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VON INVERSEN OPERATOREN ERZEUGTE
EINPARAMETER-HALBGRUPPEN

Abstract. Let E be a Banach space and let T be a singular bounded linear operator
on E with (—00,0) C o(T) and ||R(e, T)"T™|| < C for all @« < 0 and n € N.

We show that T is injective on T'(E) and that the operator —T~! generates a Cop-
semigroup on T'(E).

The following examples are considered:

1. Normal operators T on Hilbert spaces with Re(a(T)) C {0, oo].

2. Positive multiplication operators and averaging Markov operators on C(K).
3. Certain positive integral opertors on Ca, b].

Die folgende Arbeit ist motiviert durch das offene Problem: Sei T ein pos-
itiver Reynoldsoperator auf C(K). Ist dann T auf der abgeschlossenen Hiille
seines Wertebereiches injektiv? Erzeugt dann dort die Abbildung —T~! eine
Einparameter-Halbgruppe (s. Satz 9)7?

1. Folgerungen aus gewissen Resolventeneigenschaften

Ist E ein Banachraum iiber C, so bezeichnen wir mit L(E) die Banachal-
gebra der beschrénkten Endomorphismen von E. Fiir S € L(E) sei o(S) das
Spektrum, o(S) die Resolventenmenge und R(),S) := (A — S)~! die Re-
solventenabbildung von S, wobei I die Identitit auf E ist.

Fiir T € L(E) sei im folgenden F := T(E).

Die erste Aussage befafit sich mit der Injektivitdat eines Operators auf
dem Abschluf seines Wertebereiches.

SATZ 1. Es sei E ein Banachraum und T ein singuldrer, beschrinkter En-
domorphismus von E mit den beiden Figenschaften:

(i) Es gibt ein a > 0 mit (—a,0) C o(T) und

(ii) |ITR(a,T)|| < C fiir alle a € (—a,0).
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Dann gilt:

1. Die Einschrinkung Tir von T auf den Unterraum F ist injektiv. Ihre
Umkehrabbildung T~1 : T(F) — F lipt sich wie folgt darstellen:

T Y(y) = 1% —R(a,T)y fiir alle y € T(F).

2. T2(E) =T(E) und T(F)=

Beweis. Zu 1.): Sei y € T(E) und y = Tz mit z € E. Fiir alle a € (—a,0)
gilt dann (af — T)R(e,T) = I, aR(a,T)(Tx) — TR(c, T)(Tz) =
Aus (ii) folgt li/rrb aR(a,T)Tz =0.
[0

Wir erhalten also
l% ~TR(e,T)y=y fiir alle y € T(E).

Hieraus ergibt sich dann auch
(%) lim -TR(a,T)y=y fiiralley€ F.
o/0

Fiir y € F mit T'y = 0 bedeutet dies y = 0. Es ist also T| injektiv. Aus (*)
folgt auch sofort die angegebene Darstellung von T~ 1

Zu 2.): Es gilt offensichtlich T2(E) C T(E). Sei y € T(E) mit y = Tx.
Dann gilt nach (*): y = lim, o T%(—R(a, T)z) € T?(E).

Es ist also auch T(E) C T2(E) und somit T2(E) =T =T(E) =

Aus T(E) C F folgt T2(E) CT(F) , also F C T(F). Aus T(F) C T(E)
folgt T(F) C T(E) = F. Aus beiden Inklusionen ergibt sich T(F) =

Ist S ein invertierbarer beschrinkter Endomorphismus auf einem Ba—
nachraum E, so gilt in der Normtopologie von L(E) offensichtlich

=57 = l% tR(eS) fir alle0 <t eR.

Es ist nun interessant, daf8 die vorhergehende Gleichung unter gewissen Vo-
raussetzungen auch in der starken Operatortopologie sinnvoll ist.

SATZ 2. Es sei E ein Banachraum und T ein singuldrer Endomorphismus
von E mit den Eigenschaften:

(i) (—00,0) C o(T) und
(ii) ||R(c, T)™T™|| £ C fiir alle @ < 0 und m € N.

