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E Q U I P O W E R A N D EQUICHORDAL EXTENSION 

Abstract. In this paper we consider the possibility of extension of a concave function 
/ : [0, o] —» [0, +oo) to equipower convex curve or equichordal convex curve with axis of 
symmetry. The extension is possible if and only if / satisfies a differential inequality of 
the second degree. 

1. Introduction 
Let C be a convex curve bounding a convex region D. The following 

definitions hold: 

DEFINITION 1. C is called an equipower curve if there exists a point O in 
the region D with the following property: 

if a chord PQ of C passes through O, then 

\OP\ \OQ\ = c= canst. 

and the product does not depend on the choice of a chord. 
The point O is called the equipower point of C and c is called the 

equipower constant. 

DEFINITION 2. A point O of D is called an equichordal point if all chords 
passing through this point have the same length. 

DEFINITION 3. C is called an equichordal curve if D contains an equichordal 
point. 

E. J. Rosenbaum [6] asked how many distinct interior power points in a 
convex body D have ensured that it is a disk. J.B. Kelly [4] showed that if 
the boundary C of D has a unique tangent line at each of its points then 
two interior power points are sufficient to ensure that a convex region D 
is a disk. One interior power point may not be sufficient in this problem. 
A counterexample was already given by K.Yanagihara in [10], [11]. Further, 
L. Zuccheri in [12] proved that any convex region with two interior power 
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points is a disk, without further assumption on its boundary, and extended 
the question to exterior points. 

The well-known equichordal problem from geometry asks whether there 
exists an equichordal curve in the plane that admits two distinct equichordal 
points. The problem was posed by Fujiwara in 1916 [3] and independently by 
Blaschke, Rothe and Weitzenbock in 1917 [1]. Many papers are devoted to 
equichordal curves, e.g.: A.Dirac [2], E.Wirsing [9],V.Klee [5], R.Schafke and 
H.Volkmer [8], M.Rychlik [7] solved the equichordal problem. Namely, he 
proved that the equichordal curve in the plane with two distinct equichordal 
points does not exist. 

2. Preliminaries for equipower extension 
Let £ denote the family of all equipower curves with the axis of symmetry 

and with the equipower point lying on that axis of symmetry. We may 
assume that the x-axis is the axis of symmetry and the origin O is the 
equipower point. 

Denote by £(c) the subfamily of £ such that 

1° the part of graph of a curve r € £ lying in the upper-plane is a graph 
of some function, 

2°the equipower constant is equal to c, 
3° all curves are of the class C2, possibly without points of intersection 

with the axis of symmetry, 
4° all curves are strictly convex. 

Let r € £. We assume that the graph of a function / : a] —> [0, +oo], 
where a, c are fixed positive numbers, is the graph of the curve T in the 
upper-plane. Obviously, the complete graph grT of T is formed by graphs 
of the / and —/. We consider a chord 7 of T passing through the origin 
and a point (x, f (x)) e grT,x / 0. We denote by (<p (x), — f ((p (x))) the 
coordinates of end-point of 7. 

Then we have the following relations 

( 1 ) = m ( o r I € ! Z i , 0 ) u ( 0 , a ] 
—tp [x) x a 

and 

(2) y/x* + f(x)2yJ<pZ(x) + f(<p(x))2 = c. 

Hence we get immediately 
—c —cx 

(3) ¥> (*) = , , ,2 f o r x G 

x2 + f (x) 
It is easy to see that <p is a strictly decreasing function. 
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3. Equipower extension 
We fix two positive numbers c and a. Let T denote the family of all 

functions / : [0, a] —> [0, +oo) satisfying the following conditions: 

(4) f ( a ) = 0, f ( 0 ) = V~c, 

(5) / (s) > 0 for x e (0, a), 

(6) / € C2 (0, a), 

(7) there exist lim f'(x), lim f"(x), 
x—»0+ x—»0+ 

(8) lim lim/'(x) = —oo, 
x—>o_ 

(9) 2 x f (x) f (x) < f (x)2 - x2 for x € (0, a), 

(10) f" (x) < 0 for x g (0, a). 

