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ON SOME RIGHT INVERTIBLE OPERATORS 
IN DIFFERENTIAL SPACES 

Abstract. In this paper we consider the right invertibility problem of some linear 
operators defined on the algebra of smooth functions on a differential space. 

1. Introduction 
Since the beginning of the sixties one can observe the increase of num-

ber of works dealing with many different generalizations of a differentiate 
manifold concept. Some natural generalizations appeared independently in 
works of several authors. The motivation for such generalizations has become 
evident in many mathematical problems [l]-[8], [10]—[12]. Also in physics 
there is an urgent necessity to model some physical phenomena on a suffi-
ciently "non-smooth" arena [30]—[32]. The smooth manifold structure breaks 
down especially in the quantum gravity regime of the very early Universe. 
Cosmological singularities require generalized geometric concepts in which 
they could be described and investigated as points inside the space-time. 
However, in the frame of a suitable generalization there should still remain 
some well defined basic geometric concepts. The standard formulation of 
the physical laws is based on differential equations and this seems to be in-
evitable. From this point of view, within a suitable generalization we need, 
certain kind of differential equations should be possible to define. Natu-
rally, an important question will arise then about methods of finding their 
solutions. The main geometric object considered in this paper is the so-
called differential space introduced by R. Sikorski [10]. A differential space 
in the sense of Sikorski is a natural generalization of a real manifold con-
cept and it turnes out to be a geometric version of the algebraic concept 
of a ringed space [23]. Such an approach brings into prominence the fun-
damental fusion of geometry with algebra. Properties of geometric objects 
are recognized from its differential structures which are defined as commu-
tative algebras of the so-called smooth functions or—more generally—as 
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noncommutative algebras which are very attractive in the modern theoret-
ical physics. 

As it was mentioned above, in differential geometry as well as in physics 
one needs notions and methods which have been developed in mathematical 
analysis, for example differential equations and methods telling us how to 
solve them. By a partial differential equation in differential geometry one can 
understand a subbundle of the bundle of jets. This approach in differential 
spaces is proposed in [28]. But the formulation itself does not automatically 
lead to methods of solving such equations since, in particular, in such general 
spaces there can be well defined non-trivial differential operators whereas 
simultaneously it can be no smooth non-constant curves [29]. Therefore the 
hope seems to be in purely algebraic formulation of the necessary concepts of 
mathematical analysis together with the efficient methods for solving prob-
lems. Then differential geometry as well as the necessary analytic methods 
would be organized in a uniform way. Fortunately, since over thirty years 
we observe dynamic development of the algebraic analysis founded by D. 
Przeworska-Rolewicz [13]—[17]. This elegant algebraic approach to differen-
tial equations and integration can naturally be applied in those generalized 
geometric objects. An important and interesting application of algebraic anal-
ysis in differential geometry of manifolds has been shown by G. Virsik [19]. 

2. Preliminaries 
2.1. Differential spaces 

Let M be a non-empty set and C be a set of real functions defined on 
M. The weakest topology on M with respect to which all functions of C 
are continues will be denoted by TC• The continuity of the real functions 
is considered with respect to the usual topology of the one dimensional 
manifold (R, £i). In this paper we will use the notation £n = C°°(Rn), for 
any n € N. 

For any subset A C M, let C& denote the set of all real functions h on 
A such that, for any p € A, there exist an open neighbourhood U €.TC of p 
and a function / € C satisfying the condition h\AnU = /Unl/-

In turn, let scC denote the family of all real functions on M which are 
of the form u o ( / 1 ? . . . , f n ) for some oj € £n, fi, • • • > fn 6 C, and n € N. 

A family C is called a differential structure in the sense of Sikorski on 
M iff C = CM = scC. The elements of a differential structure C are called 
smooth real functions on M. 