Dann erzeugt die lineare Abbildung —T~! aus Satz 1 eine beschrinkte Co-
Einparameterhalbgruppe S; auf dem Unterraum F, welche sich wie folgt
darstellen laft:

tR(a,T) y

=1 ir all F.
Sty il}rbe fir alley €
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Beweis. Nach Satz 1 ist der Operator —T~! auf F dicht definiert und, wie
man leicht nachweist, auch abgeschlossen. Eine Routinerechnung ergibt die
folgende Resolventenbeziehung:

RO, -TY) = ?ll\-R(—_lX,T)T fir alle A > 0.
Die im Satz geforderte Beschranktheitsbedingung bedeutet daher

MR, -T )™ <C firalleA>0und meN.

Nach dem Satz von Hille-Yosida (s. [1], Th. 2.21) erzeugt daher —T"!
eine beschrankte Co-Einparameterhalbgruppe S; auf F' mit Normschranke
C. Da die Familie {!R(>T) : @ < 0} mit den Yosida-Approximationen
iibereinstimmt, ist auch die im Satz angegebene Darstellung klar.

Fiir die Anwendbarkeit der beiden vorhergehenden Sétze ist die Frage,
ob die Resolvente des betrachteten Operators die geforderten Eigenschaften
besitzt, von zentraler Bedeutung. Im allgemeinen diirfte die Antwort darauf
nicht einfach sein.

Im folgenden studieren wir einige Beispiele fiir die in Satz 2 beschriebe-
nen Cyp-Einparameterhalbgruppen S;.

In den Kapiteln 2 und 3 betrachten wir singulare Operatoren. Wir wollen
bemerken, da die Ergebnisse auch fiir entsprechende regulére Operatoren
richtig bleiben. Aber diese Situation ist nicht so interessant.

2. Normale Operatoren auf Hilbertraumen

Wir betrachten nun einen normalen stetigen Operator T # 0 auf einem
Hilbertraum H (d.h. TT* = T*T) mit Re(c(T)) C [0, 00). Dann gilt bekan-
ntlich fiir alle a < 0:

ITR(c, T)|| = max {|a—i/\| Ae a(T)}

_ _ I . — e
_max{ﬂ+w_apl(2cow).,\ea(T),,\_|,\| “’}51.

Nach Satz 2 erzeugt also die Abbildung —T~! die Cp-Kontraktionshalbgrup-
pe S; auf dem Unteraum F :=T(H) von H.

Es sei E die Spektralzerlegung von T'. Dann gilt fiir die von T erzeugte
Halbgruppe e'T offensichtlich die Spektraldarstellung

et = S e*dE()).
o(T)

Interessant ist nun, dafl die Halbgruppe S; durch folgendes uneigentliche
Integral dargestellt werden kann.
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SATZ 3. Sei H ein Hilbertraum und T ein singuldrer normaler stetiger
Operator auf H mit Reo(T) C [0,00). Ferner sei E die Spektralzerlegung
von T. Dann besitzt die von ~T~! auf dem Unterraum F erzeugte Co-
Kontraktionshalbgruppe Sy die Spektralzerlegung

Sp= | e XdE(\) firallet>0.
o(TI\(0}

Beweis. Es sei w:=o(T)\{0}(# 0). Fiir t > 0 sei hy(A) := e~ fiir A €w.
Dann sind die Funktionen h; mefibar. Ferner gilt fiicr A € w mit A = |A|e*?:

[he(X)] = [T ST < 1.

Es existieren also die im Satz angegebenen Integrale. Nach Satz 2 gilt

tR(aiT)y fﬁr a,lle y € F’

Si(y) = lime
Nun ist T77}({0}) = E({0})(H) und F = T(H) = E(w)(H) (s. [4], 12.28
und [8], Kap. VI, Th. 3.6).
Hieraus folgt fiir a < 0 und y € F:

HRT)y, — ( S eﬁﬂ_«j(,\)) E(w)(y (]ea AdE(/\))( )-

o(T)

Fir a < 0 sei nun hy(N) = =% fiir alle A € w. Dann gilt

t

ii}% ho(A) =e™x fiir alle A € w.

