

Milan Medveď

ON THE EXISTENCE OF GLOBAL SOLUTIONS
OF EVOLUTION EQUATIONS

Abstract. In this paper a sufficient condition for the existence of global solutions of evolution equations is proved. In the proof a modification of the Bihari type integral inequality to the case of a weakly singular nonlinear integral inequality is used. An application to a reaction-diffusion problem is given.

1. Introduction

The inequalities of Gronwall-Bihari type play an important role in the study of asymptotic properties of integral and differential equations. The analysis of asymptotic behaviour of ordinary differential equations on infinite-dimensional state spaces, associated with continuous and analytic semi-groups of operators, requires modified versions of that type inequalities. Their so-called mild solutions coincide with continuous solutions of integral equations with weakly singular kernels (see [12], [13]). D. Henry [13] proved a modification of the Gronwall lemma covering the case of linear integral inequality with weakly singular kernel (see also [18], [25], [28]. A new approach to an analysis of nonlinear integral inequalities with singular kernels is proposed in the paper [19] and using this method a modification of the the well known Bihari lemma and also a result concerning a modification of the Ou - Iang - Pachpatte inequality (see [26]) are proved. This method has been applied in the paper [21] also to nonlinear integral inequalities for functions in two and n independent variables with singular kernels. A discrete analogue of that type of inequalities suitable for discretizations of parabolic equations is derived in the paper [22]. Using this method some

Key words and phrases: integral inequality, evolution equation, mild solution, global solution, reaction-diffusion equations.

1991 *Mathematics Subject Classification:* Primary: 35K90, 35K55, Secondary: 35B40, 34A40.

This work was supported by the Slovak Grant Agency Vega, Grant number 1/9177/02.

results concerning the existence of global solutions and asymptotic stability of solutions of semilinear parabolic equations are proved in the papers [14], [20] and an exponential decay for a semilinear problem with memory is obtained in the paper [29].

In the paper [8] by A. Constantin and S. Peszat a sufficient condition for the existence of global solutions of semilinear evolution equations is proved. The paper [23] also contains a sufficient condition for the existence of such solutions, however with completely different proof from that in [8]. It is proved by using a modification of a result on an integral inequality with singular kernel published in the paper [19]. This problem was solved for special classes of nonlinear equations, e. g. by H. Amann [1]–[3], A. Constantin [7], M. Mizoguchi and E. Yamaniga [24] and A. H. Martin [17]. Sufficient conditions for the boundedness of global solutions of semilinear parabolic equations are proved by M Fila and H. A. Levine in the papers [9], [10]. A necessary and sufficient condition for the global existence of solutions of a scalar integral equations with weakly singular kernel is proved in the paper [6]. This result is used also in the paper [8].

The results contained in the papers [19], [21], [22] are proved under the assumption that the nonlinear function of the state variable appearing in the integral inequality, or difference inequality, respectively, satisfies a condition referred as the condition (q) . However this condition is very restrictive. In this paper we define a class of couples of functions fulfilling a condition referred as the condition (r, q) , more convenient for applications. We shall prove a sufficient condition for fulfilling such condition. This condition enables us to prove a modified version of [19, Theorem 1], which is a nonlinear version of the Henry inequality from the book [13]. Using this inequality we shall prove a new sufficient condition for the existence of global solutions of evolution equations which is different from those proved in the papers [6] and [23].

2. Couples of functions satisfying a condition (r, q)

DEFINITION 1. Let $r, q > 0, 0 < T \leq \infty$ and $R^+ = (0, \infty)$. We say that an ordered couple (ω, η) of functions $\omega : R^+ \rightarrow R^+, \eta : R^+ \rightarrow R^+$ satisfies a condition (r, q) , if

$$(r, q) \quad e^{-rt}\omega(u)^q \leq R(t)\eta(e^{-rt}u^q), \quad t \in (0, T), \quad u \in R^+,$$

where $R : (0, T) \rightarrow R^+$ is a continuous function.

We have defined the condition (q) in [19] for one function ω , which coincides with the inequality (r, q) , if $\omega = \eta$ and $r = q$. If $\omega(u) = u^m, m \geq 1, q > 0$, then the inequality (r, q) is satisfied with $\omega = \eta, R(t) = e^{(m-1)rt}$.

Now we shall prove a sufficient condition for fulfilling the condition (r, q) .

