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ON SOME RIGHT INVERTIBLE OPERATORS
IN DIFFERENTIAL SPACES

Abstract. In this paper we consider the right invertibility problem of some linear
operators defined on the algebra of smooth functions on a differential space.

1. Introduction

Since the beginning of the sixties one can observe the increase of num-
ber of works dealing with many different generalizations of a differentiable
manifold concept. Some natural generalizations appeared independently in
works of several authors. The motivation for such generalizations has become
evident in many mathematical problems [1]-[8], [10]-[12]. Also in physics
there is an urgent necessity to model some physical phenomena on a suffi-
ciently "non-smooth” arena [30]-[32]. The smooth manifold structure breaks
down especially in the quantum gravity regime of the very early Universe.
Cosmological singularities require generalized geometric concepts in which
they could be described and investigated as points inside the space-time.
However, in the frame of a suitable generalization there should still remain
some well defined basic geometric concepts. The standard formulation of
the physical laws is based on differential equations and this seems to be in-
evitable. From this point of view, within a suitable generalization we need,
certain kind of differential equations should be possible to define. Natu-
rally, an important question will arise then about methods of finding their
solutions. The main geometric object considered in this paper is the so-
called differential space introduced by R. Sikorski [10]. A differential space
in the sense of Sikorski is a natural generalization of a real manifold con-
cept and it turnes out to be a geometric version of the algebraic concept
of a ringed space [23]. Such an approach brings into prominence the fun-
damental fusion of geometry with algebra. Properties of geometric objects
are recognized from its differential structures which are defined as commu-
tative algebras of the so-called smooth functions or—more generally—as
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noncommutative algebras which are very attractive in the modern theoret-
ical physics.

As it was mentioned above, in differential geometry as well as in physics
one needs notions and methods which have been developed in mathematical
analysis, for example differential equations and methods telling us how to
solve them. By a partial differential equation in differential geometry one can
understand a subbundle of the bundle of jets. This approach in differential
spaces is proposed in {28]. But the formulation itself does not automatically
lead to methods of solving such equations since, in particular, in such general
spaces there can be well defined non-trivial differential operators whereas
simultaneously it can be no smooth non-constant curves [29]. Therefore the
hope seems to be in purely algebraic formulation of the necessary concepts of
mathematical analysis together with the efficient methods for solving prob-
lems. Then differential geometry as well as the necessary analytic methods
would be organized in a uniform way. Fortunately, since over thirty years
we observe dynamic development of the algebraic analysis founded by D.
Przeworska-Rolewicz [13]-[17]. This elegant algebraic approach to differen-
tial equations and integration can naturally be applied in those generalized
geometric objects. An important and interesting application of algebraic anal-
ysis in differential geometry of manifolds has been shown by G. Virsik [19].

2. Preliminaries
2.1. Differential spaces

Let M be a non-empty set and C be a set of real functions defined on
M. The weakest topology on M with respect to which all functions of C
are continues will be denoted by 7¢. The continuity of the real functions
is considered with respect to the usual topology of the one dimensional
manifold (R, £1). In this paper we will use the notation £, = C*(R"), for
any n € N.

For any subset A C M, let C4 denote the set of all real functions & on
A such that, for any p € A, there exist an open neighbourhood U € 7¢ of p
and a function f € C satisfying the condition hlany = flanv.

In turn, let scC denote the family of all real functions on M which are
of the form wo (fi,..., fn) for some w € &,, f1,...,fn € C,and n €N.

A family C is called a differential structure in the sense of Sikorski on
M iff C = Cpy = scC. The elements of a differential structure C are called
smooth real functions on M.

The pair (M, C) is said to be a differential space in the sense of Sikorski.

In the natural way, a differential structure C is a real comutative algebra
(linear ring) with the pointwise definition of addition and multiplication of
its elements.
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For an arbitrary family {(M;,C;)}jes of differential spaces, by their

Cartesian product we mean the differential space (_XJMj, HJ C;), where
J€ J€

[1 C; = (se{mj : j € J})m is the initial differential structure induced by

jeJ

%he natural projections m; : M — Mj, for j € J.

Any linear operator D : C — C satisfying the Leibniz condition D(fg) =
D(f)g+ fD(g), for any f,g € C, is known as the so-called derivative of C.
The collection of all derivatives defined on a given algebra C will be denoted
by Der(C) and naturally it is a C-module.