Fiir @ < 0 und A € w mit A = |\|e*¥ erhalten wir

ta~—t|\| cos i t|\| sin
a2+|/\|2-2a|A|coscp 6 a2+ A2 -2alA| cos ¢

lha(N)| = <L

Hiermit folgt nach dem Satz von der majorisierten Konvergenz von Lebesgue
fiir alle y € F:

tim (1 =552 0) ) - § L*dEW)(y)HZ

—t_ _t.
=X

Es gilt also
lim @Dy = (- § e3dE()))(y) fiiralley € F.
a/0
o(T)\{0}
KOROLLAR 4. Es sei € > 0. Liegt das Spektrum von T in dem Keil K, :=
{zeC:|arg(z)| < § —¢}, so gilt tlirgo [|St]| =0
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Beweis. Firt > 0 sei
e~xt  fiir 0\ € o(T)
gt(A) =
0 fir A=0.

Dann sind die Funktionen g; stetig auf o(T'). Ferner gilt fiir 0 # A = |\|e* €
o(T):

l9¢(\)| = €™®1°*% und somit Jim |gi(\)| =0 fiir alle A € o(T).

Da die Familie {g; : ¢ > 0} fiir ¢ — oo monoton fallend ist, folgt lim;_.co ||g:||
= 0 nach dem Satz von Dini. Aus ||S¢|| = ||g:|| ergibt sich dann die Behaup-
tung.

KOROLLAR 5. Ist T sogar positiv, so gelten fir T die Aussagen von Satz 3
und Korollar 4.

Beweis. Es gilt offensichtlich Re(o(T)) = o(T) C Ry

3. Positive Multiplikatoren und Mittelwert bildende Markov-
Operatoren auf den Banachverbinden C(K)

Es sei K ein kompakter Hausdorffraum und C(K) der Banachverband
der stetigen reellwertigen Funktionen auf K. Ferner sei g eine stetige nicht-
negative reellwertige Funktion auf K, und die Abbildung M, : C(K) —
C(K) sei definiert durch

Mf:=g-f firalle f e C(K).

Man nennt dann die Abbildung M, den von g induzierten Multiplikator.
Bekanntlich gilt

a(My) = g(K) € [0,00] und || M"R(a, Mg)™|

g™

=max{]m|:teK}g1 fiir alle & < 0 und m € N,

d.h. M, erfiillt die Voraussetzungen von Satz 1 und Satz 2. Es sei nun
J:={te K:g(t) =0} #0,J # K. Dann folgt aus der Stone-Weierstrass-
Theorie:

F=M,C(K))={f €C(K): f =0auf J}.

Nach Satz 2 ist die Abbildung —M ! infinitesimaler Erzeuger der Cy-Kon-
traktionshalbgruppe S; auf F' mit der Darstellung:

Sif(z) = lim tR@M) £ () = limy e5=5® . f(z) firalle f € F und z € K.
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Hieraus folgt

e-_;(?5~f(:r) fir zgJ
Sif(z) =
0 fir zeJ

und S; > 0. Fiir ¢t > 0 definieren wir nun Funktionen g; : K — R wie folgt:
Fir ¢t = 0 sei

eﬁ fir z¢gJ

go(z)=1 undfirt>0sel g¢z)=
0 fir zeld

Eine Routinerechnung ergibt, daf8 fiir ¢ > 0 die Funktionen g; auf K stetig
sind.

Fiir t — oo ist die Familie {g; : ¢ > 0} monoton fallend und punktweise
gegen 0 konvergent. Nach dem Satz von Dini gilt daher lim;—, ||g:]| = O.
Aus ||St)| = ||g¢l| folgt dann lim; o0 ||St]| = 0.

Zusammenfassend kénnen wir nun sagen:

SATZ 6. Die von —M 1 erzeugte Co-Kontraktionshalbgruppe Sy kann mit
Hilfe der Funktionen-Einparameterhalbgruppe g; kurz so dargestellt werden:

Sif=g-f fir alle f € F undt > 0.
Ferner gilt lim;_, ||St]| = 0.

Ein positiver Endomorphismus T von C(K) heifit Markov-Operator, falls
Te = e ist, wobei e die Einsfunktion auf K ist.

In der Arbeit [7] habe ich fiir einen positiven Operator T auf einem
Banachverband F das Negative Prinzip (N P) wie folgt erklart:

AeR_:={yeR:v<0},z € E und Tz < Az impliziert Tz < 0.