PROPOSITION 1. *Let $r, q > 0$, $0 < T \leq \infty$, $R : (0, T) \rightarrow R^+$ be a continuously differentiable, positive function, $\omega : R^+ \rightarrow R^+$ be a continuous, nondecreasing function and $\eta : R^+ \rightarrow R^+$ be a continuously differentiable, nondecreasing function satisfying the conditions*

$$(1) \quad \omega(u)^q \leq R(0)\eta(u^q), \quad u \in R^+,$$

$$(2) \quad \frac{d\eta(u)}{du}u - \left(1 + \frac{1}{r} \frac{R'(t)}{R(t)}\right)\eta(u) \leq 0, \quad u \in R^+, \quad t \in (0, T),$$

where $R'(t) = \frac{dR(t)}{dt}$. Then the couple (ω, η) satisfies the condition (r, q) .

Proof. Let

$$h(t) = e^{rt}R(t)\eta(e^{-rt}u^q) - \omega(u)^q.$$

The condition (1) yields $h(0) \geq 0$ and

$$h'(t) = -re^{rt}R(t)\left[\frac{d\eta(v)}{dv}v - \left(1 + \frac{1}{r} \frac{R'(t)}{R(t)}\right)\eta(v)\right],$$

where $v = e^{-rt}u^q$. From the condition (2) we obtain that $h'(t) \geq 0$ for $t \in R^+$ and thus $h(t) \geq h(0) \geq 0$ for $t \in R^+$, i. e. the condition (r, q) is satisfied.

PROPOSITION 2. *The couple (ω, η) , where $\omega(u) = \sqrt{\ln(\kappa + u)}$ and $\eta(u) = \ln(\kappa + \sqrt{u})$, $\kappa > 1$ satisfies the condition (r, q) with $r = q = 2$ and $R(t) \equiv 1$.*

Proof. Since $\omega(u)^2 = \eta(u^2)$, $u \geq 0$ the condition (1) is satisfied with $r = q = 2$, $R(t) \equiv 1$ and

$$\eta(u) - \frac{d\eta(u)}{du}u = \ln(\kappa + \sqrt{u}) - \frac{u}{2(\kappa + \sqrt{u})\sqrt{u}} = \ln(\kappa + \sqrt{u}) - \frac{\sqrt{u}}{2(\kappa + \sqrt{u})}.$$

Let $H(w) = \ln(\kappa + w) - \frac{w}{2(\kappa + w)}$, $w \in R^+$. Obviously $H(0) > 0$ and

$$\frac{dH(w)}{dw} = \frac{1}{\kappa + w} - \frac{\kappa}{2(\kappa + w)^2} = \frac{\kappa + 2w}{2(\kappa + w)^2} > 0, \quad w \in R^+.$$

This yields $H(w) \geq H(0) > 0$ for all $w \in R^+$ and thus $\frac{d\eta(u)}{du}u - \eta(u) < 0$ for all $u \in R^+$. Therefore the assertion of the proposition follows from Proposition 1.

PROPOSITION 3. *Let $q > 1$ and $\kappa = e^{q-1}$. Then the couple (ω, η) , where $\omega(u) = \ln(\kappa + u^q)$ and $\eta(u) = [\ln(\kappa + u)]^q$, satisfies the condition (r, q) with $r = q$ and $R(t) \equiv 1$.*

Proof. Since $\omega(u)^q = \eta(u^q)$, the condition (1) is satisfied with $r = q$, $R(t) \equiv 1$ and

$$\frac{d\eta(u)}{du}u - \eta(u) = [\ln(\kappa+u)]^{q-1} \left[\frac{qu}{\kappa+u} - \ln(\kappa+u) \right] = [\ln(\kappa+u)]^{q-1} \frac{\psi(u)}{\kappa+u},$$

where $\psi(u) = qu - (\kappa+u)\ln(\kappa+u)$. Since $\ln\kappa = q-1$ we have $\psi(0) = -\kappa\ln\kappa < 0$ and $\frac{d\psi(u)}{du} = q-1 - \ln(\kappa+u) < 0$ for all $u \geq 0$. This yields $\psi(u) < 0$ for all $u \geq 0$ and thus $\frac{d\eta(u)}{du}u - \eta(u) < 0$ for all $u \in R^+$. By Proposition 1 the couple (ω, η) satisfies the condition (r, q) with $r = q$ and $R(t) \equiv 1$.

PROPOSITION 4. *The couple (ω, η) , where $\omega(u) = [\ln(\kappa+u^q)]^{\frac{1}{q}}$, $\kappa > 1$, $q > 1$, $\eta(u) = \ln(\kappa+u)$ satisfies the condition (r, q) with $r = q$ and $R(t) \equiv 1$.*

Proof. Since $\omega(u)^q = \eta(u^q)$, the condition (1) is satisfied with $r = q$ and $R(t) \equiv 1$ and

$$\frac{d\eta(u)}{du}u - \eta(u) = \frac{a(u)}{\kappa+u}, \text{ where } a(u) = u - (\kappa+u)\ln(\kappa+u).$$

Obviously $a(0) = -\kappa\ln\kappa$, $\frac{da(u)}{du} = -\ln(\kappa+u) < 0$ for all $u \geq 0$. This yields $a(u) < 0$ for all $u \geq 0$ and thus we have proved that $\frac{d\eta(u)}{du}u - \eta(u) < 0$ for all $u \geq 0$. The assertion of the proposition follows from Proposition 1.

