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ON THE EXISTENCE OF GLOBAL SOLUTIONS 
OF EVOLUTION EQUATIONS 

Abstract. In this paper a sufficient condition for the existence of global solutions 
of evolution equations is proved. In the proof a modification of the Bihari type integral 
inequality to the case of a weakly singular nonlinear integral inequality is used. An appli-
cation to a reaction-diffusion problem is given. 

1. Introduction 
The inequalities of Gronwall-Bihari type play an important role in the 

study of asymptotic properties of integral and differential equations. The 
analysis of asymptotic behaviour of ordinary differential equations on infi-
nite-dimensional state spaces, associated with continuous and analytic semi-
groups of operators, requires modified versions of that type inequalities. 
Their so-called mild solutions coincide with continuous solutions of integral 
equations with weakly singular kernels (see [12], [13]). D. Henry [13] proved 
a modification of the Gronwall lemma covering the case of linear integral 
inequality with weakly singular kernel (see also [18], [25], [28]. A new ap-
proach to an analysis of nonlinear integral inequalities with singular kernels 
is proposed in the paper [19] and using this method a modification of the 
the well known Bihari lemma and also a result concerning a modification 
of the Ou - Iang - Pachpatte inequality (see [26]) are proved. This method 
has been applied in the paper [21] also to nonlinear integral inequalities 
for functions in two and n independent variables with singular kernels. A 
discrete analogue of that type of inequalities suitable for discretizations of 
parabolic equations is derived in the paper [22]. Using this method some 
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results concerning the existence of global solutions and asymptotic stabil-
ity of solutions of semilinear parabolic equations are proved in the papers 
[14], [20] and an exponential decay for a semilinear problem with memory 
is obtained in the paper [29]. 

In the paper [8] by A. Constantin and S. Peszat a sufficient condition for 
the existence of global solutions of semilinear evolution equations is proved. 
The paper [23] also contains a sufficient condition for the existence of such 
solutions, however with completely different proof from that in [8]. It is 
proved by using a modification of a result on an integral inequality with 
singular kernel published in the paper [19]. This problem was solved for spe-
cial classes of nonlinear equations, e. g. by H. Amann [1]—[3], A. Constantin 
[7], M. Mizoguchi and E. Yamaniga [24] and A. H. Martin [17]. Sufficient 
conditions for the boundedness of global solutions of semilinear parabolic 
equations are proved by M Fila and H. A. Levine in the papers[9], [10]. 
A necessary and sufficient condition for the global existence of solutions 
of a scalar integral equations with weakly singular kernel is proved in the 
paper [6]. This result is used also in the paper [8]. 

The results contained in the papers [19], [21], [22] are proved under the 
assumption that the nonlinear function of the state variable appearing in 
the integral inequality, or difference inequality, respectively, satisfies a condi-
tion referred as the condition (q). However this condition is very restrictive. 
In this paper we define a class of couples of functions fulfilling a condition 
referred as the condition (r,q), more convenient for applications. We shall 
prove a sufficient condition for fulfilling such condition. This condition en-
ables us to prove a modified version of [19, Theorem 1], which is a nonlinear 
version of the Henry inequality from the book [13]. Using this inequality we 
shall prove a new sufficient condition for the existence of global solutions of 
evolution equations which is different from those proved in the papers [6] 
and [23]. 

2. Couples of functions satisfying a condition (r, q) 

DEFINITION 1. Let r, q > 0 , 0 < T ^ oo and R+ = (0, oo). We say that an 
ordered couple (tu, i f ) of functions u> : R+ —> R+, rj : R+ —> R+ satisfies a 
condition (r, q), if 

(r, q) e- r tu;(u)9 ^ R(t)r)(e~rtu'1), t E (0,T), u <E R+, 

where R : (0, T) —> R+ is a continuous function. 

We have defined the condition (q) in [19] for one function u>, which co-
incides with the inequality (r, q), if ui = 77 and r = q. If u>(u) = um, m ^ 1, 
q > 0, then the inequality (r, q) is satisfied with OJ = rj, R(t) = e(m-1)rt. 
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Now we shall prove a sufficient condition for fulfilling the condition (r, q). 

PROPOSITION 1. Let r,q > 0, 0 < T ^ oo, R : ( 0 , T ) R+ be a conti-

nuously differentiable, positive function, u> : R+ —• R+ be a continuous, 

nondecreasing function and rj : R+ —> R+ be a continuously differentiable, 

nondecreasing function satisfying the conditions 

(1) u(u)q ^ R(0)T}(U"), u € R+, 

where R'(t) = d . Then the couple (co,77) satisfies the condition (r,q). 