In differential geometry one defines a tangent vector to a given differential
space or manifold (M, C) at a point p € M as a linear mapping v, : C — R
satisfying the Leibniz condition vy(fg) = vp(f)g(p)+ f(p)vp, for all f,g € C.

Equivalently, a mapping v, : C — R is a tangent vector to a differential
space (M,C) at a point p € M, if for any natural n € N, w € &, and
f1,---, fn € C, the following chain rule

vp(wo (fl’ .- ,fn)) = Zwl,i(fl(p)v . af’n(p)) ’ vp(fi)
i=1

is satisfied [26].

The family of all tangent vectors to (M, C) at p € M is a linear space
over R denoted by T, M. Of course, the addition of tangent vectors and the
multiplication by scalars are defined in the pointwise manner.

Then by a tangent vector field to (M,C) we mean any mapping V :

M — U T,M, such that V(p) € T,M, for any p € M.
peM

A tangent vector field V is said to be smooth tangent vector field to
(M, C) if, for any f € C, the real function g : M — R, defined by g(p) =
V(p)f, for any p € M, is a smooth function, i.e. g € C.

The family of all smooth tangent vector fields to a given differential
space (M, C) will be denoted by Vec(M,C) and in a natural way it also is
a C-module.

The mapping ® : Der(C) 3 D — Vp € Vec(M,C) defined by the
formula Vp(p)f = (Df)(p), for any f € C and p € M is an isomorphism
of C-modules. Its inverse &~ ! : Vec(M,C) 3 V + Dy € Der(C) is given
by (Dv f)(p) = V(p)f, for any f € C and p € M. On the strength of this
isomorphism the derivatives and smooth vector fields are often identified.

For any differential space (M, C), a derivative D € Der(C) can be equiv-
alently characterized by the chain rule

Dwo (fi,.., fa)) =Y _wjio (f1,-.., fa) - D(f3),

i=1

where w € &,, f1,...,fn € Cand n € N.
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If a differential space (M, C) is a differentiable manifold, the derivation
Dy associated with a smooth vector field V' can be identified with its Lie
derivative Ly : C — C.

The operators mentioned above are known as vector fields or derivatives
of the first order. Their higher order counterparts will be defined below.

For a differential space (M, C), given point p € M and a natural number
m € N, let us take out the ideal o}’ from the ring C, namely

a;)nz{(fl_fl(p))""'(fm_fm(p)):fla-“,fmec}'

Then, for any k € N, by a k-th order tangent vector to (M,C) at a point
p € M we mean any linear mapping v, : C — R satisfying the following
conditions:

vp(f ) =0 )
whenever f € C is a constant function and

vp|a£+1 =0.

It is an easy task to show that in the case when k& = 1 the concept of a
1-st order tangent vector coincides with the previous definition of a tangent
vector to (M, C) at a given point p € M, based on the Leibniz condition.

In general, for the k-th order tangent vectors we have the generalized
chain rule [26]

k
o wo(fi,. o fa) =3 X W (A®)--, fa(p))-

m=1 1<i1 <. Sim<n
W ((fiy = Fu (@) -+ (fim = Fim (D))

The collection T,Sk)M of all tangent vectors to (M, C) at p € M, for any
k € N, is naturally a linear space over R, and it is called the k-th order
tangent space to (M,C) at pe M.

If (M, C) is a differentiable space of constant dimension (a differentiable
manifold, in particular) of the dimension dim(M,C) = n, n € N, such
that for any point p € M there exists a vector basis V3,...,V, € Vec(U)
on an open neighbourhood U of p satisfying the condition [V;,V;] = 0,
for i,7 = 1,...,n , then the k-th order tangent space to (M,C) has the
dimension [26, 20]

k —
dim TEM =3 <”+m 1).

m=1 m

In a general case of a differential space (M, C) the above formula gives only
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the upper bound of the dimension, namely

) k [(n +m-1

dim T®MM < m§=jl ( - ) .