Considerations provided below justify above conditions. 
With each function / G T we associate the function ip : [0, a] —> [0, +oo) 

given by (3). Since 

(11) ip (x) = c 2 for x € (0, a) , 
(x2 + f ( x ) )2 

so the condition (9) means that ip is a strictly decreasing function.We have 

(12) p(0) = 0 and <p(a) = —, 
a 

so <p transforms the interval [0, a] onto [-^,0] and 

( 1 3 ) <p'(0+)= l i m <p'{x) = - 1 . 
x—>0+ 

The monotonity of the function ip allow us to extend the function / : 
[O.a] —> [0, +oo) to the function F : a] —> [0, +oo) by the rule 

J?M / / ( x ) for x 6 [0, a] 
( u ) F ( x ) = i ^ y f o r [=2,0). 

The main result in this part says that a curve T obtained from the graphs 
of the functions F and —F is an element of the family £ (c). 

We start with an explanation that F € C1 a). Let 

(15) tt(g) = g M = ~C for x € (0, a) 
X X2 + f (X) 

and 

( 1 6 ) p = f'(0+)= l i m f't(x). 
x—»0+ 
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Then we have 

(17) V(x)-2cx + f{x)f>{x) 

(18) ®"(X) 

_ g f (1 + m a + /(x)/"(x))(x2 + /(x)2) - 4(x + /(x)/ ' (x))2 

(x2 + / (x) 2) 3 

for x 6 (0, a) 
and 
(19) * ' ( 0 + ) = lim (x) = 2c—pg, 

(20) (0+) = lim *» (*) = - [1 + V 5 r (0+) " 3p2] • 
x—>0+ C L J 

Prom (14) we have 
-F (<p (x)) = $ (x) f (x) for x e (0, a), i.e. - Fotp — $/. 

Hence we obtain 
(21) -ip'F' o <p = + $/'. 
Making use of (13) and (19) we get 
(22) F'(0_) = / ' ( 0 + ) . 
It means that F 6 C1 a). With respect to the condition (8) it is clear 
that the curve T obtained from the graphs of the F and —F is a C1 -curve. 
4. Main theorem for equipower curves 

Differentiating (11) we get 

( 2 3 ) * ( X ) = 2CX ( ^ T f W T 2 4 x2 + /(*)* V W 

for x € , cij . 

Employing (13) and (16) we have 

(24) <p" (0+) = ± 
V c 

We want to show 
(25) F" (0_) = /" (0+). 
For this purpose we differentiate (21) obtaining 

(26) - t f ' F o<p- (cp')2 F" o <p = + 2&f + $/". 
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If x -» 0 + , then making use of (16), (19), (20), (22) and (24) we get 

(27) / " (0+) = ^ (1 + p2). 

The above condition guarantees that F G C2 a) . 
The conditions: T is strictly convex curve and F" is negative are equiv-

alent, so with respect to (26) we have to verify that 

( 2 8 ) F' o rf + g V - y + 2 V + + £ > Q 
XJ Xz X 

Let 

(29) L ^ F ' o 

and 
p = x2<p" — 2x<p' + 2ip + 2 V - c p <p 

XJ XJ X 

Substituting ip, ip' and ip" into (30) we obtain 

(31) l ( x 2 + f ) P 
c 

= 6x2f { f f - Ax3/' - Y l x f f ~ 2 / 3 ( / ' ) * - x4f" + f f - 6x2f + 2 / 3 . 

Now we find the form of L with the help of (21) 
/ / 

F' o <ptp" = F' o <pip — 
ip' 

and 

( 3 2 ) \ (a* + f 2 ) L = X l l ' ; l % ; _ f 2 f i \ - ^ + * x f - 1 2 x 2 f f > 

+ 4 f f + 2x3 { f f ~ 6 x f ( f ' ) 2 + 2 x 3 f f " + 2 x f f ) . 

The inequality (28) can be written in the form 

- ( x 2 + f ) { L + P)>0, 
c 

i.e. 

* X f ~ 2 I J f ' - p i - 2 * 3 + 6 x f 2 ~ 1 2 x 2 f f ' + 4 f 3 f ' + 2 x 3 

- 6 x f (.f'f + 2 x 3 f f + 2 x f f ) + 6 x2f { f f - 4 x 3 f - 12 x f f 

- 2 f { f f - x 4 / " + f f ~ 6 x2f + 2 f > 0. 

