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ABSTRACT VARIABLE DOMAIN HYPERBOLIC
DIFFERENTIAL EQUATIONS

Abstract. An abstract problem is studied for a class of linear hyperbolic differen-
tial equations with variable domain and non-local boundary conditions. Existence and
uniqueness of the strong solution are proved.

1. Introduction

This paper is devoted to the study of a boundary value problem for
hyperbolic differential operator equations with variable domain and non-
local boundary conditions.

Let T > 0, be given, H is a Hilbert space and {A(t)} is a family of
unbounded operators in H, such that for all t € [0,T], A(t) are self-adjoint
positive and densely definite. We suppose also that their domains D(A(t))
are dependent on ¢. We look for an H-valued function u(t) which solves the
following boundary value problem:

d?u
Lu=—+ A(t)u = f(t)
(P) de? du du

0,.“ Hemo ™ Hlle=r LG dt Je=0 # dt le=T 1/)’

where 4 is a complex parameter, f(t) is an H-valued function, ¢ and ¢ are
given in H.

In the case where the operator coefficients have constant domains, var-
ious important results were proved under different assumptions; see [1, 4,
5, 6]. The proofs were based on energy inequalities in [4, 5, 6], or on the para-
metric construction and a subsequent use of the Laplace transformation for
the corresponding problem in the first work.

A version of the problem (P) with homogeneous Cauchy boundary con-
ditions was studied in the works {8, 9].
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The aim of the present paper is the study of the boundary value problem
(P) in a general case, with f(t) # 0 and with nonhomogeneous, non-local
boundary conditions.

Summary of the paper is as follows:

In Section 1, we give notations, present main assumptions and describe
functional spaces.

In Section 2, we prove the uniqueness of the strong solution. For this
purpose, we use the regularizing operators.

Section 3 deals with the existence of the strong solution. We prove that
the range of the operator L, generated by the problem (P) is dense. Then
we give some examples, which illustrate the considered problem.

Let us remark that the literature for parabolic linear variable domain
problem is wider than the hyperbolic one. We can mention the very recent
papers [2, 3].

2. Notations, main assumptions and functional spaces

As previously mentioned, let H be a Hilbert space with the norm |.| and
the inner product (,).

We solve the following boundary value problem:

Find a strong solution u to the equation

d?u
(1) Lu= Et—2 + A(t)u = f(t)
with nonhomogeneous and non-local boundary conditions:

d
dt |t=0 # dt |t=T

We denote by I the interval |0,T7[C R, T < oo.
The functions u and f are two t-variable functions from I to H; pisa
complex parameter satisfying

(2) bou=1uy,_o— puy,_p =9 ; bu=

|ul < €727,

The constant a will be defined latter.

The linear operators A(t),V¥t € I, are unbounded in H, with domains
D (A(t)) depending on t and everywhere dense in H. We impose the following
assumptions:

(a) The operators A(t), for t € I are self-adjoint in H and there exists
a constant ¢; not depending on v and ¢ such that:

(A®)v(t),v(8) = e [v(B)?, Vo(t) € D(A(®), Vte I
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(b) We suppose that the inverse operators to A(t) exist on I and A~}(t)
are strqngly differentiable With respect to ¢ in H with:

diAT(t)
dtt
(c) There exists a constant cp > 0, not depending on ¢ and u, such that

- (45 %u0.u0) < 2 (700 t0) e

We need the following definition:

A0 oy, -2

DEFINITION 1. The operator A(t) is strongly differentiable with respect to
t, in to, on u(tp) € D (A(to)), if there exists t € v(to)/{to} (v(to) is a
neighborhood of the point ¢3) such that u(t) € D(A(t)),

“_(ti_z%’l = a(to) € D(A(to),

A(t)u(t) — A(to)u(to)
t—1p

and

t_;o ﬂ(tO)
Then we have
A (to)u(to) = B(to) — A(to)a(to)-

We remark that if the domain of the operator A(t) is constant, then we
find the known concept of the strong differentiability.

Now, we introduce the following functional spaces:

Let D(AY/2(t)) # {#}. We construct the Hilbert space W (t) on D(AY/2(t))
for all t € I, equipped with the norm

[ule = |AY2(E)u(t)]-

The operator generated by the problem (P) is denoted by L, = (£, 4o,,¢1,)
with the domain

kU
u € L2(I7 H)au( ) € D(A(t)) d tl(ct)’

A(t)u € Lo(I, H),sup,7 |A(t)u| < 00, k=1,2
We denote by E, the completion of D(L,) with respect to the norm
lullf, = (1 — €T |u|?) sup(|du(t)/dt|* + [u(®)[?).
tel

We consider the Hilbert space E = Lo(I, H ) x W(0) x H, whose elements
= (f,,%) are such that | F|||* = || f|I* + |¢l3 + |4|* is finite.
For the operator L,, we present the following Lemma:

LEMMA 2. If the conditions (a)-(c) hold then D(L,) is dense in Ly(I, H).