EXAMPLE 2.1.1. Let us consider the differential space (M,C), being the
differential subspace of the plane (R2, &), such that M = {(z,y) € R? :
ry = 0} and C = &p. At the point (0,0) we have dim ToqM = 2
since any tangent vector to (M, C) at (0,0) is defined by its values on the
restrictions my|ps and my)p7, where my,m; are the usual projections. So we get
n = 2. In turn, any tangent vector of the 2-nd order must be defined on
T1\M, T1m and additionally on their products m; s - 7 um, for 4, j € 1,2 (see
(26]). Since in our case one of the products vanishes, namely myjps - pr = 0,
we obtain only four linearly independent tangent vectors of the 2-nd order

and consequently dim T((O2 )o)M = 4, whereas for the whole plane we have
dim TopR? = 5.

Now, a mapping V: M — U TF M, where k € N, is said to be a k-th
pe
order tangent vector field to (M, C) if V(p) € T,Sk)M , foranype M. A k-th
order tangent vector field to (M, C) is said to be smooth if, for any f € C,
the function g : M — R, defined by g(p) = X(p)f, is smooth, i.e. g € C.
Naturally, the collection of all smooth k-th order vector fields to (M, C) is
a C-module, and will be denoted by Vec®) (M, C).

Every smooth k-th order tangent vector field V € VecF) (M, C) gives rise
to the so-called k-th order derivative Dy : C — C of the ring C, defined by
(Dvf)(p) = V(p)f, for any f € C. The collection of all k-th order derivatives
of the algebra C will be denoted by Der(®)(C). On the other hand, for any
D € Der*)(C) we define Vp € Vec®)(M, C) by Vp(p)f = (Df)(p), for any
feCandpe M.

EXAMPLE 2.1.2. Let Dy,...,Dy € Der(C), k € N. Then D = Djo...0oDy €
Der®(C) and Vp € Vec® (M, C).

2.2. Right invertible operators

For the reader’s convenience we give here a short survey of the basic
concepts concerning the right invertible operators but the comprehensive
treatment of the topic one will find in references [13]-[17].

Let X be a real linear space and L(X) be the family of all linear operators
in X with the domains being linear subspaces of X. Then, for any A € L(X),
let D4 denote the domain of A and let Lo(X) = {A € L(X) : D4 = X}.

A linear operator D : Dp — X, where Dp C X is a linear subspace
(the domain of D), is said to be a right invertible operator if there exists a
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linear operator R € Lo(X), the so-called right inverse of D, such that the
composition of the mappings is the identity on X, i.e. DR = I.

The collection of all right invertible operators will be denoted by R(X).
In turn, the set of all right inverses of a given D € R(X) will be denoted by
Rp or as an indexed family, i.e. Rp = {R,}er.

If R € Rp is a given right inverse of D € R(X), then the family Rp can
be characterized by Rp = {R+ (I — RD)A: A € Lo(X)}.

For any z € X and y € X such that Dy = z we say that y is a primitive
element of x. Hence, for any x € X and R € Rp the element Rz is a
primitive element of z.

The set of all primitive elements of a given z € X is called the indefinite
integral of x € X and will be denoted by Z(z).

The kernel Zp = ker(D) is called the space of constant elements of D. It
is easy to see that Rpz = Rpr+Zp = {Rzx+ (I - RD)Az: A€ Ly(X)} =
Rx + Zp, for any given R € Rp and any non-zero element = € X.

So we get Z(z) = Rpz + Zp = Rz + Zp, for any z € X and R € Rp.

Any projection F' of X onto Zp, i.e. F2 = F and Im F = Zp, is said
to be an initial operator for D. Let us denote by Fp the family of all initial
operators for a given D € R(X). We say that an initial operator F' € Fp
corresponds to R € Rp if additionally FR = 0.

The two families Rp and F' € Fp uniquely determine each other. Indeed,
for any R € Rp we define F' =1 — RD € Fp. The converse is given by the
formula R = R; — FR;, where R; € Rp can be any since the result does not
depend on the choice of R;. Thus, for any v € I we have F, = I-R,D € Fp
and consequently we can write Fp = {F, },cr. By a simple calculation one
can show that F,,F3 = Fg and FgR, = Ry — Rg, for any o, B €T

For any indices o, 3,7 € T, one can also prove that FgR, — FoR, =
FgR,, which means that in fact the left side of this equation does not depend
on +. Hence one can define the operator of definite integration I? = F3R, —
F.R,, for any a, 8,7 €.

Amongst many properties of the operator I? there is I 5 D=Fg—F,or
equivalently I8D z = Fgz — F, x, for any z € Dp.