3. Integral inequalities

We shall reformulate and improve the main results from the paper [19].

THEOREM 1. *Let $0 < T \leq \infty$, $a : (0, T) \rightarrow R^+$ be a nondecreasing C^1 -function, $F : (0, T) \rightarrow R^+$ be a continuous function, $\omega, \eta : R^+ \rightarrow R^+$ be continuous, nondecreasing functions, $\eta(u) > 0$ for $u > 0$. Let $u : (0, T) \rightarrow R^+$ be a continuous function satisfying the inequality*

$$(3) \quad u(t) \leq a(t) + \int_0^t (t-s)^{\beta-1} F(s) \omega(u(s)) ds, \quad t \in (0, T),$$

where $0 < \beta < 1$ and let ϵ be a positive number. Then the following assertions hold:

(i) If $\beta > \frac{1}{2}$ and the couple (ω, η) satisfies the condition (r, q) with $r = 2\epsilon$ and $q = 2$, then

$$(4) \quad \Omega([u(t)e^{-\epsilon t}]^2) \leq \Omega(2a(t)^2) + g_1(t, \epsilon), \quad t \in (0, T),$$

or

$$u(t) \leq e^{\epsilon t} \{ \Omega^{-1} [\Omega(2a(t)^2) + g_1(t, \epsilon)] \}^{\frac{1}{2}}, \quad t \in (0, T_1),$$

where

$$g_1(t, \epsilon) = \frac{\Gamma(2\beta-1)}{4^{\beta-1} \epsilon^{2\beta-1}} \int_0^t R(s) F(s)^2 ds,$$

Γ is the Eulerian Gamma function, $\Omega(v) = \int_{v_0}^v \frac{dy}{\eta(y)}$, $v \geq v_0 > 0$, Ω^{-1} is the inverse of Ω and $T_1 > 0$ is such that $\Omega(2a(t)^2) + g_1(t) \in \text{Dom}(\Omega^{-1})$ for all $t \in (0, T_1)$.

(ii) Let $\beta = \frac{1}{1+z}$, $z \geq 1$ and the couple (ω, η) satisfies the condition (r, q) with $q = 1 + z + \delta$, $r = q\epsilon$, where δ is a positive number. Then

$$(5) \quad \Omega([u(t)e^{-\epsilon t}]^q) \leq \Omega(2^{q-1}a(t)^q) + g_2(t, \epsilon), \quad t \in (0, T)$$

or

$$u(t) \leq e^{\epsilon t} \{\Omega^{-1}[\Omega(2^{q-1}a(t)^q) + g_2(t, \epsilon)]\}^{\frac{1}{q}}, \quad t \in (0, T_2),$$

where

$$g_2(t, \epsilon) = \frac{2^{q-1}\Gamma(1-\alpha p)}{(p\epsilon)^{1-\alpha p}} \int_0^t R(s)F(s)^q ds, \quad \alpha = 1 - \beta, \quad p = \frac{1+z+\delta}{z+\delta}$$

and $T_2 > 0$ is such that $\Omega(2^{q-1}a(t)^q) + g_2(t) \in \text{Dom}(\Omega^{-1})$ for all $t \in (0, T_2)$.

Proof. We shall prove the assertion (i) using the method of desingularization presented in [19]. Applying the Cauchy - Schwarz inequality we obtain from (3)

$$(6) \quad \begin{aligned} u(t) &\leq a(t) + \int_0^t (t-s)^{\beta-1} e^{\epsilon s} F(s) e^{-\epsilon s} \omega(u(s)) ds \leq \\ &\leq a(t) + \left[\int_0^t (t-s)^{2\beta-2} e^{2\epsilon s} ds \right]^{\frac{1}{2}} \left[\int_0^t F(s)^2 e^{-2\epsilon s} \omega(u(s))^2 ds \right]^{\frac{1}{2}}. \end{aligned}$$

For the first integral in (6) we have an estimate

$$\begin{aligned} \int_0^t (t-s)^{2\beta-2} e^{2\epsilon s} ds &= \int_0^t \tau^{2\beta-2} e^{2\epsilon(t-\tau)} d\tau = e^{2\epsilon t} \int_0^t \tau^{2\beta-2} e^{-2\epsilon\tau} d\tau = \\ &= \frac{1}{(2\epsilon)^{2\beta-1}} e^{2\epsilon t} \int_0^{2\epsilon t} \sigma^{2\beta-2} e^{-\sigma} d\sigma < e^{2\epsilon t} \frac{2}{4^\beta \epsilon^{2\beta-1}} \Gamma(2\beta-1). \end{aligned}$$