SATZ 7. Auf dem Banachverband C(K) sei T ein singuldrer Markov-Opera-
tor, welcher das negative Prinzip (NP) erfillt. Dann ist T auf dem Unter-
raum F := T(C(K)) injektiv, und der Operator —~T~! erzeugt auf F eine
positive Kontraktionshalbgruppe S;.

Beweis. Da T das negative Prinzip erfiillt, gilt nach (7}, Satz 2: R_ C o(T)
und TR(\, T) < O fiir alle A € R_. Es ist also A\TR(A,T) > 0 fiir A € R_.
Sei nun AeR_. Aus R(A, T)(M —T)=1 und Te=e folgt R(\,T)(re—e)
= e, R(\,T)e = yx25e, \TR()\, T)e = y21e, |ATR(\,T)|| = |ATR(A, T)e||
= D{i—lﬂ Es ist also ||[TR(\,T)|| = Wl_ﬂ < 1fiiralle e R_.
Da nun die Voraussetzungen (i) und (ii) von Satz 2 erfiillt sind, erzeugt
—T-1 auf F die in Satz 2 angegebene Co-Einparameterhalbgruppe S;.
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Fiir alle A > 0 gilt
1 1
Y= —_p{— >
RO\, -T™Y) = =R (_)‘,T) T>0
und [|AR(A, —T~1)|| < 1. Bekanntlich ist daher die erzeugte Halbgruppe S;
eine positive Cg-Kontraktionshalbgruppe, q.e.d.

Ein Operator T auf C(K) heifit Reynoldsoperator, falls er die folgende
Reynoldsidentitat erfiillt:

T(f - Tg+g-Tf)=Tf - Tg+T(Tf -Tg) fir alle f,g € C(K).

Ein Endomorphismus S von C(K) heifit “Mittelwert bildender” Opera-
tor (engl.: averaging operator), falls er die folgende Bedingung erfiillt:

S(f - Sg) = (Sf)- (Sg) fir alle f,g € C(K).
SATZ 8. Auf dem Banachverband C(K) sei S ein singuldrer, Mittelwert

bildender Markov-Operator. Dann ist S auf dem Unterraum F = S(C(K))
injektiv, und —S~1 erzeugt dort eine positive Co-Kontraktionshalbgruppe S;.

Beweis. Nach dem vorhergehenden Satz geniigt es zu zeigen, da8i der Op-
erator S das negative Prinzip erfiillt.

Wir benutzen nun das bekannte Darstellungstheorem fiir Mittelwert bil-
dende Operatoren von G. Birkhoff, welches ich kurz so beschreiben méchte:

Es gibt eine Partition { K, } von K, bestehend aus abgeschlossenen Men-
gen, und positive RadonmasBe p(® auf K, so daB gilt:

Sf= | fdu® auf K, firalle f € C(K).
Ka

Sei f € C(K), A € R_ und Sf < Af. Dann gilt auf K, : p®)(f)-e < Af
und somit p(®)(f) - ul®(e) < Au(f).

Angenommen, es wire u(®)(f) > 0.

Dann wiirde aus der vorhergehenden Ungleichung 1 = u(®(e) < A < 0
folgen, was einen Widerspruch ergibt. Es ist also u(®)(f) < 0, Sf < 0
auf allen K, und somit Sf < 0. Der Operator S erfiillt also das negative
Prinzip, q.e.d.

Wie schon eingangs erwahnt, ist es eine offene Frage, ob die Aussage
von Satz 8 auch fiir positive Reynoldsoperatoren Giiltigkeit hat. Wenn der
Wertebereich dicht ist, ist dies der Fall, wie A. Neeb in [3], Theorem 4.6,
gezeigt hat.

SATZ 9. Sei T ein positiver Reynoldsoperator auf C(K), welcher das negative
Prinzip (NP) erfiillt. Dann ist T auf dem Unterraum F injektiv, und —T~!
erzeugt dort eine positive Kontraktionshalbgruppe S;.