For any initial operator F' and z € X, the element Fz € Dp is called the
initial value of z. Hence, for any z € X and its arbitrary primitive element
y€ X,ie Dy =z, weget [Pz = Fgy — F,y € Dp which is called the
definite integral of z.

3. Linear operators and their integral mappings

Let (M, C) be a real differentiable manifold and V' be a smooth vector
field on (M, C). Then a smooth mapping v : (a,3) — M is said to be an



Some right invertible operators 911

integral curve of V' if

VH®) = (fon) 1),
for any function f € C and t € (a,8). The problem however can appear
when (M, C) is a general geometric object, as for example a Sikorski differen-
tial space or a Frolicher smooth space {10, 4]. Namely, there exist "rough” dif-
ferential spaces in which there is no nonconstant smooth curve in the above
sense and consequently no candidates for an integral curve of a nonzero
vector field. Such a situation illustrates the following example.

EXAMPLE 3.1. Let us take (Q, £1g). Then all smooth mappings
v ((a7 ﬂ))coo((av ﬂ)) - (Qv EIQ)

are constant mappings. In turn, if we take the set of rational numbers Q as
the subspace of the real line (R, &;) in the Frolicher category [4], we obtain
even worse result: all structure curves are constant and all real functions
defined on @ become smooth.

Therefore it seems reasonable to consider a generalized concept of an in-
tegral curve for a linear operator defined on the algebra of smooth functions
of some differential space.

Let (A,A) and (M, C) be two Sikorski differential spaces, v : (4,A) —
(M, C) be a smooth mapping and let D be a right invertible linear operator
defined on A. Then, we will say that the mapping « is a D-integral mapping
of a linear operator V defined on C if

(Vf)ovy=D(f o).
This concept we can illustrate with the well known example.

EXAMPLE 3.2. Let us take « : ((a,ﬂ),C”Sa,ﬂ)) — (M, C), where (M, C)
is a differentiable manifold and let D = g be the chosen right invertible
operator defined on C*°(< a, # >). Then every integral curve v of a vector
field V is automatically a jiz-integral mapping of this vector field since

d
(Viyoy=2(fom),
which we can write equivalently as (V f)(y(t)) = (fov)'(¢), for any t € (o, B).

Another example illustrates an integral mapping of a smooth vector field
defined in a differential space in which there are no non-constant smooth
curves in the usual sense.

ExAMPLE 3.3. Obviously, every smooth mapping in differential spaces is
continuous. It is also known that every continuous mapping from R into
Q with respect to the natural topologies is a constant mapping. Therefore
we conclude that every usual smooth curve in Q*, i.e. a smooth mapping
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v : (R,€1) — (Q,Engr) is necessarily a constant mapping. On the other
hand in the differential space (Q", £nqn) there are nontrivial smooth vector
fields as for example the partial derivation D, : £;gn — E1gn defined on the
structure generators m;jg~ by D17|'i|Qn = 61; where m; : R® 3 (z1,...,2,) —
z; € R, 72 =1,...,n. In particular, for n = 1, we get the differential space
(Q, £1g) and the non-zero derivative D = D;. Thus, the embedding v: Q 3
t — (t,q) € Q" for any ¢ € Q""}, is a D-integral mapping of a linear
operator D; defined on &,qn.

If an operator V defined on the algebra C of smooth functions of a given
differential space (M, C) is right invertible and « is a D-integral mapping
of V, we can calculate its right inverse in the following way. Denote by Ry
a right inverse of V' and by Rp a right inverse of D. Then by definition we
write the formula (VRy f) oy = D((Ry f) o ) from which we obtain

(Rvf)ovy=Rp(fo).
Now we need to eliminate v from the left side of the above formula. In

the differentiable manifold case this problem was investigated and solved by
G.Virsik [19].

4. Examples and applications

Many basic examples of right invertible operators one can find in Ref.[13].
Here we consider mainly certain cases which have some geometric or physical
interpretation.

4.1. Discrete differential spaces

In the framework of differential spaces there are geometric objets with
a discrete structure. Some discrete spaces (so called lattices) have also been
considered in physics. Therefore the study of discrete cases is also motivated.
Before we pass to examples we propose here a special case of the concept of
a d-dimensional discrete differential space.

