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VON INVERSEN OPERATOREN ERZEUGTE 
EINPARAMETER-HALBGRUPPEN 

Abstract. Let E be a Banach space and let T be a singular bounded linear operator 
on E with (-00,0) C e(T) and ||Ä(a17y^Tn | | < C for all a < 0 and n 6 N. 

We show that T is injective on T(E) and that the operator —T_1 generates a Co-
semigroup on T(E). 

The following examples axe considered: 

1. Normal operators T on Hilbert spaces with Re(cr(T)) C [0,00]. 
2. Positive multiplication operators and averaging Markov operators on C(K). 
3. Certain positive integral opertors on C[a, b]. 

Die folgende Arbeit ist motiviert durch das offene Problem: Sei T ein pos-
itiver Reynoldsoperator auf C(K). Ist dann T auf der abgeschlossenen Hülle 
seines Wertebereiches injektiv? Erzeugt dann dort die Abbildung — T - 1 eine 
Einparameter-Halbgruppe (s. Satz 9)? 

1. Folgerungen aus gewissen Resolventeneigenschaften 
Ist E ein Banachraum über C, so bezeichnen wir mit L(E) die Banachal-

gebra der beschränkten Endomorphismen von E. Für S € L(E) sei cr(5) das 
Spektrum, ß(S) die Resolventenmenge und R(X, S) := (XI — S ) - 1 die Re-
solventenabbildung von S, wobei I die Identität auf E ist. 

Für T G L(E) sei im folgenden F := T(E). 
Die erste Aussage befaßt sich mit der Injektivität eines Operators auf 

dem Abschluß seines Wertebereiches. 

SATZ 1. Es sei E ein Banachraum und T ein singulärer, beschränkter En-
domorphismus von E mit den beiden Eigenschaften: 

(i) Es gibt ein a > 0 mit (—a, 0) C g(T) und 
(ii) \\TR(a,T)\\ < C für alle a € ( -a ,0) . 
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Dann gilt: 
1. Die Einschränkung T\p von T auf den Unterraum F ist injektiv. Ihre 

Umkehrabbildung T~l : T(F) -> F läßt sich wie folgt darstellen: 
r _ 1 (y ) = lim -R(a, T)y für alle y e T(F). a f 0 

2. T2(E) = T{E) und T{F) = F. 
Beweis. Zu 1.): Sei y € T(E) und y = Tx mit x € E. Für alle a 6 (-a,0) 
gilt dann (al - T)R(a,T) = I, aR(a,T)(Tx) - TR(a,T)(Tx) = Tx. 

Aus (ii) folgt lim aR(a, T)Tx = 0. a./0 
Wir erhalten also 

lim -TR(a, T)y = y für alle y G T(E). Q/"0 
Hieraus ergibt sich dann auch 
(*) lim —TR(a, T)y = y für alle y € F. a f 0 
Für y 6 F mit Ty = 0 bedeutet dies y = 0. Es ist also T\p injektiv. Aus (*) 
folgt auch sofort die angegebene Darstellung von T - 1 . 

Zu 2.): Es gilt offensichtlich T2(E) C T(E). Sei y € T(E) mit y = Tx. 
Dann gilt nach (*): y = \ima/QTa{-R{a,T)x) € T2(E). 

Es ist also auch T(E) C T2(E) und somit T2(E) = T{E) = F. 
Aus T(E) C F folgt T2(E) C T(F) , also FC T(F). Aus T(F) C T(E) 

folgt T(F) C T(E) = F. Aus beiden Inklusionen ergibt sich T(F) = F. 
Ist S ein invertierbarer beschränkter Endomorphismus auf einem Ba-

nachraum E, so gilt in der Normtopologie von L(E) offensichtlich 
gtC-5-1) = lim etR(a,s) für alle o < t £ R. 

q/0 — 

Es ist nun interessant, daß die vorhergehende Gleichung unter gewissen Vo-
raussetzungen auch in der starken Operatortopologie sinnvoll ist. 
SATZ 2. Es sei E ein Banachraum und T ein singulärer Endomorphismus 
von E mit den Eigenschaften: 

(i) (-oo, 0) C ß(T) und 
(ii) | |ß(a ,T)mrm | | < C für alle a < 0 und m € N. 