Using this estimate, the condition (r, q) with $r = 2\epsilon$, $q = 2$ and the inequality $(A+B)^2 \leq 2(A^2 + B^2)$, we obtain

$$(7) \quad v(t) \leq \alpha(t) + K(\epsilon) \int_0^t F(s)^2 R(s) \eta(v(s)) ds, \quad t \in (0, T),$$

where

$$v(t) = (e^{-\epsilon t} u(t))^2, \quad \alpha(t) = 2a(t)^2, \quad K(\epsilon) = \frac{1}{4^{\beta-1} \epsilon^{2\beta-1}} \Gamma(2\beta-1).$$

Then applying the Bihari lemma (see e. g. [4, 5, 11, 15, 16]) we obtain the inequality (5).

Now let us prove the assertion (ii). If $p = \frac{1+z+\delta}{z+\delta}$ then $\frac{1}{p} + \frac{1}{q} = 1$ and using the Hölder inequality we obtain

$$(8) \quad u(t) \leq a(t) + \left[\int_0^t (t-s)^{-\alpha p s} e^{p \epsilon s} ds \right]^{\frac{1}{p}} \left[\int_0^t F(s)^q e^{-q \epsilon s} \omega(u(s))^q ds \right]^{\frac{1}{q}},$$

where $\alpha = 1 - \beta$. For the first integral in (8) we have the estimate

$$\int_0^t (t-s)^{-\alpha p} e^{p \epsilon s} ds = e^{p \epsilon t} \int_0^{p \epsilon t} \tau^{-\alpha p} e^{-p \epsilon \tau} d\tau < \frac{e^{p \epsilon t}}{(p \epsilon)^{1-\alpha p}} \Gamma(1 - \alpha p).$$

Obviously, $1 - \alpha p = \frac{\delta}{(1+z)(z+\delta)} > 0$ and so $\Gamma(1 - \alpha p) < \infty$. Using the condition (r, q) with $q = (1+z+\delta)$, $r = q\epsilon$ and the inequality $(A+B)^q \leq 2^{q-1}(A^q + B^q)$, $A, B \geq 0$ we obtain

$$v(t) \leq \Phi(t) + L(\epsilon) \int_0^t F(s)^q R(s) \eta(v(s)) ds,$$

where

$$v(t) = (e^{-\epsilon t} u(t))^q, \quad \Phi(t) = 2^{q-1} a(t)^q, \quad L(\epsilon) = \frac{2^{q-1} \Gamma(1 - \alpha p)}{(p \epsilon)^{1-\alpha p}}.$$

Then applying the Bihari lemma to this inequality we obtain the inequality (5).

As a consequence of Theorem 1 we have

THEOREM 2. *Let $0 < T \leq \infty$, $a(t)$, $F(t)$ be as in Theorem 1 and $u : (0, T) \rightarrow R^+$ be a continuous, nonnegative function satisfying the inequality*

$$u(t) \leq a(t) + \int_0^t (t-s)^{\beta-1} F(s) u(s) ds, \quad (0, T),$$

where $0 < \beta < 1$. Then the following assertions hold:

(i) If $\beta > \frac{1}{2}$ and ϵ is an arbitrary positive number, then

$$u(t) \leq \sqrt{2} a(t) \exp \left(\epsilon t + \frac{2\Gamma(2\beta-1)}{4^\beta} \int_0^t F(s)^2 ds \right), \quad t \in (0, T).$$

(ii) If $\beta = \frac{1}{1+z}$, $z \geq 1$ and δ, ϵ are arbitrary positive number, then

$$u(t) \leq 2^{\frac{q-1}{q}} a(t) \exp \left(\epsilon t + \frac{2^{q-1} \Gamma(1 - \alpha p)}{q(p\epsilon)^{1-\alpha p}} \int_0^t F(s)^q ds \right), \quad t \in (0, T),$$

where $\alpha = 1 - \beta$, $p = \frac{1+z+\delta}{z+\delta}$, $q = (1+z+\delta)$.

REMARK. We need no other restrictions on ϵ, δ in Theorem 2, because the linear function $\omega(u) = u$ satisfies the condition (r, q) with any $r, q > 0$ and with $R(t) \equiv 1, \omega = \eta$. We also remark that all results presented in the papers [19], [21], [22] can be reformulated and improve in the style of Theorem 1.