The pair (M, C) is said to be a differential space in the sense of Sikorski. 
In the natural way, a differential structure C is a real comutative algebra 

(linear ring) with the pointwise definition of addition and multiplication of 
its elements. 
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For an arbitrary family {{Mj,Cj)}j&j of differential spaces, by their 
Cartesian product we mean the differential space ( X Mj, J] Cj), where 

jeJ jeJ 
n Cj = (sc{7Tj : j G J})m is the initial differential structure induced by 

jeJ 
the natural projections 7r,- : M —> Mj, for j G J . 

Any linear operator D : C —• C satisfying the Leibniz condition D(fg) = 
D(f)g + fD(g), for any f,g G C, is known as the so-called derivative of C. 
The collection of all derivatives defined on a given algebra C will be denoted 
by Der(C) and naturally it is a C-module. 

In differential geometry one defines a tangent vector to a given differential 
space or manifold (M, C) at a point p G M as a linear mapping vp : C —• R 
satisfying the Leibniz condition vp(fg) = vp(f)g(p) + f (p)vp, for all / , g G C. 

Equivalently, a mapping vp : C —• M is a tangent vector to a differential 
space (M , C) at a point p G M, if for any natural n G N, u> G £n and 
/ i , . . . , / „ G C, the following chain rule 

n 
° (/l, . • . , fn)) = fn (p)) • Vp(fi) 

i= 1 
is satisfied [26]. 

The family of all tangent vectors to (M, C) at p G M is a linear space 
over R denoted by TPM. Of course, the addition of tangent vectors and the 
multiplication by scalars are defined in the pointwise manner. 

Then by a tangent vector field to ( M , C ) we mean any mapping V : 
M (J TpM, such that V(p) G TpM, for any p G M. 

peM 
A tangent vector field V is said to be smooth tangent vector field to 

(M, C) if, for any / G C, the real function g : M —> R, defined by g(p) = 
V(p)f, for any p G M, is a smooth function, i.e. g G C. 

The family of all smooth tangent vector fields to a given differential 
space (M, C) will be denoted by Vec(M, C) and in a natural way it also is 
a C-module. 

The mapping $ : Der(C) 3 D >-> Vd G Vec(M,C) defined by the 
formula Vjj(p)f = ( D f ) ( p ) , for any / G C and p G M is an isomorphism 
of C-modules. Its inverse <J>-1 : Vec(M,C) 3 V h-> Dy G Der(C) is given 
by (Dvf){p) = V(p)f, for any / G C and p G M. On the strength of this 
isomorphism the derivatives and smooth vector fields are often identified. 

For any differential space (M, C), a derivative D G Der(C) can be equiv-
alently characterized by the chain rule 

D(u O (A,..., /n)) = o (A,..., /„) • D(fi), 
¿=1 

where w 6 i n , / i l . . . , / n e C and n G N. 
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If a differential space (M , C) is a differentiable manifold, the derivation 
Dy associated with a smooth vector field V can be identified with its Lie 
derivative Ly • C —• C. 

The operators mentioned above are known as vector fields or derivatives 
of the first order. Their higher order counterparts will be defined below. 

For a differential space (M, C), given point p G M and a natural number 
m G N, let us take out the ideal a™ from the ring C, namely 

<*? = {(/l - flip)) • ••••(fm-fm(p)) :/:,..., fm€C}. 
Then, for any k G N, by a k-th order tangent vector to (M, C) at a point 
p € M we mean any linear mapping vp : C —> R satisfying the following 
conditions: 

vP(f) = 0 , 

whenever f € C is a constant function and 

vp\akp+1 = 0 . 
It is an easy task to show that in the case when k = 1 the concept of a 
1-st order tangent vector coincides with the previous definition of a tangent 
vector to (M, C) at a given point p € M, based on the Leibniz condition. 

In general, for the k-th order tangent vectors we have the generalized 
chain rule [26] 

vfXu o CA, . . . , / „ ) ) = £ £ • • •' /»(?))• 

771=1 I < n < . . . < i m <n 

•4k)((fn-fn(p))'----(fim-fim(p)))-
The collection Tpk^M of all tangent vectors to (M, C) at p € M, for any 

k e N, is naturally a linear space over R, and it is called the k-th order 
tangent space to (M, C) at p € M. 