Dann erzeugt die lineare Abbildung —T~L aus Satz 1 eine beschränkte Cq-
Einparameterhalbgruppe St auf dem Unterraum F, welche sich wie folgt 
darstellen läßt: 

Sty = lim etR^T)y für alle y € F. a yo 
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Beweis. Nach Satz 1 ist der Operator — T - 1 auf F dicht definiert und, wie 
man leicht nachweist, auch abgeschlossen. Eine Routinerechnung ergibt die 
folgende Resolventenbeziehung: 

R{A, - T " 1 ) = für alle A > 0. ~~ A — A 
Die im Satz geforderte Beschränktheitsbedingung bedeutet daher 

Am||.R(A, - T - 1 ) m | | < C für alle A > 0 und m e N. 

Nach dem Satz von Hille-Yosida (s. [1], Th. 2.21) erzeugt daher - T - 1 

eine beschränkte Co-Einparameterhalbgruppe St auf F mit Normschranke 
C. Da die Familie {etR(a'T) : a < 0} mit den Yosida-Approximationen 
übereinstimmt, ist auch die im Satz angegebene Darstellung klar. 

Für die Anwendbarkeit der beiden vorhergehenden Sätze ist die Frage, 
ob die Resolvente des betrachteten Operators die geforderten Eigenschaften 
besitzt, von zentraler Bedeutung. Im allgemeinen dürfte die Antwort darauf 
nicht einfach sein. 

Im folgenden studieren wir einige Beispiele für die in Satz 2 beschriebe-
nen Co-Einparameterhalbgruppen 5*. 

In den Kapiteln 2 und 3 betrachten wir singulare Operatoren. Wir wollen 
bemerken, daß die Ergebnisse auch für entsprechende reguläre Operatoren 
richtig bleiben. Aber diese Situation ist nicht so interessant. 

2. Normale Operatoren auf Hilberträumen 
Wir betrachten nun einen normalen stetigen Operator T ^ O auf einem 

Hilbertraum H (d.h. TT* = T*T) mit Re(cr(T)) C [0, oo). Dann gilt bekan-
ntlich für alle a < 0: 

| |Tfi(a,r) | | = : A € <7(T)} 

• Ĥ +w-'V«*): A 6 x=l%!15 L 

Nach Satz 2 erzeugt also die Abbildung — T - 1 die Co-Kontraktionshalbgrup-
pe St auf dem Unteraum F := T(H) von H. 

Es sei E die Spektralzerlegung von T. Dann gilt für die von T erzeugte 
Halbgruppe eiT offensichtlich die Spektraldarstellung 

etT= S eXtdE(A). 
*cn 

Interessant ist nun, daß die Halbgruppe St durch folgendes uneigentliche 
Integral dargestellt werden kann. 
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SATZ 3. Sei H ein Hilbertraum und T ein singulärer normaler stetiger 
Operator auf H mit Recr(T) C [0, oo). Ferner sei E die Spektralzerlegung 
von T. Dann besitzt die von — T - 1 auf dem Unterraum F erzeugte CQ-
Kontraktionshalbgruppe St die Spektralzerlegung 

St= j e~^dE(X) für alle t> 0. 
<r(T)\{0} 

Beweis . Es sei ui := CT(T)\{0}(^ 0). Für t > 0 sei ht(\) := E - ^ für A E W . 
Dann sind die Punktionen ht meßbar. Ferner gilt für A e w mit A = j 

|^(A)| = |e-Txr cos<^ . e^TXT^ Î < 1. 

Es existieren also die im Satz angegebenen Integrale. Nach Satz 2 gilt 

St(y) = lim etR{a'T)y für alle y e F. a/0 

N u n ist T - 1 ( { 0 } ) = E({0})(H) u n d F = T{H) = E(UJ)(H) (s. [4], 12.28 
und [8], Kap. VI, Th. 3.6). 

Hieraus folgt für a < 0 und y € F: 

etR(a,T)y = ^ j e^hdE(A) j E(«>)(y) = ^ (y). 

Für a < 0 sei nun ha(A) := e«3* für alle A € UJ. Dann gilt 

lim ha( X) = e - * für alle A6w. 
a/o 

Für a < 0 und A e w mit A = \X\el* erhalten wir 

\ha(X)\ = 
tot—t| A| cos y t[A|siny? 

ga2 + |A|2-2a|A| cosy . g cosy < 1. 

Hiermit folgt nach dem Satz von der majorisierten Konvergenz von Lebesgue 
für alle y € F: 

_ j |2 
lim a/Q 

(\e^dE(X))(y)-(\e±dE(X))(y 
UJ Ol 

= l im j - e ^ | 2 d E y > y = 0. 