According to the Sikorski definition of a differential subspace, for any
differential space (M,C) and a subset A C M one defines a differential
subspace (A, C4), where C4 is the initial differential structure on A induced
by the inclusion mapping ¢ : A — M.

Let Z = {...,-1,0,1,...} be the set of integers. Then, for any fixed
d € {1,2,...}, on the subset Z¢ c R?% we assume the initial differential
structure C(Z?%) = £44. In fact, the elements of C(Z?) are real generalized
sequences, so we can write C(Z%) = R%". Thus we obtain (z4,C(2%)) as
a differential subspace of the Euclidean manifold (R, £;). We will refer to
(24, C(Z%)) as to the discrete d-dimensional Euclidean space since it is the
discrete analog of the Euclidean d-dimensional manifold (R%, £;).
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The usual concept of a tangent vector becomes trivial in this discrete case
since all tangent vectors are reduced to the single zero valued functional.
Consequently, in the usual framework applied to the discrete case there is
no nontrivial tangent objects. Hence, in a discrete case it seems natural to
replace the usual notion of a tangent vector by some discrete substitute.
However, the discrete substitutes of tangent vectors and the tangent vector
fields do not fulfill the Leibniz condition. Moreover, they are even not the
local operators. But, on the other hand, they are very much in a "logic”
relation with their usual counterparts and due to D. Przeworska-Rolewicz
we have the well developed calculus on such operators, which realizes max-
imum possible analogy with their smooth version. Thus, by discrete partial
derivatives in the above space (Z¢, C(Z%)) we shall mean the linear difference
operators

D;: C(z% 3 z - Diz € C(z9),
(DiT)n = Ty §, — Tny

where 1; € Z¢ is defined as (i,-);c = 0;x (Kronecker delta), i,k =1,...,d and
n € 2% As the C(Z%)-module Der(C(Z%)) of discrete derivatives we take all
linear combinations of the discrete partial derivatives D;, i = 1,...,d, with
coefficients from C(Z).

By a tangent vector to (Z¢, C(Z%)) at a point n € Z% we shall mean any
real functional D;(n) defined by D;(n)z = (Diz),. Then, the the tangent
space to (Z¢, C(Z%)) at a point n € Z¢ is assumed to be the linear space T, Z%
of all linear combinations of the functionals D;(n), i = 1,...,d, with coef-
ficients from R. Therefore d = dim T,Z4, for any n € Z%, and by definition
we will refer to d as to the discrete dimension of (Z¢, C(Z%)).

Correspondingly, by a tangent vector field we understand here any map-
ping

V:z¢ > U T,.Z°%,
meZd

such that V(n) € T,,2¢, for any n € Z%. Vector fields and derivatives de-
fined above uniquely determine each other via formulae Vp(n)r = (Dz),
and (Dyz), = V(n)z. Following the smooth case, we will identify the two
concepts.

By a discrete curve in (Z¢, C(Z%)) we shall understand here any mapping
y:Z 3t 4(t) € Z2

In turn, we consider here a discrete curve 7 to be a A-integral curve of
a derivative D if

(Dz)oy = Az o),
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which we can write equivalently in the standard sequence notation as follows

(DZ)y(t) = Tae+1) = Za(e)
where A, is given by (A&); = €41 — &, for any £ € C(Z) and t € Z (see
Sec.3).
Before passing to higher dimension d let us consider the example which
is a slight modification of the example given in Ref.[13].

EXAMPLE 4.1.1. In the discrete differential space (Z, RZ) consider the oper-
ator D of the discrete derivation, (Dz), = Zn41— s, for z € RZ and n € Z.
Then one of its right inverses is given by

0
-3 zn n<0
m=n
(Rz), = 0 for n=1.
n—=1
oz, n>1
m=1

The initial operator F' corresponding to this inverse R assigns to each se-
quence z the constant sequence of the value z;. Other initial operators,
corresponding to the other right inverses, assign to each sequence z the con-
stant sequence of the value xy, z3,..., etc. In particular, the above formula
describes the right inverse of the restriction of D to RN which coincides with
the example given in [13].

Let us assume the notation for some functions which will be used in the
examples below. At first, by the brackets [ - | we denote the integer value
function (”valeurs entiéres” function). Then, let

0fort<o0
t) = -,
x() {1 t>0

and, for any T > 0, let 7r(t) = x(t — T) + x(t) — 1, M:(t) = —x(t)[F74),
M) = 1= (1= X))

EXAMPLE 4.1.2. Consider the discrete space (Z,R%). For a fixed k € N let
us define the following difference operator D*¥) by (D®z), = z,4k — T,
for any z € RN and n € N.