D (L#) =
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Proof. Let v € Ly(I, H) be such that {; (u,v)dt = 0 for all w € D(L,).
We set u = A~(t)h, t € I, where h is any function in Ly(I, H).

We can easily see that {; (A~1(t)h,v) dt = 0. In particular if v = A, then,
from the condition (a), we obtain A~!(t)v = 0. Hence v = 0 on I.

THEOREM 3. Under the conditions of Lemma 2, we get
(3) lullf < KlILuull®  for all u € D(L,),
where K > 0 is a constant independent on p and on u.

Proof. Since the operators A(t) are not bounded, we approximate them by
a bounded and strongly differentiable operators A(t)AZ1(t) where

Sl=T+eA)7t; e>0.
The regularizing operators A; ! have the following properties:

®1) 0 cawar 0™ Dawasie),

(P2) cAR)ATI () =1 - AE L(®),
(P3)  [[eA() A (t)ul| = [lu — A71(t)ul| — O when € — 0,Vu € H,
dAMAI®) _ —1dA7'(®)

(P4) ' dt T e dt
AZ1 is self-adjoint positive operator and commute with A.
(P5) (Aev,v) > (1+€¢1),Vv e D(A()) and t € I.

d .
We integrate by part the expression 2 Re e("*)(Lu, AT 1—:) over the inter-
val |0, 7[ to get:

@ [(FatoF )+(u,A<t)A;‘<t)u)]t=T
e [(d“ 1 2 )+(u,A(t)A;1(t)u)]

t=0
1
+2Ref e 0(cu, A-l(t)—)dt+ReS ey ,——(A(t)df D) )
0
T dAZ1(t) du du
c(r—t) €
+Rele ( & @ dt)dt

—Regec(""t) [(‘fi‘: A‘l(t) )+ (u,A(t)Agl(t)u)] dt.

In order to bound the right side of (4), we use the properties of the regu-
larizing operators. Using the Cauchy-Schwartz inequality, the d-inequality
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with § = 1 for the second term and the condition (c) for the third one we
obtain:

) [(du 1(t) ) (,A(t)A;l(t)u)]t=T
<e” [(du 1(t) ) + (u,A(t)AZl(t)u)]t=o

T T 2
+2Re {0 |Cul’ dt + 2Re f e AT () | dt+
0 0

T 2 T
R P s refo (U084
0

—cReSec(T 2 [( A )+ (u,A(t)A;I(t)u)] dt

Using P3 in (5), allowing € — 0, we get
t=0

2 2
© [ i |u|?] <e [ &
t=1
2 T
du dt+ (ca —¢) S estr=) |u|f dt.

2
- Z| T |ual
T 9 T (
(-1 T—1
+§)e( )| Ll dt+(1—c)§)e° ) = !

dt

We can see that for ¢ > max(1,c2) = a the last two terms are not
positive. Then they can be omitted. For ¢ = a, the inequality (6) implies

du? .rdul?
o |G e <

t=T1 dt
Now we consider the form 2Re S et (Lu, A"l(t)—)dt and, by using

the same reasoning as before, we prove that

(8) [ du|?

dt
From (7) and (8) we get

,
+ Iqu] + S e | Lul? dt.
t=0

d T
+ |ulf} <eT “d—z + Iulf] +eT { e | Lu)? dt.
t=T t=1 T

2- 2a1 ||du 2 2
(9) ( -1) E + ulg <e Py + Jul;
Jt=7 t=0
2 T
—e T ”%’ +uf|  +e¥T { |Cul? dt.
t=T 0

We need the following
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LEMMA 4. Let g: I — H and define

(10) h = glt=0 — pgle=r,

where u is a complez parameter satisfying |u| < e=2°T. Then we have
3aT 2 2 el 2

11 @ —ol° = |9lier|”° £ ——=—=|h|".

(11) e |gli=ol” — 9lt=rl” < 1= e3aT|#|2)| |

Proof. From (10) and the & — inequality, we deduce that

|9limol® < (L + &) [l [ glor® + (L +77) [Af.
It is enough to choose
_ (=€)
o T
to get (11).
Now we come back to the proof of the Theorem (3). Applying the
Lemma 4 to the inequality (9) we then obtain

12 @ -1 || % 4 up| < ICul? + ol + WL
dt t o (1= eT[u2) (0)
1= eaaTl#|2
Multiplying (12) by 5T (we remark that 0 < 1 — €37 |u|? < 1)

and taking the least upper bounds for both sides of the resultant inequality
with respect to 7, we obtain the inequality (3) with

e2aT

eal —1°

K=
LEMMA 5. Assume that the conditions of Theorem 3 hold. Then L, is clos-
able.
We denote by Zu its closure with domain of definition
D(Iu) = D(L,).
DEFINITION 6. A function u satisfying
I,Lu = F,

is called a strong solution of the considered problem.

By passing to the limit we extend the inequality (3) to strong solutions
u € D(L,):
(13) llullz < KNI Tuull?,  VueD(T).
We can easily prove that

RT.)=R{I,) and (L)'=
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REMARK 1. From the inequality (13), we deduce the uniqueness of the strong
solution and the closure of R(L,).