The denominator x2 -I- 2 x f f — f2 is negative, so we have 

(x2f - 2 xf - f f ) {—2x3 + 6 x f - 12 x 2 f f + i f f + 2x3 { f f 
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- 6 xf2 {f'f + 2 x 3 / / " + 2xf3f") + (6 x2f(f')2 - 4 x 3 / ' - 12 x f 2 f 

- 2 / 3 ( / ' ) 2 - i 4 / " + / V " - 6 * 2 / + 2 / 3 ) ( x 2 + 2 x / / ' - / 2 ) < 0 . 

2 3 
Collecting terms with / " , / ' , ( / ' ) and ( / ' ) we obtain the following inequal-
ity 

f" ( - x 6 - 3 x 4 / 2 - 3 x 2 / 4 - / 6 ) + / ' ( 2 x 5 + 4 x 3 / 2 + 2 x / 4 ) 

+ ( / ' ) 2 ( - 2 x 4 / - 4 x 2 / 3 - 2 / 5 ) 

+ ( / ' ) 3 ( 2 x 5 + 4 x 3 / 2 + 2 x / 4 ) - ( 2 x 4 / + 4 x 2 / 3 + 2 / 5 ) < 0, 

i.e. 

+ / 2 ) 3 / " + 2 * ( x 2 + / 2 ) 2 ( / ' ) 3 - 2 / ( x 2 + / 2 ) 2 ( / ' ) 2 

+ 2x(x 2 + f2)2f — 2 / ( x 2 + / 2 ) 2 < 0. 

T h e last expression has the form 

i ( x 2 + / 2 ) / " > x ( / ' ) 3 - / ( / ' ) 2 + x / ' - / 

or 

^ 2 + / 2 ) / " > ( x / ' - / ) ( l + ( / ' ) 2 ) . 

Thus we proved the following theorem: 

THEOREM 1. The curve r obtained from the graphs of the F and —F is an 
element of £ (c) if and only if the function f 6 T satisfies the differential 
inequality 

(33) f"(x)> [ l + / ' ( x ) 2 ] for x 6 (0 ,«) 

and (27) 

/ " ( 0 + ) = - ; i ( l + / ' ( 0 + ) 2 ) . 

5. Example 
L e t / ( x ) = (1 - f x 2 ) 1 for x 6 fo, , Fig. 1. 

Notice t h a t 

/ (0 ) = 1 = V c so c = 1, 

f ( x ) = — r < 0 for x € 

( I - ! - 2 ) 8 

/ ' ( 0 ) = 0 , 
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X 

Fig. 1 

L 2 J 

Since f" (0) = -1 , then the condition f" (0+) = ^ ( l + / ' (0+)2) is satis-
fied. 

We verify the condition 2 x f ( x ) f ' ( x ) < f (x)2 - x2 for x e [ 0 , ^ ) . 
Equivalently it means that 

or 
i 
~ i 2 2 

^ 3 

To show the latest inequality we denote by I and p the left and the right 
side of the inequality, respectively . The range of the function I (x) = 
x2 (l - | x 2 ) * defined on [0, is the interval 0, qr . The function p (a:) = 

L O 4 . 

1 + | x 2 considered for x € [0, attains values in the interval [1, §) and it 
is strictly increasing. Thus the condition is satisfied. 

We note that 

<p(x) = j < 0 for a: € [0, 
x1 + ( i - f * 2 ) 5 " " " 2 
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With respect to the previous considerations we have 

<p'(x) = 3 ' 3J < 0 for x € [0,-^-). 
L a + ( 1 - ^ 2 ) 1 ( l - f ^ ) * 

Now we verify the condition / " (x) > 2 ' f f i f c ffl 1 + /' { x ? 

[0, f ) , i.e. 

for x € 

- x 2 _ Ci _ 4<T-2\ 

( l - f x 2 ) ^ x2 + (l-±x2)* 

Simplifying we get the form 

1 + 
x 

( i - f * 2 ) 1 

or the equivalent form 
i 

1 _ i x A 4 ß x A _ + 2 \ _ 2 4 + 3 a , 2 _ 1 > 0 f o r x € 

o / \ y o / y 

Denote by g the left side of the inequality. The function g is a positive-valued 

for x 6 [0, Fig. 2. 
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6. Preliminaries for equichordal extension 
Let B denote the family of all equichordal curves with the axis of sym-

metry and with the equichordal point lying on that axis of symmetry. We 
may assume that the x-axis is the axis of symmetry and the origin O is the 
equichordal point. 