If (M, C) is a differentiable space of constant dimension (a differentiable 
manifold, in particular) of the dimension dim(M, C) = n, n £ N, such 
that for any point p € M there exists a vector basis V\,... ,Vn G Vec(U) 
on an open neighbourhood U of p satisfying the condition [Vi, Vj] = 0, 
for i, j = 1 , . . . , n , then the k-th order tangent space to (M, C) has the 
dimension [26, 20] 

In a general case of a differential space (M, C) the above formula gives only 
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the upper bound of the dimension, namely 

Example 2.1.1. Let us consider the differential space (M, C), being the 
differential subspace of the plane ( R 2 , £2), such that M = {(x,y) 6 R2 : 
xy = 0} and C = £<IM- At the point (0,0) we have dim T^^M = 2 
since any tangent vector to (M, C) at (0,0) is defined by its values on the 
restrictions K\\M and where 7ri,7ri are the usual projections. So we get 
n = 2. In turn, any tangent vector of the 2-nd order must be defined on 
IF\\MI NI\M and additionally on their products IT^M • ITJ\MI for H J G 1,2 (see 
[26]). Since in our case one of the products vanishes, namely tti|m -7r2|M = 0, 
we obtain only four linearly independent tangent vectors of the 2-nd order 
and consequently dim T ^ ^ M = 4, whereas for the whole plane we have 

dim T(
(
0
2)

0)R2 = 5. 

Now, a mapping V : M —• U Tpk^M, where k € N, is said to be a fc-th 
peM 

order tangent vector field to (M, C) if V(p) e T^M, for any p € M. A fc-th 
order tangent vector field to (M, C) is said to be smooth if, for any / € C, 
the function g : M —> R, defined by g(p) = X(p)f, is smooth, i.e. g € C. 
Naturally, the collection of all smooth fc-th order vector fields to (M, C) is 
a C-module, and will be denoted by Vec^(M, C). 

Every smooth fc-th order tangent vector field V e Vec^ (M, C) gives rise 
to the so-called fc-th order derivative Dy C —> C of the ring C, defined by 
(Dvf)(p) = V(p)f, for any / 6 C. The collection of all k-th order derivatives 
of the algebra C will be denoted by Der^ (C). On the other hand, for any 
D e Der^(C) we define VD € Vec^(M, C) by VD(p)f = (Df){p), for any 
/ € C and p€ M. 
E x a m p l e 2 . 1 . 2 . Let Du ..., Dk € Der(C), k e N. Then D = D1o...oDke 
DeAk\C) and VD € FecW(M,C). 

2.2. Right invertible operators 
For the reader's convenience we give here a short survey of the basic 

concepts concerning the right invertible operators but the comprehensive 
treatment of the topic one will find in references [13]-[17]. 

Let X be a real linear space and L(X) be the family of all linear operators 
in X with the domains being linear subspaces of X. Then, for any A G L(X), 
let VA denote the domain of A and let L0(X) = {,4 6 L(X) : VA = X}. 

A linear operator D : Vjy —> X, where T>D C X is a linear subspace 
(the domain of D), is said to be a right invertible operator if there exists a 
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linear operator R G LQ(X), the so-called right inverse of D, such that the 

composition of the mappings is the identity on X , i.e. DR = I. 
The collection of all right invertible operators will be denoted by 7Z(X). 

In turn, the set of all right inverses of a given D € TZ{X) will be denoted by 
IZD or as an indexed family, i.e. 7ZD = {/Lyl-y^r-

If R G IZD is a given right inverse of D € TZ(X), then the family IZD can 
be characterized by 1ZD = {R + (/ - RD)A : A G L0(X)}. 

For any x G X and y G X such that Dy = x we say that y is a primitive 
element of x. Hence, for any x 6 X and R G 7ZD the element Rx is a 
primitive element of x. 

The set of all primitive elements of a given x G X is called the indefinite 
integral of x G X and will be denoted by I(x). 