Es gilt also 

lim etR(a'T)y = ( 1 e^dE(X)) (y) für alle y e F. 
V ) \ { 0} 7 

KOROLLAR 4. Es sei e > 0. Liegt das Spektrum von T in dem Keil K£ := 
{z e C : | arg(z)| < 5 - e}, so gilt lim ||5t|| = 0. t—• OO 
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Beweis. Für £ > 0 sei 

9t(A) 

e - Ä 4 für O ^ A €<t(T) 

0 für A = 0. 

Dann sind die Funktionen gt stetig auf cr(T). Ferner gilt für 0 ^ A = \\\eltp € 

\gt(\)\ = e _ W c o s v und somit lim MA )| = 0 für alle A 6 a(T). 
t—* oo 

Da die Familie {gt • t > 0} für t —> oo monoton fallend ist, folgt limt-n» \\gt\\ 
= 0 nach dem Satz von Dini. Aus ||St|| = ||<7t|| ergibt sich dann die Behaup-
tung. 

KOROLLAR 5. Ist T sogar positiv, so gelten für T die Aussagen von Satz 3 
und Korollar 4. 

Beweis. Es gilt offensichtlich Re(<r(T)) = a(T) C R + . 

3. Positive Multiplikatoren und Mittelwert bildende Markov-
Operatoren auf den Banachverbänden C(K) 

Es sei K ein kompakter Hausdorffraum und C(K) der Banachverband 
der stetigen reellwertigen Funktionen auf K. Ferner sei g eine stetige nicht-
negative reellwertige Funktion auf K, und die Abbildung Mg : C(K) —> 

C(K) sei definiert durch 

Man nennt dann die Abbildung Mg den von g induzierten Multiplikator. 
Bekanntlich gilt 

d.h. Mg erfüllt die Voraussetzungen von Satz 1 und Satz 2. Es sei nun 
J := {t € K : g(t) = 0} ^ 0, J ^ K. Dann folgt aus der Stone-Weierstrass-
Theorie: 

Nach Satz 2 ist die Abbildung —Mg 1 infinitesimaler Erzeuger der Co-Kon-
traktionshalbgruppe St auf F mit der Darstellung: 

a (T ) : 

Mgf:=g-f für alle / 6 C(K). 

F = Mg{C(K)) = { f e C(K) : / = 0 auf J } . 

Stf(x) = lim etR{a<Ms\f(x) = lim e^TiJ . f ( x ) für alle / e F und x G K. 
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Hieraus folgt 

e -»(») • f(x) für x £ J 
Stf(x) = 

t 

0 für x G J 

und St> 0. Für t > 0 definieren wir nun Funktionen gt : K —• R wie folgt: 
Für t = 0 sei 

go(x) = 1 und für t > 0 sei <?t(z) = 

- t 

esR für x £ J 

0 für x G J. 
Eine Routinerechnung ergibt, daß für t > 0 die Funktionen gt auf K stetig 
sind. 

Für t —• oo ist die Familie {gt : t > 0} monoton fallend und punktweise 
gegen 0 konvergent. Nach dem Satz von Dini gilt daher limt-^oo ||pt|| = 0. 
Aus ||5t|| = Hstll folgt dann lim^oo ||St|| = 0. 

Zusammenfassend können wir nun sagen: 

SATZ 6. Die von — M " 1 erzeugte Co-Kontraktionshalbgruppe St kann mit 
Hilfe der Funktionen-Einparameterhalbgruppe gt kurz so dargestellt werden: 

Stf = gt- f für alle f € F und i > 0. 

Ferner gilt limt-K» ||St|| = 0. 

Ein positiver Endomorphismus T von C(K) heißt Markov-Operator, falls 
Te = e ist, wobei e die Einsfunktion auf K ist. 

In der Arbeit [7] habe ich für einen positiven Operator T auf einem 
Banachverband E das Negative Prinzip ( N P ) wie folgt erklärt: 

A G R_ := { 7 6 R : 7 < 0}, x € E und Tx < Xx impliziert Tx < 0. 

SATZ 7. Auf dem Banachverband C(K) sei T ein singulärer Markov-Opera-
tor, welcher das negative Prinzip (NP) erfüllt. Dann ist T auf dem Unter-
raum F := T(C(K)) injektiv, und der Operator —T~l erzeugt auf F eine 
positive Kontraktionshalbgruppe St-

B e w e i s . Da T das negative Prinzip erfüllt, gilt nach [7], Satz 2: R_ C g(T) 
und TR(A, T) < 0 für alle A G R_. Es ist also ATi?(A, T) > 0 für A G R_. 