Denote by B(c) the subfamily of B such that 

1° the part of graph of a curve r € B lying in the upper-plane is a graph 
of some function, 

2° the equichordal constant is equal to c, 
3° all curves are of the class C2, possibly without points of intersection 

with the axes of symmetry, 
4° all curves are strictly convex. 

Let r € B. We assume that the graph of a function / : [a — c, a] —• 
[0, +00], where a, c are fixed positive numbers, is the graph of the curve T 
in the upper-plane. Obviously, the complete graph grT of T is formed by 
graphs of the / and —/. We consider a chord 7 of T passing through the 
origin and a point (x, f (x)) € grT, x ^ 0. We denote by (ip (x), —f (ip (x))) 
the coordinates of end-point of 7. 

Then we have the following relations 

/ (s)) Hf) „ c r„ „ m , , , n 1 

(3 4) ^ = — f o r X € la - c, 0) U (0, a] 

and 

( 3 5 ) yjx* + f (x)2 + y V (x) + f (</> ( x ) ) 2 = c . 

Hence we get immediately x (36) ip(x) = x — c—. = for x € [a — c, a]. 
\Jx2 + f (x)2 

It is easy to see that tj) is a strictly decreasing function. 

7. Equichordal extension 
We fix two positive numbers c and a. Let T denote the family of all 

functions / : [0, a] —> [0, +00) satisfying the following conditions: 

(37) / (o) = 0, / ( 0 ) = | , 

(38) / (x) > 0 for x € (0, a), 

(39) / e C 2 (0, a) , 
(40) there exist lim lim/'(x), lim /"(x), x—»0+ x—>0+ 
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(41) lim f ' ( x ) = -oo, x—»a_ 

(42) cxf (x) f (x) < c / 2 (x)-y/x* + f ( x f f o r x G ( 0 , a ) , 

(43) f" (x) < 0 for x € (0, a) . 

Considerations provided below justify above conditions. With each function 
/ G T we associate the function ip : [0, a] —»[0, +oo) given by (36). Since 

(44) $ (x) = 1 + cf (x) X f ' for x € (0, a), 

so the condition (42) means that V* is a strictly decreasing function. We have 

(45) V (0) = 0 and ip(a) = a-c, 

so ip transforms the interval [0, a] onto [a — c, 0] and 

(46) V' (0+) = lim ip'ix) = - 1 -
x—>0+ 

The monotonity of the function ip allow us to extend the function / : [O.a] —> 
[0, +oo) to the function F : [a — c, a] —> [0, +oo) by the rule 

(A7\ FM / / ( r c ) for x € [0, a] 
^ I / (V-"1 (*)) x € [a — c,0). 

The main result in this part says that a curve T obtained from the graphs 
of the functions F and —F is an element of the family B (c). 

We start with an explanation that F € C1 (a — c, a). Let 

(48) tf (x) = ^ = 1 - C for x € (0,a) 
\Jx2 + f ( x f 

and 

(49) P = f (0+) = lim / ' ( x ) . x—»0+ 
Then we have 

(50) *>(x) = c x + f ( x ) f % 

(51) tf"(x) 
(1 + / ' (x) 2 + / (x) /"(x))(x 2 + /(x)2) - 3(x + /(x)/ ' (x))2 

= c-
y / ^ T f W 

for x 6 (0, a) 

and 
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(52) * ' ( 0 + ) = lim *'(x) = -p, 
x—»0+ C 

(53) (0+) = lim (x) = 1 [2 - V + cf" (0+)] . 
X — C 

From (47) we have 
-F (i> (»)) = 9 (x) f (x) for x G (0, a), i.e. = 

Hence we obtain 
(54) -iP'F' o-4> = V f + 
Making use of (46) and (52) we get 
(55) F' (0_) = / ' (0+). 
It means that F e C1 (a — c, a). With respect to the condition (41) it is clear 
that the curve T obtained from the graphs of the F and — F is a C1-curve. 