The kernel ZD = ker(D) is called the space of constant elements of D. It 
is easy to see that LLDx = 1LDx + ZD = {RX + (I - RD)Ax : A G LQ(X)} = 
Rx + ZD, for any given R € 7ZD and any non-zero element x € X. 

S o w e g e t l ( x ) — TZQX + ZD = Rx + ZD, for a n y x € X a n d R G IZD-

Any projection F of X onto ZD, i.e. F2 = F and IM F = ZD, is said 
to be an initial operator for D. Let us denote by TD the family of all initial 
operators for a given D G 1Z(X). We say that an initial operator F € TD 
corresponds to RE IZD if additionally FR = 0. 

The two families IZD and F e TD uniquely determine each other. Indeed, 
for any R € IZD w e define F = I — RD 6 TD- The converse is given by the 
formula R — RI — FR\, where i?i G TZD can be any since the result does not 
depend on the choice of R\. Thus, for any 7 G T we have F1 = I—R^D G TD 
and consequently we can write TD = {F7}7er- By a simple calculation one 
can show that FAFP = FP and FPRA = RA - RP, for any a, ¡3 G T. 

For any indices A, (3,7 G F, one can also prove that FpR^ — FaRy = 
FpRa, which means that in fact the left side of this equation does not depend 
on 7. Hence one can define the operator of definite integration = FpR^ — 
FaR-f, for any a, /?, 7 G T. 

Amongst many properties of the operator /f there is /f D = Fp — Fa or 
equivalently x = Fpx — Fax, for any x G T>D-

For any initial operator F and x G X, the element Fx G T>D is called the 
initial value of x. Hence, for any x G X and its arbitrary primitive element 
y G X, i.e. Dy = x, we get x = Fpy — Fay G T>D which is called the 
definite integral of x. 

3. Linear operators and their integral mappings 
Let (M, C) be a real differentiate manifold and V be a smooth vector 

field on (M, C). Then a smooth mapping 7 : (A, ¡3) —• M is said to be an 



Some right invertible operators 911 

integral curve of V if 

( V / ) ( 7 ( 0 ) = ( / ° 7 ) ' ( t ) , 

for any function / 6 C and t € (a, (3). The problem however can appear 
when (M, C) is a general geometric object, as for example a Sikorski differen-
tial space or a Frolicher smooth space [10,4]. Namely, there exist "rough" dif-
ferential spaces in which there is no nonconstant smooth curve in the above 
sense and consequently no candidates for an integral curve of a nonzero 
vector field. Such a situation illustrates the following example. 

E X A M P L E 3.1. Let us take (Q, £IQ). Then all smooth mappings 

are constant mappings. In turn, if we take the set of rational numbers Q as 
the subspace of the real line (R, £{) in the Frolicher category [4], we obtain 
even worse result: all structure curves are constant and all real functions 
defined on Q become smooth. 

Therefore it seems reasonable to consider a generalized concept of an in-
tegral curve for a linear operator defined on the algebra of smooth functions 
of some differential space. 

Let (A, A) and (M, C) be two Sikorski differential spaces, 7 : (A, A) —> 
(M, C) be a smooth mapping and let D be a right invertible linear operator 
defined on A. Then, we will say that the mapping 7 is a D-integral mapping 
of a linear operator V defined on C if 

(V7)o7 = D ( / O 7 ) . 
This concept we can illustrate with the well known example. 

E X A M P L E 3 . 2 . Let us take 7 : ( ( A , / 3 ) , C ° ° ( A , / 3 ) ) -> ( M , C ) , where ( M , C ) 

is a differentiate manifold and let D = ^ be the chosen right invertible 
operator defined on C°°(< a, ¡3 >). Then every integral curve 7 of a vector 
field V 

is automatically a ^-integral mapping of this vector field since 

[ V f ) o 1 = j t { f o 1 ) , which we can write equivalently as (V f){~l{t)) = { f ° l ) ' ( t ) , for any t € (a, (3). 