Naturally, D) = D is the usual discrete derivation as in Ex.3.1.1, and
k-1
we have the relation (D®z), = ¥ (Dz)nym.

m=
We see that the space of constants Zpx) consists of all periodic sequences

with the period k € N.
The operator D®), for any k € N, is right invertible and one of its right
inverses is given by the formula
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A (n)

(R(k)x)ﬂ = ﬂk(") Z Tn—mk-
m=A_ (n)

Thus, the family of all right inverses of D) is given by

Rpw = {R® + (I - RPD®)A: A € Lo(R%)}.
The initial operator F(*) of D) corresponding to R(*) is given by (F(*)z),, =
Tnp[kznyk

If we restrict ourselves to the subspace (N, RN) and consider the operator
D) acting on RN, we get its right inverse in the simpler form

R(k)m)n = Z Tn-mk

0
we assume Y, to give always zero.
m=1

More general case we get for higher dimension d.

EXAMPLE 4.1.3. Let us consider the discrete d-dimensional Euclidean space
(z4,C(Z%)), for a fixed d = 1,2,..., and define the following partial differ-

ence operator ng) by
k
(D§ )x)n =Tk, ~ Zn

for given k € N, 4 € {1,...,d} and any n € Z%. The operator D,(k) is right
invertible and its right inverse is given by

X (mi(n))
B2 =m(mn) X T
m=A; (mi(n))
where m;(n) = n;, for any n = (ny,...,n4) € Z%.

If we put £ = 1 in the above example we obtain the discrete partial
derivations ng) = D;, for i = 1,...,d. In this case the initial operator F;
corr%pondmg to the above inverse R; assigns to each sequence z € C(Z%) =
RZ* the sequence Fiz such that (Fz), = Z o (me(m) 1) From other initial
operators we get sequences with their components given by z,
where m € Z.

Hence, the initial subspaces are given as the inverse images = }(m), for
m € Z (for the manifold case compare [19]). If £ > 1 the initial subspaces
are "thicker” and they are given by 7, !({m + 1,m + 2,...,m + k}), for
m € L.

—(mi (n)+m)1.
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For higher order difference operators (discrete derivations, in particular)
which are of the simple form Dfll o...oDF s e N, at first we obtain

ig?
their right inverses as the compositions Rf: 0...0 Dfll, where Df 4 Rf i=1,
for j = 1,...,s. Then, the remaining right inverses we get by the routine
manner mentioned in Sec.2.2.

Let us notice that the operators considered in this section can be uni-
formly interpreted within the class of all linear combinations of the transla-
tions Sk (which are invertible operators) defined on Z¢ by (Skx)n = Tnik,
for € C(z%), k,n € Z%. For example the usual discrete derivation D, its
second power D? and the difference operator D), defined in C(Z), can be
expressed as D = S; — Sy (of course Sp = I), D? = S, — 28, — Sy and
D® = §5 — S,. Therefore the linear space of all linear combinations

Clskl +...+ csSk,,

where ci,...,cs € R, ki,...,ks € Z¢% s € N, contains the operators con-
sidered above. The linear combinations of translations are the non-local
operators, which has some mathematical as well as physical consequences.

4.2. Right inverses of finite difference operators

In the present section we give the modification of the results achieved
in the above discrete case. Namely, we consider differential spaces (R, C(R))
with the differential structure C(R) invariant under certain translations.
Let T > 0 and St : C(R) — C(R), (Srf)(t) = S(t + T). We will say
that a differential structure C(R) is St-invariant if for any f € C(R) also
Stf € C(R). For example & is Sp-invariant, for any T € R, whereas the
differential structure (sc{idR , |- |})r, where |- | stands for the absolute value
function, is not Sp-invariant for T # 0 since, for example, St| - | € C(R).