4. Global solutions of semilinear evolution equations

In the papers [8] and [23] sufficient conditions for the existence of global solutions solutions of the evolution equation

$$(9) \quad \dot{x} + Ax = H(t, x), \quad x(0) = x_0 \in E$$

are proved. It is assumed there that $-A$ is the infinitesimal generator of a C_0 -semigroup $\{S(t)\}_{t \geq 0}$ on a Banach space V , $S(t) \in L(V, E)$, $t > 0$, E is a Banach space densely and continuously embedded into V with

$$(10) \quad \|S(t)\|_{L(V, E)} \leq ct^{-\alpha}, \quad t > 0,$$

where $c > 0, \alpha \in (0, 1)$ are constants, $H : R^+ \times E \rightarrow V$, is a continuous map (see [27]).

By the mild solution of the problem (9) on the interval $\langle 0, T \rangle$ ($0 < T < \infty$) we mean a map $x \in C(\langle 0, T \rangle, E)$ satisfying the integral equation

$$(11) \quad x(t) = S(t)x_0 + \int_0^t S(t-s)H(s, x(s))ds, \quad 0 \leq t < T.$$

We say that $x \in C(\langle 0, \infty \rangle, E)$ is a global solution of the problem (9) if it is the mild solution of (9) on any finite interval $\langle 0, T \rangle$.

THEOREM 3. *Let $T > 0, H : R^+ \times E \rightarrow V$ be a continuous map satisfying the condition*

$$(12) \quad \|H(t, v)\|_V \leq G(t)\omega(\|v\|_E), \quad (t, v) \in R^+ \times E,$$

where $\omega : R^+ \rightarrow R_+$ is a continuous, nondecreasing function and $G : R^+ \rightarrow R^+$ is a continuous function. Let $\{S(t)\}_{t \geq 0}$ be a C_0 -semigroup satisfying the condition (10). Assume that $\eta : R^+ \rightarrow R^+$ is a continuous, nondecreasing function with $\int_0^\infty \frac{d\sigma}{\eta(\sigma)} = \infty$ and such that one of the following conditions is satisfied:

- (a) $\beta > \frac{1}{2}$ and the couple (ω, η) satisfies the condition (r, q) with $q = 2, r = 2\epsilon$, where $\epsilon > 0$.
- (b) $\beta = \frac{1}{1+z}$, where $z \geq 1$ and the couple (ω, η) satisfies the condition (r, q) with $q = 1 + z + \delta, r = q\epsilon$, where $\delta > 0, \epsilon > 0$.

Then $\sup_{t \in \langle 0, T \rangle} \|x(t)\|_E < \infty$ for any mild solution $x(t)$ of the problem (9) defined on the interval $\langle 0, T \rangle$.

Proof. Let $x(t)$ be a mild solution of the problem (9) defined on the interval $\langle 0, T \rangle$ with $\lim_{t \rightarrow T^-} \|x(t)\|_E = \infty$. From the conditions (10), (12) and the

equation (11) we have

$$(13) \quad \|x(t)\|_E \leq \|S(t)x_0\|_E + \int_0^t c(t-s)^{\beta-1} G(s) \omega(\|x(s)\|_E) ds,$$

where $\beta = 1 - \alpha$. Applying Theorem 1 with

$$u(t) = \|x(t)\|_E, \quad a(t) \equiv a := \max_{t \in (0, T)} \|S(t)x_0\|_E, \quad F(t) = cG(t)$$

we obtain that the assertion (i) with $\epsilon = \frac{r}{2}$, if $\beta > \frac{1}{2}$ and the assertion (ii) with $\epsilon = \frac{r}{q}$, if $0 < \beta \leq \frac{1}{2}$, of this theorem. If $\beta > \frac{1}{2}$, then by (i)

$$(14) \quad \Omega([e^{-\epsilon t} u(t)]^2) \leq \Omega(2a^2) + g_1(t, \epsilon),$$

where

$$g_1(t, \epsilon) = \frac{\Gamma(2\beta - 1)}{4^{\beta-1} \epsilon^{2\beta-1}} \int_0^t R(s) F(s)^2 ds.$$

Since $\lim_{t \rightarrow T^-} [\Omega(2a^2) + g_1(t, \epsilon)] < \infty$ we obtain from the inequality (14) that $\lim_{t \rightarrow T^-} \Omega([e^{-\epsilon t} u(t)]^2) < \infty$. However

$$\lim_{t \rightarrow T^-} \Omega([e^{-\epsilon t} u(t)]^2) = \lim_{t \rightarrow T^-} \int_{\|x_0\|}^{[e^{-\epsilon t} u(t)]^2} \frac{d\sigma}{\eta(\sigma)} = \int_{\|x_0\|}^{\infty} \frac{d\sigma}{\eta(\sigma)} = \infty.$$

This contradiction can also be obtained in the case $0 < \beta \leq \frac{1}{2}$ by using the assertion (ii).