Another example illustrates an integral mapping of a smooth vector field 
defined in a differential space in which there are no non-constant smooth 
curves in the usual sense. 
E X A M P L E 3 . 3 . Obviously, every smooth mapping in differential spaces is 
continuous. It is also known that every continuous mapping from R into 
Q with respect to the natural topologies is a constant mapping. Therefore 
we conclude that every usual smooth curve in Qn, i.e. a smooth mapping 
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7 : (R, €i) —• (Qn,£nqn) is necessarily a constant mapping. On the other 
hand in the differential space (Qn, £nQ") there are nontrivial smooth vector 
fields as for example the partial derivation D\ : £\QN —• £ll(jn defined on the 
structure generators 7rj|Qn by Din^qn = Su where 7T{ : Rn B (x i , . . . ,xn) t-> 
Xj € R, i = 1 , . . . , n. In particular, for n = 1, we get the differential space 
(Q,£iq) and the non-zero derivative D = D\. Thus, the embedding 7 : Q 3 
t (t,q) G Qn, for any q € Qn _ 1 , is a ZMntegral mapping of a linear 
operator D\ defined on £NQN • 

If an operator V defined on the algebra C of smooth functions of a given 
differential space (M, C) is right invertible and 7 is a ZMntegral mapping 
of V, we can calculate its right inverse in the following way. Denote by RY 
a right inverse of V and by RQ a right inverse of D. Then by definition we 
write the formula ( V R Y F ) 07 = D((RYF) o 7) from which we obtain 

(Rvf) 07 = RD(/ 0 7)-
Now we need to eliminate 7 from the left side of the above formula. In 

the differentiable manifold case this problem was investigated and solved by 
G.Virsik [19]. 

4. Examples and applications 
Many basic examples of right invertible operators one can find in Ref. [13]. 

Here we consider mainly certain cases which have some geometric or physical 
interpretation. 

4.1. Discrete differential spaces 
In the framework of differential spaces there are geometric objets with 

a discrete structure. Some discrete spaces (so called lattices) have also been 
considered in physics. Therefore the study of discrete cases is also motivated. 
Before we pass to examples we propose here a special case of the concept of 
a ci-dimensional discrete differential space. 

According to the Sikorski definition of a differential subspace, for any 
differential space (M,C) and a subset A C M one defines a differential 
subspace (A, CA), where CA is the initial differential structure on A induced 
by the inclusion mapping T: A —• M. 

Let Z = { . . . , —1,0,1,...} be the set of integers. Then, for any fixed 
d € {1,2,...}, on the subset Zd C Md we assume the initial differential 
structure C(Zd) = £dzd- fa^i the elements of C(Zd) are real generalized 
sequences, so we can write C(Zd) = Thus we obtain (Zd,C(Zd)) as 
a differential subspace of the Euclidean manifold (Rd, £<i)- We will refer to 
(Zd, C(Zd)) as to the discrete d-dimensional Euclidean space since it is the 
discrete analog of the Euclidean d-dimensional manifold (Rd, £d)-
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The usual concept of a tangent vector becomes trivial in this discrete case 
since all tangent vectors are reduced to the single zero valued functional. 
Consequently, in the usual framework applied to the discrete case there is 
no nontrivial tangent objects. Hence, in a discrete case it seems natural to 
replace the usual notion of a tangent vector by some discrete substitute. 
However, the discrete substitutes of tangent vectors and the tangent vector 
fields do not fulfill the Leibniz condition. Moreover, they are even not the 
local operators. But, on the other hand, they are very much in a "logic" 
relation with their usual counterparts and due to D. Przeworska-Rolewicz 
we have the well developed calculus on such operators, which realizes max-
imum possible analogy with their smooth version. Thus, by discrete partial 
derivatives in the above space (Zd, C(Zd)) we shall mean the linear difference 
operators 

Di : C(Zd) 3 x i-» DiX € C{Zd), 

(DiX)n = X n — Xn, 

where l j € Zd is defined as (li)fc = (Kronecker delta), i, k = 1 , . . . , d and 
n e 1d. As the C(Zd)-module Der(C(Zd)) of discrete derivatives we take all 
linear combinations of the discrete partial derivatives Di, i = 1 , . . . , d, with 
coefficients from C(Zd). 