8. Main theorem for equichordal curves 
Differentiating (44) we get 

(56) V{x)= . , C =r 

x [3a:/2 + r (2 f ~ 4 * 2 / ) + (f'f (*3 - 2 x f ) + f'xf (z2 + /2)] 
for x 6 (0, a). 

Employing (46) and (49) we have 

(57) V"(0+) = V 
c 

We want to show 
(58) F" (0_) = /" (0+). 
For this purpose we differentiate (54) obtaining 

(59) -V>"F' oij) — (ip'f F" oip = 9"f + 29'f + tf/". 
If x 0+, then making use of (49), (52), (53), (55) and (57) we get 

(60) /" (0+) = ~ (l + 2p2). 

The above condition guarantees that F € C2 (a — c,a). 
The conditions: T is strictly convex curve and F" is negative are equi-

valent, so with respect to (59) we have to verify that 

(«D F o + - y + : * * f + + ± r > o. 
X J x z X 
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Let 

(62) 

and 

(63) 

L = F'o W 

p = x2xp" — 2xip' + 2%p + 2 x £ - j L + V» 
X3 X2 X 

Substituting tp, Tp' and ip" into (63) we obtain 

(64) y/^TJ^P = c [ - 2 x 2 f + f3 + 2 x 3 f - Axpf + 3 x 2 f ( f ' f 

+ f" [cf2 + ( y / J + J5 - c ) (x2 + f2)] (x2 + f ) . 

Now we find the form of L with the help of (54) 

L = F' o tpip" = F' o ipxp'^r 
ip' 

and 

(65) y/x2 + p 5L 

-cxf + (cx2 - y/x2 + / 2 3 ) f 

y/x^+p3 + Cf (xf - f ) 

x c [3 x f 2 + f (2 f - 4 X 2 / ) + ( f ) 2 {Xz - 2 xf2) + x f f " {x2 + f2) . 

The inequality (61) can be written in the form \Jx2 + f2 (L + P) > 0, i.e. 

-cxf + (cx2 - y/x2 + / 2 3 ) f 

y/rf + f*3 + cf (xf' - f ) 

x c [3 x f 2 + f (2 f - Ax2f) + i f f (x3 - 2 xf2) + x f f " {x2 + f2) 

+ c [ - 2 x2f + f3 + 2 x3f - 4xf2f + 3 x2f ( f ' f 

+ f" [cf2 + (V^TJ2 - c ) (:e2 + / 2 ) ] (x2 + f2) > 0. 

The denominator yjx2 + f2 + cf (xf — f ) is negative, so we have 

-cxf + (cx2 - y/x2 + / 2 3 ) /'" 

x [ 3 x / 2 + f ( 2 / 3 - 4 x 2 f ) + ( f f {x3 - 2 x f 2 ) + x f f " (x2 + f2) 

+ [V^Tp3 + c f ( x f ' - f ) 
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- 2 x2f + f + 2 x 3 / ' - 4 x f 2 f + 3 x 2 / ( f ) 2 + f 2 f " {x2 + /2)] 

937 

+ y/x^Tf2Ö + c f ( x f ' - f ) l - V ^ T p - l ) {x2 + f2)2 f" <0. 

2 ^ 

Collecting terms with /" , /', (/ ' ) and (/ ' ) we obtain the following inequal-
ity 
( f - x f ' ) 3 { y / ^ + p - c ) 

-I- (xf - f ) ( x + f f ' ) 2 + -c [y/^T]2 - c) \A2 + P5f" < 0 

i.e. 

- c V x * T f 2 f " > ( x f - f ) ( x f — f ) 2 + 2 (x + // ' ) 
„ 2 V x ^ + f 2 

C ~ y / X 2 + P 

The last expression has the form 

x f ' - f 
f" > c 

(x2 + py 
W ~ tf +2- (X + / f ) 2 

v/x2 + p c - ^ T p 

Thus we proved the following theorem: 

THEOREM 2. The curve r obtained from the graphs of the F and —F is an 

element of B (c) if and only if the function f € T satisfies the differential 

inequality 

x f ' - f 
(66) / " ( * ) > (x2 + p ) 

and 

(67) 

( x f ' - f ) 2 n (x + / / f 

v/x2 + p c - ^ T P 

- 2 

for x € (0, a) 

f" ( 0 + ) = — ( l + 2/ ' ( 0 + ) 2 ) . 
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