THEOREM 4. *Let $T > 0$ and $H : R^+ \times E \rightarrow V$ be a continuous map satisfying the condition (12) with $\omega(u) = \ln(\kappa + \sqrt{u})$, $\kappa > 1$, i.e.*

$$\|H(t, v)\|_V \leq G(t) \ln(\kappa + \sqrt{\|v\|_E}), \quad (t, v) \in R^+ \times E,$$

where $G : R^+ \rightarrow R^+$ is a continuous function and $\{S(t)\}_{t \geq 0}$ is a C_0 -semigroup satisfying the condition (10) defined on the interval $(0, T)$. Then

$$\sup_{t \in (0, T)} \|x(t)\|_E < \infty$$

for any mild solution $x(t)$ of the problem (9) defined on the interval $(0, T)$.

P r o o f. By Proposition 2 the couple (ω, η) satisfies the condition (r, q) with $r = q = 2$ and $R(t) \equiv 1$. Since $\kappa > 1$, obviously

$$\int_0^\infty \frac{d\sigma}{\eta(\sigma)} > \int_0^\infty \frac{d\sigma}{\kappa + \sigma} = \int_{\ln \kappa}^\infty \frac{e^\tau}{\tau} d\tau = \infty$$

and the assertion of the theorem follows from Theorem 3.

THEOREM 5. Let $T > 0, q > 1$ and $H : R^+ \times E \rightarrow V$ be a continuous map satisfying the condition (12) with $\omega(u) = \ln(\kappa + u^q)$, $\kappa = e^{q-1}$, i. e.

$$\|H(t, v)\|_V \leq G(t) \ln(\kappa + \|v\|_E^q), \quad (t, v) \in R^+ \times E,$$

where $G : R^+ \rightarrow R^+$ is a continuous function and $\{S(t)\}_{t \geq 0}$ be a C_0 -semigroup satisfying the condition (10). Then

$$\sup_{t \in (0, T)} \|x(t)\|_E < \infty$$

for any mild solution $x(t)$ of the problem (9) defined on the interval $(0, T)$.

P r o o f. By Proposition 3 the couple (ω, η) , where $\eta(u) = [\ln(\kappa + u)]^q$ satisfies the condition (r, q) with $r = q$ and $R(t) \equiv 1$. Obviously

$$I := \int_0^\infty \frac{d\sigma}{\eta(\sigma)} = \int_0^\infty \frac{d\sigma}{[\ln(\kappa + \sigma)]^q} = \int_{\ln \kappa}^\infty \frac{e^\tau}{\tau^q} d\tau.$$

If $m(t) = \frac{e^t}{t^q}$, then $\frac{dm(t)}{dt} = \frac{e^t t^{q-1}}{t^{2q}} [t - q] > 0$ for all $t > q$ and this yields $m(t) > \frac{e^q}{q^q}$ for all $t > q = \ln \kappa + 1 > \ln \kappa$. Thus we obtain that

$$I > \int_q^\infty \frac{e^\tau}{\tau^q} d\tau > \int_q^\infty \frac{e^q}{q^q} d\tau = \infty.$$

We have proved that all assumptions of Theorem 3 are satisfied and so the assertion of the theorem follows from this result.

THEOREM 6. Let $T > 0$ and $H : R^+ \times E \rightarrow V$ be a continuous map satisfying the condition (12) with $\omega(u) = [\ln(\kappa + u^q)]^{\frac{1}{q}}$, $\kappa > 1, q > 1$, i. e.

$$\|H(t, v)\|_V \leq G(t) [\ln(\kappa + \|v\|_E^q)]^{\frac{1}{q}}, \quad (t, v) \in R^+ \times E,$$

where $G : R^+ \rightarrow R^+$ is a continuous function and $\{S(t)\}_{t \geq 0}$ is a C_0 -semigroup satisfying the condition (10). Then

$$\sup_{t \in (0, T)} \|x(t)\| < \infty$$

for any mild solution $x(t)$ of the problem (9) defined on the interval $(0, T)$.

P r o o f. By Proposition 4 the couple (ω, η) , where $\eta(u) = \ln(\kappa + u)$, $\kappa > 1$, satisfies the condition (r, q) , with $r = q$ and $R(t) \equiv 1$. Since the function $\eta(u)$ is the same as in Theorem 4 we have $\int_0^\infty \frac{d\sigma}{\eta(\sigma)} = \infty$ and thus the assertion of theorem follows from Theorem 3.

Obviously

$$\int_0^\infty \frac{d\sigma}{\eta(\sigma)} = \int_0^\infty \frac{d\sigma}{\ln(\kappa + \sigma)} = \int_{\ln \kappa}^\infty \frac{e^\tau}{\tau} d\tau > \int_{\ln \kappa}^\infty d\tau = \infty$$

and the assertion of theorem follows from Theorem 3.