Beweis. Es ist R_ C o(T) (gilt auch ohne (NP), s. [3], Theorem 3.1).
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Nach Miller [2], Theorem 6, Korollar, gilt: Fiir A # 0,# 1 mit Tl—x €

o(T) ist der Operator AT(I — (1 — A)T)~! wieder ein Reynoldsoperator.
Hieraus folgt durch eine kurze Rechnung, da8 fiir alle « € R_ der Operator
(o = 1)R(e, T)T wieder ein Reynoldsoperator ist.

Aufgrund von (NP) gilt fiir alle A € R_:

R(\T)T <0, also(A—1)R(A\,T)T >0.
Nach [6], Korollar 4, sind positive Reynoldsoperatoren auf C(K) stets Kon-
traktionen. Fiir alle A € R_ ist somit ||R(A\, T)T|| < T'FIW <1

Nach Satz 2 erzeugt also die Abbildung —T~! auf F' die Kontraktion-
shalbgruppe S;.

Es ist wieder R(\,-T71) = LR(<;,T)T > O fiir alle A > 0. Die
Halbgruppe S; ist daher positiv, q.e. d

Es bleibt also die interessante Frage, ob jeder positive Reynoldsoperator
das negative Prinzip erfiillt, so wie es die Mittelwert bildenden Operatoren
tun.

4. Positive Integraloperatoren auf C|a, b]

In diesem Kapitel betrachten wir die folgenden Integraloperatoren auf
Cla, b}:

Fir0 < u € Rund 0 < q € Cla,b] sei T : Cla,b] — Cla,b] definiert
durch

Tf(z)=p- f(a)+S ft)ya(t)dt

fiir alle f € Cla,b] und z € [a,b). Dann ist T ein positiver Endomorphismus
von Cla, b]. Fiir A # 0 sei Hy(z) := ex 2904 fiir alle z € [a, b].

Der folgende Satz beschreibt das Spektrum und die Resolvente eines
solchen Operators T
SATz 10. Es gilt:

(i) o(T) = {0, u} und
(ii) Fiur A # 0,%# p kann die Resolvente R(A,T) wie folgt dargestellt
werden:

ROT)f (@) = $/(2)
+HA<x>{ S (@) + 52 | O HA 0" ldt}

fiir alle f € Cla,b] und z € [a, b].



Von inversen Operatoren erzeugte Einparameter-Halbgruppen 901

Beweis. Zu (i): Der Operator T ist die Summe eines kompakten Volterra-
Operators und eines Operators vom Rang 1. Es ist daher T' kompakt und
0€o(T).

Da (pI — T)f(a) = 0 fiir alle f € Cla,b] ist, ist der Operator ul — T
nicht surjektiv, also auch p € o(T). Wir erhalten also {0, u} C o(T).

Im Beweis zu (ii) zeigen wir, daB8 jedes A # 0, # p ein Resolventenwert
ist. Es ist daher o(T) = {0, u}.

Zu (ii): Sei A # 0 und # u. Es geniigt zu zeigen, daf der in (ii) angegebene
Operator R(), T') die Gleichungen (¥)(AI =T)R(A,T) = I und R(A, T)(AI —
T) = I erfiillt.

Zunachst mochten wir bemerken, da man die angegebene Darstellung
von R(A, T') vermutet, wenn man, was methodisch nicht neu ist, in der Theo-
rie der linearen Differentialgleichungen 1. Ordnung zu der Integralgleichung

Af(z) —p-f(a) - Sf )q(t)dt = g(z)
die Losung des folgenden Anfangswertproblems betrachtet:
M@ - f2)a(@) = ¢(0) wd @)=L (geclot).

Und nun zur rechnerischen Verifizierung der Gleichungen (*):
(@) (A -T)R(\,T)=1&TR(\T) =AR\T) -
Fir f € Cla,b] und z € [a, b] setzen wir
S(z) := AR\, T) = I)f(x)

= Hy(@) { L r@)+ 1 00 ldt}

und

R(z) := (TR(A, T))f (=)

—#{ @)+ 510

+a0 {110+ 50 {55
1

+/\2 Sf(T)q (T)Ha (7)™ ldr}} dt.

