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ON THE EXISTENCE OF GLOBAL SOLUTIONS
OF EVOLUTION EQUATIONS

Abstract. In this paper a sufficient condition for the existence of global solutions
of evolution equations is proved. In the proof a modification of the Bihari type integral
inequality to the case of a weakly singular nonlinear integral inequality is used. An appli-
cation to a reaction-diffusion problem is given.

1. Introduction

The inequalities of Gronwall-Bihari type play an important role in the
study of asymptotic properties of integral and differential equations. The
analysis of asymptotic behaviour of ordinary differential equations on infi-
nite-dimensional state spaces, associated with continuous and analytic semi-
groups of operators, requires modified versions of that type inequalities.
Their so-called mild solutions coincide with continuous solutions of integral
equations with weakly singular kernels (see {12], [13]). D. Henry [13] proved
a modification of the Gronwall lemma covering the case of linear integral
inequality with weakly singular kernel (see also [18], [25], [28]. A new ap-
proach to an analysis of nonlinear integral inequalities with singular kernels
is proposed in the paper [19] and using this method a modification of the
the well known Bihari lemma and also a result concerning a modification
of the Ou - Iang - Pachpatte inequality (see [26]) are proved. This method
has been applied in the paper [21] also to nonlinear integral inequalities
for functions in two and n independent variables with singular kernels. A
discrete analogue of that type of inequalities suitable for discretizations of
parabolic equations is derived in the paper [22]. Using this method some
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results concerning the existence of global solutions and asymptotic stabil-
ity of solutions of semilinear parabolic equations are proved in the papers
[14], [20] and an exponential decay for a semilinear problem with memory
is obtained in the paper [29].

In the paper [8] by A. Constantin and S. Peszat a sufficient condition for
the existence of global solutions of semilinear evolution equations is proved.
The paper [23] also contains a sufficient condition for the existence of such
solutions, however with completely different proof from that in [8]. It is
proved by using a modification of a result on an integral inequality with
singular kernel published in the paper [19]. This problem was solved for spe-
cial classes of nonlinear equations, e. g. by H. Amann [1]-[3], A. Constantin
(7], M. Mizoguchi and E. Yamaniga [24] and A. H. Martin [17]. Sufficient
conditions for the boundedness of global solutions of semilinear parabolic
equations are proved by M Fila and H. A. Levine in the papers[9], [10].
A necessary and sufficient condition for the global existence of solutions
of a scalar integral equations with weakly singular kernel is proved in the
paper [6]. This result is used also in the paper [8].

The results contained in the papers [19], [21], [22] are proved under the
assumption that the nonlinear function of the state variable appearing in
the integral inequality, or difference inequality, respectively, satisfies a condi-
tion referred as the condition (g). However this condition is very restrictive.
In this paper we define a class of couples of functions fulfilling a condition
referred as the condition (r, q), more convenient for applications. We shall
prove a sufficient condition for fulfilling such condition. This condition en-
ables us to prove a modified version of [19, Theorem 1], which is a nonlinear
version of the Henry inequality from the book [13]. Using this inequality we
shall prove a new sufficient condition for the existence of global solutions of

evolution equations which is different from those proved in the papers [6]
and [23].

2. Couples of functions satisfying a condition (r,q)

DEFINITION 1. Let r,g > 0,0 < T < oo and R* = (0,00). We say that an
ordered couple (w,n) of functions w : Rt — R*, n: R™ — R* satisfies a
condition (7, q), if

(r,q) e "w(w)? £ R(t)n(e™"*uT), t € (0,T), u € R,
where R : (0,T) — R* is a continuous function.

We have defined the condition (g) in [19] for one function w, which co-
incides with the inequality (r,¢q), f w =n and r = ¢. If w(u) =u™, m 2 1,
q > 0, then the inequality (r,q) is satisfied with w = g, R(t) = e(m~1rt.
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Now we shall prove a sufficient condition for fulfilling the condition (r, g).