5. Applications to reaction-diffusion problems

In this section we apply Theorems 3–6 to the reaction diffusion problem considered in the paper [8] as an example 1. The reaction - diffusion problems studied in [8] as examples 2 - 4 can also be solved analogously by using these theorems and we do not formulate the corresponding results.

Consider the perturbed heat equation

$$(15) \quad \partial_t u = \Delta u + f(t, Du), \quad u|_{\partial\Omega} = 0,$$

where $\Omega \subset R^d$ is a bounded domain with C^∞ -boundary, $f : R^+ \times R^d \rightarrow R$ is continuous, $f(t, 0) \equiv 0$ and D is the gradient operator. In [8] the same problem is studied, however the function f is independent of t . One can rewrite (15) in the form (9), where $E = \{u \in C^1(\bar{\Omega}) : u = 0, Du = 0 \text{ on } \partial\Omega\}$, $V = \{u \in C(\bar{\Omega}) : u = 0, \text{ on } \partial\Omega\}$ and $H : R^+ \times E \rightarrow V, (t, v) \mapsto f(t, Dv(.))$. The map H is obviously continuous and the Laplace operator Δ with the Dirichlet boundary condition is the generator of the compact, C_0 -semigroup

$$S(t)\phi(x) = \int_{\Omega} G(t, x, y)\phi(y)dy,$$

where G is the corresponding Green function such that

$$(16) \quad \left| \frac{\partial}{\partial x_j} G(t, x, y) \right| \leq K_1 t^{-\frac{1}{2}} \mathcal{H}(K_2, |x - y|), \quad j = 1, 2, \dots, d, \quad t > 0,$$

$\mathcal{H}(t, z) = (2\pi t)^{-\frac{d}{2}} \exp\left\{-\frac{|z|^2}{2t}\right\}$, $z \in R^d$, $K_1, K_2 > 0$. This yields $S(t) \in L(V, E)$ and it satisfies the condition (10) with $\alpha = \frac{1}{2}$ (see [8]).

THEOREM 7. *Let $q = 2 + \delta, \delta > 0, r = q, f$ being as in (15),*

$$|f(t, s)| \leq G(t)f_1(s), \quad t \in R^+, s \in R^d,$$

where $G : R^+ \rightarrow R^+$, $f_1 : R^d \rightarrow R^+$ are continuous functions, $F : R^+ \rightarrow R^+$, $F(u) = 1 + \sup_{|s| \leq u} f_1(s) \leq \omega(u)$ for all $u \in R^+$. Assume that there are continuous functions $\omega, \eta : R^+ \rightarrow R^+$ such that the couple (ω, η) satisfies the condition (r, q) and $\int_0^\infty \frac{d\sigma}{\eta(\sigma)} = \infty$. Then

$$\sup_{t \in (0, T)} \|x(t)\|_E < \infty$$

for any $T > 0$ and any mild solution $x(t)$ of the problem (15).

P r o o f. Since the condition (10) is satisfied with $\alpha = \frac{1}{2}$, we have $\beta = 1 - \alpha = \frac{1}{2}$, i.e. β in Theorem 3 is equal to $\frac{1}{1+z}$ with $z = 1$ and thus $q = 1+z+\delta = 2+\delta$. Obviously

$$\|H(t, v)\|_V \leq \sup_{x \in \bar{\Omega}} |f(t, Dv(x))| \leq G(t)F(\|v\|_E) \leq G(t)\omega(\|v\|_E), \quad v \in E,$$

i.e. the condition (12) is satisfied. Since also all other assumptions of Theorem 3 are satisfied, the proof is finished.

As a consequence of Theorems 4–7 we obtain

THEOREM 8. *Let the assumptions of Theorem 7 be satisfied with $\omega(u) = \ln(\kappa + \sqrt{u})$, $\kappa > 1$, or $\omega(u) = \ln(\kappa + u^q)$, $\kappa = e^{q-1}$, $q > 1$ or $\omega(u) = [\ln(\kappa + u^q)]^{\frac{1}{q}}$, $\kappa > 1$, $q > 1$. Then*

$$\sup_{t \in (0, T)} \|x(t)\|_E < \infty$$

for any $T > 0$ and any mild solution $x(t)$ of the problem (15).

