 6z f% — 1222 f + 4f3f' + 223 (')’
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~62f2 (') +22° 1" + 20 f°f") + (65 F(/') — 4a*f' = 120 £7F'
=2f3(f'? — 2" + ff" - 622 f + 2f%)(2® + 22 f - %) <.
Collecting terms with f”, f/, (f’ )2 and (f’ )3 we obtain the following inequal-
ity
fll (__xG - 3$4f2 _ 3x2f4 - f6) + fl (215 + 4.'133f2 + 2-Tf4)
+ ()2 (22" f — 42?f% - 2f°)
+ (f)3(2z® + 43 f2 + 22 f4) — (22 f + 42% 3 + 2f°%) < 0,
i.e.
=(@® + £2°F" + 22(2® + () - 2£(2® + £2P(F)?
+2x(2* + f2)f' - 2f(=* + f*)® < 0.
The last expression has the form
2@+ I > ()~ F() 4 as - f
or
2@+ P> @f = DA+ ().
Thus we proved the following theorem:

THEOREM 1. The curve I' obtained from the graphs of the F' and —F is an
element of € (c) if and only if the function f € F satisfies the differential
inequality

" :Bf’ (.’L‘) - f (:L') !
(33) f (IL‘) > ZW [1 + f (.’17)2] fO’f‘ T € (0, a)
and (27)

fmn=%@+mmﬂ.

5. Example
Let f(z) = (1— §m2)§ forz e [0, 3@] , Fig. 1.
Notice that
fO=1=+c soc=1,

()

f(z)= (1"_ %12)3

f'(0) =0,

<0 for x € [0,—‘?)

)
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Fig. 1
- 1.2
f”(:z:)=-—(—1—-t—3z—3<0 forz € 0,—\/—5- .
4 2
(1-322)°

Since f” (0) = —1, then the condition f” (04) = 3}; (1 + f (0.,.)2) is satis-
fied.

We verify the condition 2zf (z) f'(z) < f(x)? - 22 for z € [0, 32@)
Equivalently it means that

3 _ i
42z (1 - %zz) (——Tz—g) < (1 - %x")) -z
(1-32?)

1
4 1 2
:z:(l 31:) <1+3:1:.

or

To show the latest inequality we denote by ! and p the left and the right
side of the inequality, respectively . The range of the function I(z) =
2 (1- %zz)* defined on [0, ¥2) is the interval [0, 73;-] . The function p(z) =

1+ 222 considered for z € [0, 32@) attains values in the interval [1, 2) and it

is strictly increasing. Thus the condition is satisfied.
We note that

- 3 <0 forz €0, ig-)
2+ (1~ §27) 2

p(z) =
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With respect to the previous considerations we have

2(1 _ 4,.2\% _ 2.2
il Gl 0 M G5 ) B fora:E[O,—\g—g).
22+ (1~ 42)%] (1-4o?)?

Now we verify the condition f” (z) > Qﬁéf%_—ﬁﬂ [l + f' (z) ] for z €
0, 47), ie

¢ (z) =

= (1- 422)%
g Tt (1+—2—)

(=497 24 (1-4e)] (1- 427"
Simplifying we get the form

1 5\ 2 4, i 4 4 2
(1+3m)m (1 3:13) +<1 3:12 1+ =z
< L 2

Wl =

or the equivalent form

1 3
<l—ézz) (gz‘* 1332+2) §x4+3x2-—1>0 forze{O,\/T—)-

3

1 15 2
X

Fig. 2

Denote by g the left side of the inequality. The function g is a positive-valued
for z € [0, ?), Fig. 2.
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6. Preliminaries for equichordal extension

Let B denote the family of all equichordal curves with the axis of sym-
metry and with the equichordal point lying on that axis of symmetry. We
may assume that the z-axis is the axis of symmetry and the origin O is the
equichordal point.

Denote by B(c) the subfamily of B such that

1° the part of graph of a curve I"' € B lying in the upper-plane is a graph
of some function,

2° the equichordal constant is equal to c,

3° all curves are of the class C?, possibly without points of intersection
with the axes of symmetry,

4° all curves are strictly convex.

Let I' € B. We assume that the graph of a function f : [a —¢,a} —
[0, +00], where a, c are fixed positive numbers, is the graph of the curve I'
in the upper-plane. Obviously, the complete graph grI' of I is formed by
graphs of the f and —f. We consider a chord v of I" passing through the
origin and a point (z, f (z)) € grT", = # 0. We denote by (¢ (z), —f (¥ (z)))
the coordinates of end-point of 7.

Then we have the following relations

(34) f_ﬁ/’; EZ;) ) :(:) for zela-c0)U(0aq]
and

(35) Va2 + @2+ /2 @)+ F @ (@) =c.
Hence we get immediately

(36) z for z€fa—-cal.

Y(z) =2z - c————or
Ve + £ (2)°

It is easy to see that ¢ is a strictly decreasing function.

7. Equichordal extension
We fix two positive numbers ¢ and a. Let F denote the family of all

functions f : [0,a] — [0, +00) satisfying the following conditions:

c
61  f@=0, jO)=4%,
(38) f(z)>0  forze€ (0,a),
(39) feC?(0,a),
(40)  there exist lim limf'(x), lim f"(z),

z—04 z—04
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(41) lim f'(z) = —oo,
r—a_-

3
(42) czf (z) f' (z) < cf?(z) — /22 + f (.’13)2 for z € (0,a),
(43) f'(z)<0 forz €(0,a).