By a tangent vector to (Zd, C(Zd)) at a point n € Zd we shall mean any 
real functional Di(n) defined by Di{n)x = (Dix)n . Then, the the tangent 
space to (Zd, C{Zd)) at a point n E Zd is assumed to be the linear space TnZd 

of all linear combinations of the functional Di(n), i = 1 , . . . ,d, with coef-
ficients from R. Therefore d = dim TnZd, for any n € Zd, and by definition 
we will refer to d as to the discrete dimension of (Zd,C(Zd)). 

Correspondingly, by a tangent vector field we understand here any map-
ping 

V:Zd-+ (J TmZd, 
me zd 

such that V(n) € TnZd, for any n € Zd. Vector fields and derivatives de-
fined above uniquely determine each other via formulae V/j(n)x = (Dx) n 

and (Dvx)n = V(n)x. Following the smooth case, we will identify the two 
concepts. 

By a discrete curve in (Zd, C(Zd)) we shall understand here any mapping 
7 : Z 3 t ^ 7(i) € Zd. 

In turn, we consider here a discrete curve 7 to be a A-integral curve of 
a derivative D if 

(Dx) 0 7 = A(xoj), 
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which we can write equivalently in the standard sequence notation as follows 

(Dx)l(t) = ®7(t+l) ~ ®7(t)i 
where A, is given by (A|) t = £ t + i - for any £ € C(Z) and t e Z (see 
Sec.3). 

Before passing to higher dimension d let us consider the example which 
is a slight modification of the example given in Ref.[13]. 

EXAMPLE 4.1.1. In the discrete differential space (Z, Rz) consider the oper-
ator D of the discrete derivation, (Dx)n = xn+i — xn , for x € Rz and n € Z. 
Then one of its right inverses is given by 

(Rx)n ---

0 
- J2 xm n < 0 

m—n 
0 for n — 1 

n—1 
E ïm n > 1 m=1 

The initial operator F corresponding to this inverse R assigns to each se-
quence x the constant sequence of the value x\. Other initial operators, 
corresponding to the other right inverses, assign to each sequence x the con-
stant sequence of the value X2, X3,..., etc. In particular, the above formula 
describes the right inverse of the restriction of D to RN which coincides with 
the example given in [13]. 

Let us assume the notation for some functions which will be used in the 
examples below. At first, by the brackets [ • ] we denote the integer value 
function ("valeurs entières" function). Then, let 

J 0 for t <0 
x ( i ) = \ i t > 0 ' 

and, for any T > 0, let rçr(t) = x(i — T) + x(i) - 1, A +(<) = - x ( i ) [TT] , 

EXAMPLE 4.1.2. Consider the discrete space (Z,Mz). For a fixed k e N let 
us define the following difference operator D^ by (D^x)n = xn+k — xn, 
for any x G and n 6 N. 

Naturally, 
DW = D is the usual discrete derivation as in Ex.3.1.1, and 

, fc-i 
we have the relation (D^ 'x) m=0 

We see that the space of constants ZD(k) consists of all periodic sequences 
with the period k G N. 

The operator for any fee N, is right invertible and one of its right 
inverses is given by the formula 
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A + («) 
(.R{k)x)n = rjk(n) J2 Xn-mk-

m=Aj~ (n) 

Thus, the family of all right inverses of DW i s given by 

KdW = { R w + (J - R^k)D^)A : A 6 L0(RZ)}. 