Differentiation dieser Funktionen ergibt S’(z) = R/(z) fiir alle z € [a, b].
Da ferner S(a)= x£; f(a) = R(a) gilt, ist also R(z)=S(z) fiir alle z€[a, ],

f(a)
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was zu zeigen war.
(B RM\T)YM -T)=1% R(\,T)T = AR\, T) - 1.
Fir f € Cla,b] und z € [a, b] setzen wir

AR\ T) - I)f(x)
S( ) - HA((L‘)

= T 1@+ 3] FOa ) e
und

R(z) = & (AH:’;)(:))f (=) lH(a:)'l Tf(z)

-1
o N /\ )T f(a) + §Tf t)q(t)Hx(t)"1dt .
Differentiation ergibt auch hier S'(z) = R'(z) fiir alle z € [a, b].
Aus S(a) = Xﬁ f(a) = R(a) folgt dann wieder S(z) = R(z) fiir alle
z € [a,b], qed.

SATZ 11. Der Operator T ist injektiv auf dem Unterraum F := T(C|a, b)),
und =T~ erzeugt dort eine positive Co- Kontraktionshalbgruppe S;.

Beweis. Aus Satz 10, (i), folgt R_ C o(T).

Sei A € R_. Aus der Gleichung R(\,T)T = AR(A,T) — I erhalten wir
mit Hilfe der Resolventendarstellung in Satz 10, (ii): Fiir 0 < f € Cla, b]
und z € [a, b] ist

RO\TTS (z) = Hy@) { @)+ 1 f(t)Q(t)HA(t)‘ldt} <0.
Fiir alle A € R_ ist also R(\,T)T < 0 und ||[R(\,T)T|| = || - RO\, T)T|| =
| = R(X, T)Tel|.

Fir z € [a, }] ist

x
0 < —R(M\T)Te(z) = —Hx(z) { —;: S Q(t)H,\(t)"ldt}
o
= _ei' S: q(t)dt {X_l.l.l_;; + % §q(t) . e—i S:; q(T)det}

= —ek laat)at {_)‘L_ +[~e 3 q(T)dT]z}
—p
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—-_e%ﬁquwt{xiip-—e Asqva+1}

=5 A Afewd 1<,
—u
Es ist somit ||R(A,T)T|| <1 fir A € R_. T erfiillt also die Bedingungen

(i) und (ii) von Satz 2. Da R(\,~T~!) = LR (—_15\-, T) T >0 und

- 1
ARG =Tl = IR (5 T) Tl < 1

fiir alle A > 0, ist die erzeugte Halbgruppe S; wieder eine positive Cp-
Kontraktionshalbgruppe.

Aus der Gleichung

Tf(z) = p- f(a) + | f(t)a(t)dt = g(z)
folgt durch Differentiation ’

f(z) - q(z) = g'(z) .
Dies bedeutet, die Abbildung —7'~! stimmt auf der Menge {z € [a,}] :
q(z) # 0} mit der Derivation Df(z) = —5(15)- f'(z) iiberein.
Zu a € R_ sei 7, eine im positiven Sinn orientierte Kreislinie, so dass
a im Aussengebiet und die Spektralwerte 0 und g im Innengebiet von 74
liegen.
gNach dem Funktionenkalkiil in der Spektraltheorie gilt dann fiir t > 0 :
ethlaT) — . 6tR(Z, T)d-=.

27n

Mit Hilfe der Darstellung der Resolvente R(z,T') aus Satz 10, (ii), erhal-
ten wir dann die folgende konkretere Darstellung der Halbgruppe S;.

FORMEL (12): Es gilt

1 —t_J1
550 = I § 65 B
+e% faa(r)dr {z( f( ) + -:—2§f(s)q(s) e~ la Q(r)drds}] dz

fir alle f € F und z € {a,b).

Zum Schluss noch ein ganz einfaches Beispiel, welches die Theorie ve-
ranschaulicht. Es sei 4 > 0 und ¢(t) = 0. Dann ist Tf(z) = - f(a) und
F={ce:aeC}.

Auf dem Unterraum F gilt T = pl,-T"1 = -—71;[ und somit S; =

¢! Dies bedeutet Sif = ek f fiir alle f € F, was man auch leicht mit
der vorhergehenden Formel (12) und dem Residuenkalkiil berechnen kann.
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