Sei nun AGR_. Aus R(\,T)(XI-T) = I und Te = e folgt R(\, T)(Ae—E) 
= e, Ä(A, T)e = j^e , XTR(X,T)e = ^ e , ||ATß(A,T)|| = ||ATÄ(A,T)e|| 
= PĴ JJ. Es ist also ||TÄ(A,T)|| = P ^ < 1 für alle A G R_. 

Da nun die Voraussetzungen (i) und (ii) von Satz 2 erfüllt sind, erzeugt 
—T - 1 auf F die in Satz 2 angegebene Co-Einparameterhalbgruppe St. 
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Für alle A > 0 gilt 

und ||AÄ(A, —T_1)|| < 1. Bekanntlich ist daher die erzeugte Halbgruppe St 

eine positive Co-Kontraktionshalbgruppe, q.e.d. 

Ein Operator T auf C(K) heißt Reynoldsoperator, falls er die folgende 
Reynoldsidentität erfüllt: 

T(f • Tg + g • T f ) = Tf Tg + T(Tf • Tg) für alle f,ge C(K). 

Ein Endomorphismus S von C(K) heißt "Mittelwert bildender" Opera-
tor (engl.: averaging operator), falls er die folgende Bedingung erfüllt: 

S(f • Sg) = (Sf) • (Sg) für alle /, g e C(K). 

SATZ 8. Auf dem Banachverband C(K) sei S ein singulärer, Mittelwert 
bildender Markov-Operator. Dann ist S auf dem Unterraum F := S(C(K)) 
injektiv, und —erzeugt dort eine positive Co-Kontraktionshalbgruppe St-

Beweis . Nach dem vorhergehenden Satz genügt es zu zeigen, daß der Op-
erator S das negative Prinzip erfüllt. 

Wir benutzen nun das bekannte Darstellungstheorem für Mittelwert bil-
dende Operatoren von G. Birkhoff, welches ich kurz so beschreiben möchte: 

Es gibt eine Partition {Ka} von K, bestehend aus abgeschlossenen Men-
gen, und positive Radonmaße ¡i^ auf Ka, so daß gilt: 

Sf= j f d f i ^ auf Ka für alle / 6 C(K). 
Ka 

Sei / 6 C(K), X e R_ und Sf < A/. Dann gilt auf Ka : /x(a)(/) • e < A/ 
und somit n{a)(f) • M(a)(e) < Va)(/)-

Angenommen, es wäre > 0. 
Dann würde aus der vorhergehenden Ungleichung 1 = /x(Q)(e) < A < 0 

folgen, was einen Widerspruch ergibt. Es ist also < 0 , Sf < 0 
auf allen Ka und somit Sf < 0. Der Operator 5 erfüllt also das negative 
Prinzip, q.e.d. 

Wie schon eingangs erwähnt, ist es eine offene Frage, ob die Aussage 
von Satz 8 auch für positive Reynoldsoperatoren Gültigkeit hat. Wenn der 
Wertebereich dicht ist, ist dies der Fall, wie A. Neeb in [3], Theorem 4.6, 
gezeigt hat. 

SATZ 9. Sei T ein positiver Reynoldsoperator aufC(K), welcher das negative 
Prinzip (NP) erfüllt. Dann ist T auf dem Unterraum F injektiv, und —T-1 

erzeugt dort eine positive Kontraktionshalbgruppe St. 
Beweis . Es ist R_ C g(T) (gilt auch ohne (NP), s. [3], Theorem 3.1). 
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Nach Miller [2], Theorem 6, Korollar, gilt: Für A ^ 0 , / 1 mit ^ € 
g(T) ist der Operator XT(I — (1 - A)T) -1 wieder ein Reynoldsoperator. 
Hieraus folgt durch eine kurze Rechnung, daß für alle a g L der Operator 
(a — l)R(a, T)T wieder ein Reynoldsoperator ist. 

Aufgrund von (NP) gilt für alle A e R_: 

R(X, T)T < 0, also (A - 1)R(X, T)T > 0. 

Nach [6], Korollar 4, sind positive Reynoldsoperatoren auf C(K) stets Kon-
traktionen. Für alle A € R_ ist somit ||Ä(A, T)T\\ < y ^ j < 1. 

Nach Satz 2 erzeugt also die Abbildung — T - 1 auf F die Kontraktion-
shalbgruppe St. 

Es ist wieder ß ( A , - T _ 1 ) = ^ R ^ ^ T > 0 für alle A > 0. Die 
Halbgruppe St ist daher positiv, q.e.d. 