P r o o f . Let 

h(t) = ertR(t)rf(e~rtu9) - w(u)q. 

The condition (1) yields h(0) Z 0 and 

h'(t) = -rertR(t) 

where v = e~rtuq. From the condition (2) we obtain that h'(t) ^ 0 for 
t € R+ and thus h{t) ^ h(0) ^ 0 for t e R+, i. e. the condition (r, q) is 
satisfied. 

PROPOSITION 2. The couple (w, rf), where ui(u) = y/1n(n + u) and r}(u) = 

ln(/c + \/u), K > 1 satisfies the condition (r, q) with r = q = 2 and R(t) = 1. 

P r o o f . Since ui(u)2 = ij(u2),u ^ 0 the condition (1) is satisfied with r = 

q = 2, R(t) = 1 and 

. . dr?(ti) , . „ u ^ Ju 
T](u) j - ^ - u = ln(/ i + V u ) - — = ln(K + y/u) - v 

du 2(K+y/Û)y/Û 2(k + y/Û)' 

Let H(w) = ln(/c + ui) - , weR+. Obviously H(0) > 0 and 

dH(w) 1 K K + 2W _ , 
r-t- = 777 TTT = 7T7 TTT > 0, W E R+. 

dw K + W 2(tz + W)2 2(K + w)2 ' 

This yields H(w) ^ H(0) > 0 for all w € R+ and thus - r)(u) < 0 
for all u e R+. Therefore the assertion of the proposition follows from 
Proposition 1. 

PROPOSITION 3 . Let q > 1 and K = e 9 - 1 . Then the couple (UJ,TJ), where 

cj(n) = l n ( « + tt9) and rj(u) = [ln(/c + i t ) ] 9 , satisfies the condition (r,q) with 

r = q and R(t) = 1. 

P r o o f . Since u(u)q = r](uq), the condition (1) is satisfied with r=q, R(t) = 1 
and 
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where ip(u) = qu — (k + u) ln(« + u). Since ln/c = q — 1 we have tp(0) = 
-/clnk < 0 and ^ i l = q - 1 - ln(« + u) < 0 for all u Z 0. This yields 
ip(u) < 0 for all u ^ 0 and thus u _ v ( u ) < o for all u e R+. By 
Proposition 1 the couple (w, 77) satisfies the condition (r, q) with r = q and 
R(t) = 1. 

PROPOSITION 4. The couple (a;,??), where u(u) = [ l n ( / c+ t t 9 ]k > 1, q > 1, 
?7(u) = ln(/c + u) satisfies the condition (r, g) with r = q and R(t) = 1. 
P roof . Since u(u)q = 77(14'), the condition (1) is satisfied with r — q and 
R(t) = 1 and 

dri{u) , . a(u) , . . . . , . . u — t}{u) = — — w h e r e a(u) = u — (k + u) ln(K + u). du K + U 
Obviously a(0) = - k I u k , ^ ^ = - ln(/c + u) < 0 for all u Z 0. This yields 
a(u) < 0 for all u ^ 0 and thus we have proved that u — r)(u) < 0 for 
all u ^ 0. The assertion of the proposition follows from Proposition 1. 

3. Integral inequalities 
We shall reformulate and improve the main results from the paper [19]. 

THEOREM 1. Let 0 < T ^ 00,A : ( 0 , T ) R+ be a nondecreasing ex-
junction, F : (0, T) —> R+ be a continuous function, u, 77 : R+ —» R+ be 
continuous, nondecreasing functions, r](u) > 0 for u > 0. Let u : (0, T) —> 
R+ be a continuous function satisfying the inequality 

t 
(3) u(t) ^ a(t) + \(t - t G (0, T), 

0 
where 0 < f3 < 1 and let e be a positive number. Then the following assertions 
hold: 

(i) If (3 > | and the couple (u, 77) satisfies the condition (r, q) with r = 2e 
and q = 2, then 
(4) fi(Hi)e-£t]2) ^ n(2a(tf) + 9l(t,e), t e (0 ,T), 
or 

u(t) i +pi(t,€))]>i, t € (0 ,^) , 
where 

g1(t,e) = l^[\\R(s)F(sfds, 
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T is the Eulerian Gamma function, Çl(v) = v ^ vq > 0, fi 1 is the 
inverse of il and Ti > 0 is such that fi(2a(i)2) + g\(t) € I>om(iî - 1) for ail 
t € (0, Ti). 