EXAMPLE 4.2.1. Let C(R) = RR and D(T) be the difference operator defined
on RR by the formula (DM f)(t) = f(t + T) — f(¢t), for a fixed T > 0. Its
space of constants Zp(r) consists of all periodic functions with the period
T. One of the right inverses of D) is given by the formula

AT (t)

(RO =nrt) Y. f(t—mD).

m=AZ(t)
Hence, we obtain
Rpm = {RD + (I - RDDINA: A e Lo(RP)).
In turn, the indefinite integral of any element f € RR is of the form
I(f)=Rpar f+ Zp = {RD f+ u:u e Zp}.
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For the operator DT) defined on the space RR" = {f : (0,+00) — R}
one of its right inverses is given by
-[1-4]

ROHE = S f(t-mD),
m=1

and analogously Z(f) = {RD f + u :u € Zp}.

In this context it is natural to mention about the difference quotient
operator.

EXAMPLE 4.2.2. Let D) T > 0, be as in Ex.4.2.1 and let us consider the
difference quotient operator A(T) = %D(T) defined on RR by

(A(T)f)(t) - f(t+T1)-_ f(t)

From the Ex.4.2.1 it becomes evident that A™) is right invertible and
Ram = {TR(T) R ¢ Rpm}.

In some applications we cut off an internal piece of a function and then
bring closer or even glue together the two parts. A simple example of such
an operation illustrates the following example.

EXAMPLE 4.2.3. For any fixed a € R and T > 0, let us consider the operator
DT defined on R® by the formula

ft) fort<a

(Dez)(t) = {f(t+T) t>a

The space Zpr of constants of DT consists of all functions u such that
U|(—o0,a)U<a+T,+00) = 0. We see that DT is a right invertible operator. Indeed,
a right inverse RL of DI can be defined by

f(®) t<a
(RIf)t)={ g(t)fora<t<a+T ,
f(®) t>a+T

where g :< a,a + T) — R is an arbitrary function.

4.3. Final remarks

Let us end this paper with some remarks concerning the right invert-
ibility of operators defined on geometric objects which are not differentiable
manifolds and then applications of the algebraic analysis in physics.
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It is known that every finite dimensional differentiable manifold (M, C)
can be embedded in a Euclidean manifold (RY,£y) of a sufficiently high
dimension N € N. Therefore, without loosing generality, we can assume
(M, C) to be a submanifold of (RV,£y). According to this assumption we
can write M C RN and C = (i) p. More general result is known for differ-
ential spaces as well as for the Frolicher spaces. Namely, every differential
space (M, C) with the Hausdorff topology can be embedded in the Carte-
sian product (R, £) where C is generated by Cy and £ is generated by
the family of projections {n : f € Cp}. For an infinite set Cp the Cartesian
product (R, £) is not a differentiable manifold. Since the infinite Cartesian
product, each factor being R, is not a Banach space, the resulting differen-
tial space cannot be considered as a smooth Banach manifold. Then, let us
consider the differential space(Mgq, Ca,),Where Mg = M N Q%. It is not a
differentiable manifold either, even if Cj is finite. It is, however, a differential
space with the underlying set being a dense subset in M. However, in the
above cases the differential spaces are ”close” to manifolds in a certain sense
as they are of constant differential dimension [24, 25].

Therefore the results presented in [19] cannot be applied directly in such
cases but they can be efficiently adapted after necessary modification, in
particular with the help of the concept of a D-integral mapping.

Another interest is related with the right invertibility of linear operators
defined in differential groups, which are groups and simultaneously differen-
tial spaces. Originally the notion of a differential group is due to K. Spallek
[9] but in the sense of Sikorski they were investigated in [21, 22, 29]. Let
us mention only that any Lie group is an example of a differential group.
It has been proved [22, 29] that the Cartesian product of any family of dif-
ferential groups is a differential group. In general, this statement does not
hold for Lie groups since an infinite product of manifolds is not a manifold.
Differential groups are always of constant differential dimension and they
have elegant left invariant vector fields which are complete provided their
integral curves in some sense are well defined. In a close relation to iffer-
ential groups there are the so-called G-spaces, which are differential spaces
on which acts a differential group. Difference operators can be investigated
on their structure functions and their right invertibility is an open prob-
lem. However, one can easily notice that, for a given element g of a group
G, the space of all constants of the translation (Dyf)(z) = f(gz) is the
family of all g invariant functions (which generalizes the concept of peri-
odic functions). In physics, the noncommutative geometry is a big interest.
Therefore applying general methods of the algebraic analysis (differential
equations, in particular) to noncommutative rings, should bring interesting
results.
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