Es bleibt also die interessante Frage, ob jeder positive Reynoldsoperator 
das negative Prinzip erfüllt, so wie es die Mittelwert bildenden Operatoren 
tun. 

4. Positive Integraloperatoren auf C[a, i>] 
In diesem Kapitel betrachten wir die folgenden Integraloperatoren auf 

C[a,b]: 
Für 0 < fx e R und 0 < q € C[a, 6] sei T : C[a, b] -> C[a, b] definiert 

durch 

T f ( x ) = vf(a)+]f(t)q(t)dt 
a 

für alle f e C[a, 6] und x 6 [a, fc]. Dann ist T ein positiver Endomorphismus 
von C[a, b]. Für A ^ 0 sei Hx(x) := eJ E «W* für alle x € [a, b]. 

Der folgende Satz beschreibt das Spektrum und die Resolvente eines 
solchen Operators T. 

S A T Z 10. Es gilt: 
(i) a{T) = {0,/z} und 

(ii) Für A / ¡x kann die Resolvente R(X, T) wie folgt dargestellt 
werden: 

R(X,T)f(x) = j f ( x ) 

+hx(X) j ^ r^/W + ̂  S mqmxitr'dt} 

für alle f 6 C[a, b] und x 6 [a, b]. 
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Beweis . Zu (i): Der Operator T ist die Summe eines kompakten Volterra-
Operators und eines Operators vom Rang 1. Es ist daher T kompakt und 
0 e a(T). 

Da ( f i l - T ) f ( a ) = 0 für alle / e C[a,b} ist, ist der Operator ¡jlI - T 
nicht surjektiv, also auch /z G ö"(T). Wir erhalten also {0, ¡j.} C cr(T). 

Im Beweis zu (ii) zeigen wir, daß jedes A / 0, ^ fi ein Resolventenwert 
ist. Es ist daher <r(T) = {0, fi}. 

Zu (ii): Sei A ^ 0 und ^ /j,. Es genügt zu zeigen, daß der in (ii) angegebene 
Operator R(X, T) die Gleichungen (*)(AJ-T)Ä(A,T) = I und R(X,T)(XI-
T) = I erfüllt. 

Zunächst möchten wir bemerken, daß man die angegebene Darstellung 
von R(A, T) vermutet, wenn man, was methodisch nicht neu ist, in der Theo-
rie der linearen Differentialgleichungen 1. Ordnung zu der Integralgleichung 

X 

A f { x ) - ii • / ( o ) - j f(t)q(t)dt = g(x) 
a 

die Lösung des folgenden Anfangswertproblems betrachtet: 

X f ' ( x ) - f ( x ) q ( x ) = g'(x) u n d f ( a ) = - Ä (g e C[a,b}) . 
A — ¡Jt 

Und nun zur rechnerischen Verifizierung der Gleichungen (*): 

(a) {XI - T)R(X, T) = I<* TR(X, T) = XR(X, T) - I . 

Für / 6 C[a, 6] und x 6 [a, 6] setzen wir 

S(x) := (XR(X,T) — I ) f { x ) 

= Hx(x) + \ l m q ( t ) H x ( t ) - l d t ^ 

und 

R(x) := ( T R ( \ , T ) ) f ( x ) 

+ y 2 \ f ( T ) q ( r i H , , ( r r ' d T \ \ d t . 

Differentiation dieser Funktionen ergibt S'(x) = R'(x) für alle x £ [o, 6]. 
Da ferner S(a) = j ^ f ( a ) = R(a) gilt, ist also R(x) = S(x) für alle x € [a, 6], 
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was zu zeigen war. 

00) R(X, T) ( A I - T ) = I<* R(A, T)T = AÄ(A, T) - I. 

Für / € C[a, 6] und x € [a, 6] setzen wir 

~ (XR(X,T) — I)f(x) 
S { X ) - H^) 

= Y^m+Wmqmxity'dt X — /x 

und 

+M\-ß)Tfla>+ ^iTf'WtiV'ffr'dt • 

Differentiation ergibt auch hier S'(x) = R'(x) für alle x € [a, b]. 

Aus S(a) = f(a) = R(a) folgt dann wieder 5(x) = R(x) für alle 
x G [a, b], q.e.d. 

SATZ 11. Der Operator T ist injektiv auf dem Unterraum F := T(C[a,b]), 
und — T - 1 erzeugt dort eine positive Cq- Kontraktionshalbgruppe St. 