(ii) Let ¡3 = - j ^ , and the couple (ui, rj) satisfies the condition (r, q) 
with q = 1 + z + 5, r = qe, where 5 is a positive number. Then 
(5) n([u(i)e"£ t]9) ^ n(2 q _ 1 a( t ) ' ) + g2{t, e), t € (0,T) 
or 

where 
u(f) s e " { f ! - 1 [ f l (2 ' - 1 a( t ) ' ) + J i ( t , i ) ] } i , t e <0,Tj), 

andT2 > 0 is such thatn(2"-1a(t)'')+g2(t) € Dom(n _ 1 ) /or allt e (0,T2). 
P r o o f . We shall prove the assertion (i) using the method of desingulariza-
tion presented in [19]. Applying the Cauchy - Schwarz inequality we obtain 
from (3) 

t 
(6) u(t) ^ a(t) + J(t - sf-1ee3F(s)e-£Su{u{s))ds ^ 

rt 

^ a(t) + 
I * 

J ( i _ S)2^2e2esds \ F(s)2e~2e3u(u(s))2ds 
-o 4) 

For the first integral in (6) we have an estimate 

j(t - s)2/3~2e2eads = J r ^ e ^ - ^ d r = e2et \ T^e'^dr = 
0 0 0 

2 et 

= S < 4 -

Using this estimate, the condition (r, q) with r = 2c, q = 2 and the inequality 
(A + B ) 2 g 2(A2 + £ 2 ) , we obtain 

t 
(7) v(t) ^ a(t) + K(e) \ F(s)2i?(5)r?(v(s))d5, t G (0, T), 

o 
where 

v(t) = (e~etu(t))2, a(t) = 2a(i)2, = - 1). 

Then applying the Bihari lemma (see e. g. [4, 5, 11, 15, 16]) we obtain the 
inequality (5). 
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Now let us prove the assertion (ii). If p = then A + ± = 1 and 
using the Holder inequality we obtain 

rt , A rt , 1 
(8) U(i)ifl(t) + \(t-s)~apsep€sds ' \F(s)(}e-'!tsuj(u(s))'}ds 

•0 ->4) 
where a = I — (3. For the first integral in (8) we have the estimate 

4 p e t „pet 

\(t - s)~apep£Sds = epet \ r~ap e~p" dr < r ( l - ap). 
I J (pey- a p v } 

Obviously, 1 - ap — > 0 and so T(1 - ap) < oo. Using the 
condition (r, q) with q= (1 + z + 6),r = qe and the inequality (A + B)q ^ 
2 9- i ( A q + 0 we obtain 

t 
v(t) S + L(e) \ F(s)qR(s)ri(v(s))ds, 

o 
where 

v(t) = (e-«u(t))g , *{t) = L(e) = • 

Then applying the Bihari lemma to this inequality we obtain the inequality 
(5). 

As a consequence of Theorem 1 we have 

THEOREM 2. Let 0 < T ^ oo, a(t), F(t) be as in Theorem 1 and u : (0, T) 
R+ be a continuous, nonnegative function satisfying the inequality 

t 
u(t) ^ a(t) + \(t - sf-1F(s)u{s)ds, (0, T), 

o 
where 0 < /3 < 1. Then the following assertions hold: 

(i) If (.3 > 5 and e is an arbitrary positive number, then 

u(t) S >/2o(t) exp (et + 2F(2^~ ^ i ^(«fo«), t € (0,T). 

(ii) If (3 = and 5, e are arbitrary positive number, then 

u(t) i 2 ^ a ( i ) e x p + | F(s)»ds), t 6 (0,T), 

where a = 1 - ¡3, p = g = (1 + z + <5). 



Global solutions 877 

REMARK. We need no other restrictions on e, 6 in Theorem 2, because the 
linear function u(u) = u satisfies the condition (r, q) with any r, q > 0 and 
with R(t) = 1, uj = rj. We also remark that all results presented in the papers 
[19], [21], [22] can be reformulated and improve in the style of Theorem 1. 

4. Globed solutions of semilinear evolution equations 
In the papers [8] and [23] sufficient conditions for the existence of global 

solutions solutions of the evolution equation 
(9) x + Ax = H(t, x), x(0) =x0eE 
are proved. It is assumed there that —A is the infinitesimal generator of a 
Co-semigroup {S(t)}t>0 on a Banach space V, S(t) 6 L(V,E),t > 0, E is a 
Banach space densely and continuously embedded into V with 
(10) l|S(i)IU(V,E) ^ c t - ° , t > 0, 
where c > 0, a € (0,1) are constants, H : R+ x E —• V, is a continuous map 
(see [27]). 