For the existence of the strong solution, it remains to prove that the
range R(L,) is dense in E, which is equivalent to R (L,)" = {0}.

3. Existence of the strong solution

THEOREM 7. Let the conditions (a)—(c) hold. Then for any F = (f,,9) €
E, there ezists an unigue strong _solution u to the problem (P) satisfying
lully < KNLuulll? for all u € D(L,).

Before proving this Theorem 7 we give an intermediate result:

PROPOSITION 8. Let the conditions of Theorem 7 hold. Assume moreover,
that w € Do(L,) = {u € D(L,) such that lo,u = £1,u = 0}. Then an
equality

T
(14) §(Lu,v)dt = 0,Vv € Lo(I, H),
0

holds only for v=20.

Proof. Let h be any function in Hy(I, H) such that u(t) = A~!(t)h(t).
Then (14) is equivalent to

2 1 -1
15) S (d A 1, dAdt (t) Zh

Next, let w be a solution of the Cauchy problem:
dw
_ V22 _ pelt=T) —
(T -1 il v, w(0)

2
1(t)d h + h,v)dt =

Then we obtain

d%h 0 a—1,0 QW
(16) 5( (T =094 l(t)gt—)dt

d2A-1(¢) _pndw
g( o (T - 9T at

T -1
dA (t) dh (T—-1) dw
2§( & a T E)dt

T dw
- (h, (T - t)ec(T“‘)—)dt.
. dt

Now, we integrate the left hand side of (16) by part, set h = w, take the
double real part and then the resultant equality is
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(17) § e

A‘E(t) ‘ dt_—cReS(T—t)e(T")

t)——l dt

_n(dA7I(t) dw dw
- — Tt 22 V2" 2%
3Re§)(T e ( ULl dt)dt

1 o (QPA™ (t)
- —t)eT-1
2Re (S)(T t)e ( W )dt

r dw
~2Re {(T - t)etT—?) ( )dt
o " dt
We need the following Lemma:

LEMMA 9. If A2 (t)d%‘;ig € Loo(I,L(H)), then there erists a constant c4,
not depending on u and t such that:

4 (t)fﬁ_ﬂu

<cs |A‘§(t)w'

Proof. It is based on the Heinz inequality (see [7]). We can choose c3 =
1 ~3 |2

ab(p 24570

Using the condition (c), Lemma 9 and that w(0) = 0, we get

T
(18) S eT-1)
0

ess sup

2
A'%(t)d—w dt

<(-c+3c2+1) S(T t)eT-t

P 10 et \ dt

T
— [ llc = ca)(T = t) + 1] T w|? dt.
0

One can see that if ¢ > max(1 + 3c3, ¢4), then we have

T
[ e

A §(t)—| dt =
0

But this implies that (‘li—t: = 0 and consequently v = 0.

Proposition 8 is proved.

Proof of Theorem 7. Let V = (v,1,%1) € R(L,)* and u any function in
D(L,) such that (L,u, V) = 0. We have to prove that V = 0.
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Firstly and without lose of generality, we suppose that u € Do (L,).
T

Then (L,u,V) = 0 implies that {(Lu,v)dt = 0. From Proposition 8, we
0

conclude that v = 0. Next
(19) (L,u,V) = 0 becomes (£g,u, p1)o + (€1,u,%1) =0, Yu € D(L,).

Let u(t) = ¢(T — t)x(t) A~(t)h, where x(t) = 1 if t € [0,¢[(¢ > 0) and
0 eleswhere. Then (19) gives (A~1(0)h,%,) = 0. Taking into account that
D (A(0)) is dense in H, we conclude that 1; = 0.

Finally, if we choose u(t) = x(t) A™(t)h, we obtain that (£,u,p1)o = 0.
Then (A=1(0)h, ¢1)o = 0. Since D(A(0)) is dense in W (0) we deduce that
p1= 0.

Now we give some examples.

EXAMPLE 1. Let Q be an open bounded domain in R® with C!-boundary
I', ¥ denotes the open cylinder 2 x I and let H = Ly(f2).

Consider operators A(t) generated by the differential expression
A(t)u(z,t) = —Azu(z,t), VY(z,t)€X

and the boundary conditions
ou
u(z,t)|zer =0, and a—nlzep + a(t)u(z, t)|zer =0,

where the function a € C?(I) is positive. One can prove that {A(t)} satisfies
the conditions of Theorem 3.

EXAMPLE 2. We can also choose for A(t) the operators generated by
= 9 du
At)u(z, t) = - i§=:i ‘a_zi'(aij(-'l«', t)a_z,) + b(z, t)u(z, t)
du
u(m7t)|zel‘ =0, and %‘lzel‘ =0.

As in (2), we set
o, u(z, t) = uo(x), leu(z, t) = uy(x),
where the functions uo(x) and u;(x) are given, a;; = a;; and b(z,t) are
positive functions in C*(X), satisfying ¥, ;(ai;¢:, &) > aléi|?, where a =
infzeq |ai;(z, t)]-
For those two operators we can prove that the strong solution exists and
is unique.
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