Beweis. Aus Satz 10, (i), folgt R_ C g(T). 

Sei A 6 R_. Aus der Gleichung R(X,T)T = XR{X,T) - I erhalten wir 
mit Hilfe der Resolventendarstellung in Satz 10, (ii): Für 0 < / € C[a,b] 
und x G [a, 6] ist 

R(X,T)Tf(x) = Hx(x) + j\f(t)q(t)Hx(t)-idt^ <0. 

Für alle A e R_ ist also R(X,T)T < 0 und ||Ä(A,T)T|| = || - Ä(A,r)T|| = 
|| — R(X, T)Te\\. 

Für x € [a, 6] ist 

0 < —R(X, T)Te(x) = -Hx(x) { ^ + gW^t)'1^} 

= -e{ E «<«>* | + * jj q { t ) • o^dt | 
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= - e j Sa «W* j _ J L _ _ e - i E 9(r)dr + 

A — /x 
Es ist somit ||i?(A,T)T|| < 1 für A € R_. T erfüllt also die Bedingungen 

(i) und (ii) von Satz 2. Da R(A, - T - 1 ) = R r ) T > 0 und 

||AÄ(Ä,-T-1)|| = | | Ä ( : ^ , r ) r | | < 

für alle A > 0, ist die erzeugte Halbgruppe ST wieder eine positive Cq-
Kontr aktionshalbgruppe. 

Aus der Gleichung 
X 

T f ( x ) = fi • f ( a ) + ¡ }{t)q{t)dt = g(x) 
a 

folgt durch Differentiation 
f ( x ) • g ( x ) = g'(x). 

Dies bedeutet, die Abbildung — T~l stimmt auf der Menge {x 6 [a, b] : 
q{x) 0} mit der Derivation Df(x) = - ^ y / ' ( x ) überein. 

Zu a € 1 - sei j a eine im positiven Sinn orientierte Kreislinie, so dass 
a im Aussengebiet und die Spektralwerte 0 und /i im Innengebiet von 7 a 
liegen. 

Nach dem Funktionenkalkül in der Spektraltheorie gilt dann für t > 0 : 

Mit Hilfe der Darstellung der Resolvente R(z,T) aus Satz 10, (ii), erhal-
ten wir dann die folgende konkretere Darstellung der Halbgruppe St. 
FORMEL (12): ES gilt 

a/ü Im 
7a 

z 

dz 

für alle / € F und x € [a, b]. 
Zum Schluss noch ein ganz einfaches Beispiel, welches die Theorie ve-

ranschaulicht. Es sei fj, > 0 und q(t) = 0. Dann ist Tf(x) = /x • f(a) und 
F = {ae : a € C}. 

Auf dem Unterraum F gilt T = fil, —T-1 = — ̂ J und somit St = 
t(—-i) —— 

eK * '. Dies bedeutet Stf — e * f für alle f E F, was man auch leicht mit 
der vorhergehenden Formel (12) und dem Residuenkalkül berechnen kann. 



904 E. Scheffold 

Literatur 

[1] E. B. D a v i e s , One-Parameter Semigroups. Academic Press London, New York, San 
Francisco 1980. 

[2] J. B. M i 11 e r, Averaging and Reynolds operators on Banach algebras I, J. Math. Anal. 
Appl. 14 (1966), 527-548. 

[3] A. N e e b , Positive Reynolds operators and generating derivations, Math. Nachr. 203 
(1999), 131-146. 

[4] W. R u d i n , Functional Analysis, Mc Graw-Hill Book Company 1973. 
[5] H. H. S c h a e f e r , Banach Lattices and Positive Operators, Springer-Verlag, Berlin, 

Heidelberg, New York 1974. 
[6] E. S c h e f f o l d , Uber Reynoldsoperatoren und "Mittelwert bildende" Operatoren auf 

halbeinfachen F-Banachverbandsalgebren, Math. Nachr. 162 (1993), 329-337. 
[7] E. S c h e f f o 1 d, Uber positive Resolventenwerte positiver Operatoren, erscheint in Pos-

itivity. 
[8] A. E. T a y l o r and D. C. L a y , Introduction to Functional Analysis, second edition. 

John Wiley & Sons, New York, Chichester, Brisbane, Toronto 1980. 

TECHNISCHE UNIVERSITÄT DARMSTADT 
FACHBEREICH MATHEMATIK 
Schloßgartenstr. 7 
D-64289 DARMSTADT, GERMANY 
E-mail: scheffold@mathematik.tu-darmstadt.de 

Received October 10, 2003. 