By the mild solution of the problem (9) on the interval (0, T) (0 < T < 
oo) we mean a map x € C((0,T), E) satisfying the integral equation 

t 
(11) x(t) = S(t)x0 + \ S(t - s)H(s, x(s))ds, 0^t<T. 

o 
We say that x € C((0, oo), E) is a global solution of the problem (9) if 

it is the mild solution of (9) on any finite interval (0,T). 

THEOREM 3. Let T > 0, H : R+ x E —> V be a continuous map satisfying 
the condition 

(12) \\H(t,v)\\v ^ G t i M I M I s ) , (t,v) € R+ x E, 

where UJ : R+ —> R+ is a continuous, nondecreasing function and G : R+ —> 
R+ is a continuous function. Let {¿>(i)}t>0 be a Co-semigroup satisfying the 
condition (10). Assume that r\ : R+ —» R+ is a continuous, nondecreasing 
function with = oo and such that one of the following conditions is 
satisfied: 

(a) /? > ^ and the couple (U>,T]) satisfies the condition (r,g) with q = 
2, r = 2c, where e > 0. 

(b) /3 = where and the couple (ui, rj) satisfies the condition 
(r, q) with q = \ + z + 5,r — qe, where 5 > 0, e > 0. 

Then supte^0 T ) ||a;(i)||£; < oo for any mild solution x(t) of the problem 
(9) defined on the interval (0, T). 

P r o o f . Let x(t) be a mild solution of the problem (9) defined on the interval 
(0,T) with l i m t ^ r - ||a;(i)IU = oo. From the conditions (10), (12) and the 
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equation (11) we have 
t 

(13) ||z(t)||£ ^ ||5(t)ïo||js + 5 C ( É - « ^ " ^ ( « ^ ( I I ^ W I I b ) ^ ! 
o 

where (3 = 1 — a. Applying Theorem 1 with 

u(t) = \\x(t)\\E, o(t) = a := maxte(0(T)||5(i)xo||E, F(t) = cG(t) 

we obtain that the assertion (i) with e = | , if (3 > \ and the assertion (ii) 
with e = if 0 < /? ^ of this theorem. If ¡3 > then by (i) 

(14) il([e-^u(t)]2)^n(2a2)+9l(t,e), 

where 

o 
Since lim t_r-[ii(2a2) + gi(t, e)] < oo we obtain from the inequality (14) 
that limt_>x- Cl([e~£tu(t)]2) < oo. However 

e - " u ( t ) ] 2 da 7 da 
lim iî([ e-£ t«(i)]2) = lim J - f r = J . . = oo. 

This contradiction can also be obtained in the case 0 < ¡3 ^ ^ by using the 
assertion (ii). 

THEOREM 4. LetT > 0 and H : R+ xE be a continuous map satisfying 
the condition (12) with a>(u) = ln(/t + y/u), k > 1, i.e. 

\\H(t,v)\\v % G( i ) ln(«+ VIHLE), (4,1/) € R+ x E, 

where G : R+ —> R+ is a continuous function and { 5 ( I ) } T > 0 is a Co-
semigroup satisfying the condition (10) defined on the interval (0,T). Then 

sup ||z(i)||£; < oo 
te(o,r) 

for any mild solution x(t) of the problem (9) defined on the interval (0, T). 

Proof . By Proposition 2 the couple (u,rj) satisfies the condition (r,q) with 
r = q = 2 and R(t) = 1. Since k > 1, obviously 

OO J OO J OO _ 

Sax7 r acr r e . 
—r > \ = \ —dr = oo 

„ m<J) •» K + (7 , J T 0 ,v ' 0 In K 
and the assertion of the theorem follows from Theorem 3. 
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THEOREM 5. Let T > 0, q > 1 and H : R+ x E —> V be a continuous map 
satisfying the condition (12) with ui{u) = ln(re + it9), re = e 9 - 1 , i- e. 

||ff(t,t;)||v ^ G(i)ln(re+ |M||), (t,v) € R+x E, 
where G : R+ —• R+ is a continuous function and { 5 ( i ) } t > 0 be a Co-
semigroup satisfying the condition (10). Then 

sup ||x(t)||£ < oo 
tG (0 ,T ) 

for any mild solution x(t) of the problem (9) defined on the interval (0,T). 

P r o o f . By Proposition 3 the couple (U>, R/), where TJ(U) = [ln(re+u)]9 satisfies 
the condition (r, q) with r = q and R(t) = 1. Obviously 

OO J oo J OO _ 
I \ ' f ( d 

: = J = J [ln(/c + a ) ] 9 = T-

If m{t) = then = ^^-[t - q] > 0 for all t > q and this yields 
m(t) > ^ for all t > q = In re + 1 > In re. Thus we obtain that 

oo oo q 
I > \ — d r > \ —dr = oo. 