Considerations provided below justify above conditions. With each function
f € F we associate the function ¢ : [0, a] — [0, +00) given by (36). Since

(44) Y () =1+cf (z) M for z € (0,a),
z2 + f (z)’
so the condition (42) means that v is a strictly decreasing function. We have
(45) %(0)=0 and ¢(a)=a-c
so 9 transforms the interval [0,a] onto [a — ¢,0] and
(46) ¥ (04) = lim ¥(z) = -1

The monotonity of the function 4 allow us to extend the function f : [0.a] —
[0, +00) to the function F : [a — ¢, a] — [0,400) by the rule

f(z forz € 10,a
@ Fe=-{"D 4w Gacloco

The main result in this part says that a curve I" obtained from the graphs
of the functions F' and —F is an element of the family B (c).
We start with an explanation that F € C! (a — c,a). Let

(48) VU (z) = ¥(z) =1- c for € (0, a)
’ 22+ f (z)°

and

(49) p=104)= lim f(z).

Then we have

(50) W(z)=cEIE@E)
N e

(51) ¥ (z)

(1+ f'(2)? + f(z) f"(z))(z? + f(2)?) — 3(z + f(x)f'(x))?
VEF @R

=cC

for z € (0,a)

and
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(52) ¥ (0,) = lim ¥ () = =,
r—04 c

(83) 7 (04) = lim ¥ (z) = cilg' [2 - 4p% +¢f" (04)] -
= +

From (47) we have
—F(@()=¥(z)f(z) for z € (0,a), i.e. —Foyp=Vf.

Hence we obtain

(54) Y Floyp=Vf+Tf
Making use of (46) and (52) we get
(55) F'(0-)=f"(04).

It means that F € C! (a — c,a) . With respect to the condition (41) it is clear
that the curve I obtained from the graphs of the F' and —F is a Cl-curve.

8. Main theorem for equichordal curves
Differentiating (44) we get

56) ¥ (z) = ————
(56) ¢"(z) Nt

x [3zf2+ f (2f3 - 4:1:2f) + (f')2 (:1:3 - 2:cf2) + fl'zf (a:2 + fz)]

for z € (0,a).
Employing (46) and (49) we have
8
(57) ¥ (04) = 2.
We want to show
(58) F7(0-)=f"(04).
For this purpose we differentiate (54) obtaining
(59) —’ﬂb"Fl o 1/) _ (¢I)2 FII o ,(/) — \I’”f + 2‘I’Ifl + \I’f”.
If £ — 04, then making use of (49),(52),(53),(55) and (57) we get
-2
(60) f1(04) = - (1+20%).

The above condition guarantees that F € C? (a —c,a).
The conditions: I is strictly convex curve and F” is negative are equi-
valent, so with respect to (59) we have to verify that

.,1:2,¢,II _ 21"(,[)’ + 2,¢ :E’lp' _ ’l/)
x3

12

(61)  Foyy + f2 7+ipmso
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Let

(62) L="F oy

and

(63) P= CE2¢” '— i§¢l + 2¢f 2:171/) ¢f + 11be/

Substituting 1,1’ and 9" into (63) we obtaln
(69) Va2 P=c[-222 + 2+ 223 — 4aff +357f ()]
+ 1" [+ (VT =) (o + £)] (22 + £7).
Now we find the form of L with the help of (54)
W

L=F ogy" = Foyy/ "

and
(65) I+ L
—czf + (cm — /22 f? )f’
VI T +ef (2f - f)
xc[32f2+ f (2f° = 422 f) + ()} (® = 221%) + of £ (s + 17)].
The inequality (61) can be written in the form \/ms (L+P)>0,ie:
~caf + (a2 = VT2 )
VT +of (@f - )
X c [3xf2 + £ (2% - 422f) + (f')? (2° - 22f%) + =f f" (2 + fﬁ)]

+e [—2:1:2f + 24223 — daf?f + 302 f (f’)2]
+ 1" [ef?+ (VaT+ FP=c) (5 + £2)] (s + 1%) > 0
The denominator /ZZ + 2. + cf (zf' — f) is negative, so we have
[—ca: f+ (ca:2 - \/mg) f’]
x [3012+ 1 (2f° — 422 f) + (F)° (2 = 2212) + 2f £ (2 + 12)]
+ [VEF T +ef af - D)
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x [_21:2]: + f3 + 21:3f, _ 4:1:f2f’ + 3.’132f (fl)2 + f2f” (212 + f2)]
+[VEH T +ef af - f)] ( Vvt + f2 - ) (2 + £2)° f" <.

Collecting terms with f”, f/, (f')? and (f’)* we obtain the following inequal-
ity
(f—il'fl)3 (\/1‘2+f2 —c)

FWBETPf ~ e+ 145 (VEF P o) VaT 2 1 <0

i.e.

1 5 " , ' 2 ’21:2_+f2
LR @ - [(wf 1 +26+ 1) C_Vm}-

The last expression has the form

PR et BRI C il P (m+ff)
@+ [Va2+ 2 =Vt 7

Thus we proved the following theorem:

THEOREM 2. The curve I' obtained from the graphs of the F' and —F is an
element of B(c) if and only if the function f € F satisfies the differential
inequality

" Fi=f (@f =N . @+1f)
(66) f (T)>C(:2+f2)2 [m‘i' xm] for z € (0,a)

and

(67) 100 = 22 (1427 (04)?).
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