The initial operator F ^ of D ^ corresponding to R ^ is given by ( F ^ x ) n = 

If we restrict ourselves to the subspace (N, RN) and consider the operator 
acting on we get its right inverse in the simpler form 

Inrl 
(,R^ = ^ ' ^n-m-ki 

m=1 
0 

we assume to give always zero. 
m = l 

More general case we get for higher dimension d. 
EXAMPLE 4.1.3. Let us consider the discrete d-dimensional Euclidean space 
(Zd, C(Zd)), for a fixed d = 1,2, . . . , and define the following partial differ-
ence operator by 

(£>j- ^x)n = a;n+fcj. — xn, 

for given k e N, % € {1 , . . . , <2} and any n € Zd. The operator D^ is right 
invertible and its right inverse is given by 

A+Mn)) 
{R^k)x)n = 77fe(7Ti(n)) Y , Xn-mk !<» 

m=X~ (iTi(n)) 

where 7Tj(n) = nj, for any n = (rai,. . . , nj) e Zd. 
If we put k = 1 in the above example we obtain the discrete partial 

derivations D^ = Di, for i = 1 , . . . ,d. In this case the initial operator F{ 
corresponding to the above inverse Ri assigns to each sequence x G C{Zd) = 
Rz<< the sequence Fix such that (Fj i ) n = From other initial 
operators we get sequences with their components given by I„_(7ri(n)+m)i i) 
where m €Z. 

Hence, the initial subspaces are given as the inverse images 7rl~1(m), for 
m € Z (for the manifold case compare [19]). If k > 1 the initial subspaces 
are "thicker" and they are given by 7rt

_1({m + l , m + 2 , . . . ,m + fc}), for 
m e Z. 
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For higher order difference operators (discrete derivations, in particular) 
which are of the simple form D^ o . . . o s e N, at first we obtain 

their right inverses as the compositions R^ o ... o D*1, where = I, 
for j = 1, . . . , s. Then, the remaining right inverses we get by t¿e routine 
manner mentioned in Sec.2.2. 

Let us notice that the operators considered in this section can be uni-
formly interpreted within the class of all linear combinations of the transla-
tions Sk (which are invertible operators) defined on Zd by (Skx)n = xn+k, 
for x € C(Zd), fc, n í Z . For example the usual discrete derivation D, its 
second power D2 and the difference operator defined in C(Z), can be 
expressed as D = S\ — So (of course So = J), D2 = S2- 2Si - So and 

= S2 — So. Therefore the linear space of all linear combinations 

ciSk! + • • • + csSka, 

where c i , . . . ,c s 6 R, ki,... ,ks 6 Zd, s € N, contains the operators con-
sidered above. The linear combinations of translations are the non-local 
operators, which has some mathematical as well as physical consequences. 

4.2. Right inverses of finite difference operators 
In the present section we give the modification of the results achieved 

in the above discrete case. Namely, we consider differential spaces (R, C(R)) 
with the differential structure C(R) invariant under certain translations. 
Let T > 0 and ST : C(E) -* C(R), ( S T f ) ( T ) = S(t + T). We will say 
that a differential structure C(R) is Sr-invariant if for any / 6 C(R) also 
StF € C(R). For example £\ is St-invariant, for any T 6 R, whereas the 
differential structure (sc{id^ , | • |})R, where | • | stands for the absolute value 
function, is not Sr-invariant for T ^ 0 since, for example, St\ • \ C(M). 

EXAMPLE 4.2.1. Let C ( R ) = R r and D ^ be the difference operator defined 
on R® by the formula {D^f)(t) = f(t + T ) - f(t), for a fixed T > 0. Its 
space of constants ZD(t) consists of all periodic functions with the period 
T. One of the right inverses of D V 

is given by the formula 

A+(t) (R^f)(t)=r,r(t) £ f(t-mT). 

m—A^ (i) 

Hence, we obtain 

UD(T) = {R{t) + ( I - : A € L0(Rr)}. 

In turn, the indefinite integral of any element / 6 R r is of the form 

1 ( f ) = nDlT)f + ZD = {RfVf + u-.u€Zd}. 
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For the operator £>(T) defined on the space R r + = { / : (0, +00) —> R} 
one of its right inverses is given by 

-[l-—] 
( R ^ f ) ( t ) = £ T / ( i - m T ) , 

m=l 

and analogously 1 ( f ) = {R^f + u : u € ZD}. 