References

- [1] H. Amann, *Global existence of solutions of quasilinear parabolic systems*, J. Reine Angew. Math. 360 (1985), 47–83.
- [2] H. Amann, *Dynamic theory of quasilinear parabolic systems: Global existence*, Math. Z. 202 (1989), 219–250.
- [3] H. Amann, *Global existence of a class of highly degenerate parabolic systems*, Japan J. Indus. Appl. Math. 8 (1991), 143–159.
- [4] E. F. Beckenbach and R. Bellman, *Inequalities*, Springer, Berlin, Göttingen, Heidelberg, 1961.
- [5] J. A. Bihari, *A generalization of a lemma of Bellman and its applications to uniqueness problems of differential equations*, Acta Math. Acad. Sci. Hungar. 7 (1965), 81–94.
- [6] P. J. Bushell and W. Okrasinski, *On the maximal interval of existence for solutions to some non-linear Volterra integral equations with convolution kernel*, Bull. London Math. Soc. 28 (1995), 59–65.
- [7] A. Constantin, *Solutions globales des équations différentielles perturbées*, C. R. Acad. Sci. Paris 320 (1995), 1319–1322.
- [8] A. Constantin and S. Peszat, *Global existence of solutions of semilinear parabolic evolution equations*, Differential and Integral Equations 13 (1–3) (2000), 99–114.
- [9] M. Fila, *Boundedness of global solutions of nonlinear differential equations*, J. Differential Equations 28 (1992), 226–240.
- [10] M. Fila and H. A. Levine, *On the boundedness of global solutions of abstract semilinear parabolic equations*, J. Math. Anal. Appl. 216 (1997), 654–666.
- [11] A. N. Filatov and L. V. Sharova, *Integral Inequalities and Theory of Nonlinear Oscillations*, Nauka, Moscow 1976 (in Russian).
- [12] J. K. Hale, *Asymptotic Behaviour of Dissipative Systems*, in: Mathematical Surveys and Monographs, AMS 25, Providence 1988.
- [13] D. Henry, *Geometric Theory of Semilinear Parabolic Equations*, Springer, Berlin, Heidelberg, New York 1981.
- [14] K. Kirane and N. Tatar, *Global existence and global stability of some semilinear problems*, Archivum Math. (Brno) 36 (2000), 33–44.

- [15] A. A. Martyniuk and R. Gutowski, *Integral Inequalities and Stability of Motion*, Naukova Dumka, Kiev 1979 (in Russian).
- [16] A. A. Martyniuk, V. Lakshmikanthan and S. Leela, *Motion Stability: The Method of Integral Inequalities*, Naukova Dumka, Kiev 1977 (in Russian).
- [17] A. H. Martin, *Global existence questions for reaction-diffusion systems*, Pitman Res. Notes Math. 1 (1986), 169–177.
- [18] S. McKee and T. Tang, *Integral inequalities in numerical analysis*, Fasc. Math. 308, 23 (1991), 67–76.
- [19] M. Medved, *A new approach to an analysis of Henry type inequalities and their Bihari type versions*, J. Math. Anal. Appl. 214 (1997), 349–366.
- [20] M. Medved, *Singular integral inequalities and stability of semilinear parabolic equations*, Archivum Math. (Brno) 34, 1 (1998), 183–190.
- [21] M. Medved, *Nonlinear integral inequalities for functions in two and n independent variables*, J. Inequal. Appl. 5 (2000), 1–22.
- [22] M. Medved, *Nonlinear singular difference inequalities suitable for discretizations of parabolic equations*, Demonstratio Math. 33, 3 (2000), 511–525.
- [23] M. Medved, *Integral inequalities and global solutions of semilinear evolution equations*, J. Math. Anal. Appl. 267 (2002), 643–650.
- [24] M. Mizoguchi and E. Yanagida, *Blow-up of solutions with sign-changes for semilinear diffusion equations*, J. Math. Anal. Appl. 204 (1996), 283–290.
- [25] K. Naito, *Periodically reachable sets for nonlinear parabolic systems under periodic forcing*, Yokohama Math. J. 43 (1995), 13–35.
- [26] B. G. Pachpatte, *On some new inequalities in the theory of difference equations*, J. Math. Anal. Appl. 189 (1995), 128–144.
- [27] A. Pazy, *Semigroup of Linear Operators and Applications to Partial Differential Equations*, Springer, New York 1983.
- [28] H. Sano and N. Kunitatsu, *Modified Gronwall's inequality and its application to stabilization problem for semilinear parabolic systems*, Systems Control Lett. 22 (1994), 145–156.
- [29] N. E. Tatar, *Exponential decay for a semilinear problem with memory*, Arab. J. Math. Sc. 7, 1 (2001), 29–45.

DEPARTMENT OF MATHEMATICAL ANALYSIS
 FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS
 COMENIUS UNIVERSITY
 Mlynská dolina
 842 48 BRATISLAVA, SLOVAKIA
 E-mail: medved@fmph.uniba.sk

Received April 16, 2003; revised version January 30, 2004.