J Tq J qq 
9 9 

We have proved that all assumptions of Theorem 3 are satisfied and so the 
assertion of the theorem follows from this result. 
THEOREM 6. Let T > 0 and H : R+xE —*V be a continuous map satisfying 
the condition (12) with u(u) = [ln(re + it9)] *, re > 1, q > 1., i. e. 

\\H(t,v)\\v ^ G(t)[ln(re+ |M|!)]', (t,v) 6 R x E, 
where G : R+ —> R+ is a continuous function and { 5 ( i ) } t > 0 is a Co-
semigroup satisfying the condition (10). Then 

sup ||x(t)|| < oo 
t€<0,T) 

for any mild solution x(t) of the problem (9) defined on the interval (0,T). 

P r o o f . By Proposition 4 the couple (oj,77), where r\{u) = ln(re + it), re > 1, 
satisfies the condition (r, q), with r = q and R(t) = 1. Since the function 77(11) 
is the same as in Theorem 4 we have ^ y = 00 and thus the assertion of 
theorem follows from Theorem 3. 

Obviously 
00 da 00 do 00 eT 00 

S ~T\ = \ 1 / 1 \ = \ ~ d T > \ dT = 00 1 ma) i lnfre + a) ,J r ,J 
0 ' 0 v ' i n * ln/t 

and the assertion of theorem follows from Theorem 3. 
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5. Applications to reaction-diffusion problems 
In this section we apply Theorems 3-6 to the reaction diffusion problem 

considered in the paper [8] as an example 1. The reaction - diffusion problems 
studied in [8] as examples 2 - 4 can also be solved analogously by using these 
theorems and we do not formulate the corresponding results. 

Consider the perturbed heat equation 

(15) dtu = Au + f(t, Du), u|0ii = 0, 

where fl C Rd is a bounded domain with C°°-boundary, / : R+ x Rd —• 
R is continuous, f(t, 0) = 0 and D is the gradient operator. In [8] the 
same problem is studied, however the function / is independent of t. One 
can rewrite (15) in the form (9), where E = {u G C 1 ^ ) : u = 0, Du = 
Oondfi}, V = {u € C(Q) : u = 0, ondil} and H : R+ x E -> V, (t,v) H-» 
f(t,Dv(.)). The map H is obviously continuous and the Laplace operator 
A with the Dirichlet boundary condition is the generator of the compact, 
Co-semigroup 

S{t)cf>(x) = \ G(t,x,y)<f>{y)dy, 
n 

where G is the corresponding Green function such that 

(16) dxG(t,x,y) 

n{t,z) = (27Ti)"* e x p { - ^ - } , 2 G R\KUK2 > 0. This yields S(t) € 
L(V,E) and it satisfies the condition (10) with a = | (see [8]). 

THEOREM 7. Let q = 2 + 5, 5 > 0, r = q, f being as in (15) , 

| / (M) |gG( t ) / iOO, teR+,seRd, 
where G : R+ R+, fi\Rd—> R+ are continuous functions, F : R+ —» 
R+, F(u) = 1 + sup|s|<u / i(s) ^ u>(u) for all u G R+. Assume that there are 
continuous functions oj, 77 : R+ —> such that the couple (to, rj) satisfies 
the condition (r, q) and ^ y = 00. Then 

sup | |x( i ) | |£<oo 
te(o,T) 

for any T > 0 and any mild solution x{t) of the problem (15). 

P r o o f . Since the condition (10) is satisfied with a = ^, we have ¡3 = 1—a = 
i.e. (3 in Theorem 3 is equal to ^ r j with z = 1 and thus q — l+z+5 = 2+8. 

Obviously 

\\H(t,v)\\v g sup |/(i, Dv(x))\ ^ G(t)F(||«| |E) ^ G ^ d l ^ l b ) , t, G E, 
i€ii 
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i.e. the condition (12) is satisfied. Since also all other assumptions of Theo-
rem 3 are satisfied, the proof is finished. 

As a consequence of Theorems 4-7 we obtain 

THEOREM 8. Let the assumptions of Theorem 7 be satisfied with a; (it) = 
ln(/c + Y/u), K > 1, or UJ(U) = ln(/c + uq), n = eq~l,q > 1 or u>(u) = 
[ln(/c + u 9 ) ] K > l,q > 1. Then 

sup ||x(t)||£ < oo 
te<o,T) 

for any T > 0 and any mild solution x(t) of the problem (15). 
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