In this context it is natural to mention about the difference quotient 
operator. 

EXAMPLE 4.2.2. Let T > 0, be as in Ex.4.2.1 and let us consider the 
difference quotient operator A ^ = defined on M® by 

( A < T , / ) ( 1 ) = / ( 1 ± M ) . 

From the Ex.4.2.1 it becomes evident that ACO is right invertible and 
Ka(T) = {TR^ : RW € n D m } . 

In some applications we cut off an internal piece of a function and then 
bring closer or even glue together the two parts. A simple example of such 
an operation illustrates the following example. 

EXAMPLE 4 .2 .3 . For any fixed a € R and T > 0 , let us consider the operator 
DQ defined on R r by the formula 

« » I A " : ; : 
The space Zpr of constants of Dj consists of all functions u such that 
u | (-oo,a)u<a+T,+oo) = 0- We see that is a right invertible operator. Indeed, 
a right inverse R^ of can be defined by 

' f { t ) t < a 

( R l f ) ( t ) = 9(t) for a < t < a + T , 

f ( t ) t > a + T 

where g :< a, a + T) —• R is an arbitrary function. 

4.3. Final remarks 
Let us end this paper with some remarks concerning the right invert-

ibility of operators defined on geometric objects which are not differentiable 
manifolds and then applications of the algebraic analysis in physics. 
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It is known that every finite dimensional differentiable manifold ( M , C) 
can be embedded in a Euclidean manifold (RN , £/v) of a sufficiently high 
dimension N € N. Therefore, without loosing generality, we can assume 
(M, C) to be a submanifold of (RN,£N). According to this assumption we 
can write M c R N and C = (£N)M• More general result is known for differ-
ential spaces as well as for the Frolicher spaces. Namely, every differential 
space (M, C) with the Hausdorff topology can be embedded in the Carte-
sian product (R c ° ,£ ) where C is generated by Co and £ is generated by 
the family of projections {-Kf : f & Co}. For an infinite set CQ the Cartesian 
product (Rc°, £) is not a differentiable manifold. Since the infinite Cartesian 
product, each factor being R, is not a Banach space, the resulting differen-
tial space cannot be considered as a smooth Banach manifold. Then, let us 
consider the differential space(M<Q, CMq),where MQ = M l~l Q c ° . It is not a 
differentiable manifold either, even if Co is finite. It is, however, a differential 
space with the underlying set being a dense subset in M. However, in the 
above cases the differential spaces are " close" to manifolds in a certain sense 
as they are of constant differential dimension [24, 25]. 

Therefore the results presented in [19] cannot be applied directly in such 
cases but they can be efficiently adapted after necessary modification, in 
particular with the help of the concept of a ZP-integral mapping. 

Another interest is related with the right invertibility of linear operators 
defined in differential groups, which are groups and simultaneously differen-
tial spaces. Originally the notion of a differential group is due to K. Spallek 
[9] but in the sense of Sikorski they were investigated in [21, 22, 29]. Let 
us mention only that any Lie group is an example of a differential group. 
It has been proved [22, 29] that the Cartesian product of any family of dif-
ferential groups is a differential group. In general, this statement does not 
hold for Lie groups since an infinite product of manifolds is not a manifold. 
Differential groups are always of constant differential dimension and they 
have elegant left invariant vector fields which are complete provided their 
integral curves in some sense are well defined. In a close relation to iffer-
ential groups there are the so-called G-spaces, which are differential spaces 
on which acts a differential group. Difference operators can be investigated 
on their structure functions and their right invertibility is an open prob-
lem. However, one can easily notice that, for a given element g of a group 
G, the space of all constants of the translation ( D g f ) ( x ) = f(gx) is the 
family of all g invariant functions (which generalizes the concept of peri-
odic functions). In physics, the noncommutative geometry is a big interest. 
Therefore applying general methods of the algebraic analysis (differential 
equations, in particular) to noncommutative rings, should bring interesting 
results. 
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