PROPOSITION 1. Let ,¢ > 0,0 < T £ o0, R: (0,T) — R* be a conti-
nuously differentiable, positive function, w : Rt — Rt be a continuous,
nondecreasing function and n : R* — R* be a continuously differentiable,
nondecreasing function satisfying the conditions

(1 w(u)? £ R(0)n(u?), u € RY,
) d’ZIS‘) (1+ ! 1;((:))>7)(u) <0,ue R te(0,T),

where R'(t) = —%t@. Then the couple (w,n) satisfies the condition (r,q).
Proof. Let

h(t) = e R(t)n(e "t u?) — w(u)?.
The condition (1) yields ~(0) 2 0 and

K (t) = —re" R(t) [ "), (1 + 11;((;)) ) (v)],

where v = e "*u?. From the condition (2) we obtain that h’(t) 2 0 for
t € R* and thus h(t) 2 h(0) 2 0 for t € R*, i. e. the condition (r,q) is
satisfied.

PROPOSITION 2. The couple (w,n), where w(u) = y/In(k + u) and n(u) =
In(k + y/u),k > 1 satisfies the condition (r,q) withr =q=2 and R(t) =1.
Proof. Since w(u)? = n(u?),u = 0 the condition (1) is satisfied with r =
g=2,R(t)=1and
dn(u) u Ve
- =1 -

"7(“) du u n(K’+ \/1'—1’) 2(K+\/—'II)\/—- 1n(f€+\/—) 2(K;+\/_)
Let H(w) = In(k + w) — 5545, w € R*. Obviously H(0) > 0 and

dH(w) _ 1 K K+ 2w

dv  k+w 2K+w)?  2k+w)?

This yields H(w) 2 H(0) > 0 for all w € Rt and thus ‘—ild(uﬂu ~n(u) <0
for all u € R*. Therefore the assertion of the proposition follows from
Proposition 1.

>0,we R*.

PROPOSITION 3. Let ¢ > 1 and k = e?~!. Then the couple (w,n), where
w(u) = In(k + u?) and n(u) = [In(k + uw)]9, satisfies the condition (r,q) with
r=gq and R(t) = 1.

Proof. Since w(u)?=n(u?), the condition (1) is satisfied with r=¢, R(t)=1
and
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d?i(:)u n(u) = [ln(ffc+u)]q_1 [;‘T—u -In(k+u)] = [ln(n+u)]q_1:fL:3i,
where ¥(u) = qu — (k + u) In(k + u). Since Ink = g — 1 we have ¢(0) =
—klnk < 0 and d—"pj{ﬁ =qg—1-In(k+ u) < 0 for all u 2 0. This yields
¥(u) < 0 for all u 2 0 and thus %‘uﬁu —1n(u) < 0 for all u € R*. By
Proposition 1 the couple (w,n) satisfies the condition (r,q) with r = ¢ and
R(t)=1.

PROPOSITION 4. The couple (w,n), wherew(u) = [In(k+u9] %", k>1,¢>1,
n(u) = In(k + u) satisfies the condition (r,q) withr = q and R(t) = 1.
Proof. Since w(u)? = n(u?), the condition (1) is satisfied with » = q and
R(t)=1 and

Y u — n(u) = f%%, where a(u) = u — (k + u) In(k + u).
Obviously a(0) = ~klnk, 53(—2 = —In(k + u) < 0 for all w 2 0. This yields

a(u) < 0 for all u 2 0 and thus we have proved that Mu n(u) < 0 for
all u 2 0. The assertion of the proposition follows from Proposmon 1.

3. Integral inequalities
We shall reformulate and improve the main results from the paper [19].

THEOREM 1. Let 0 < T £ o0,a : {(0,T) — R* be a nondecreasing C!-
function, F : (0,T) — R* be a continuous function, w,n : R* — RY be
continuous, nondecreasing functions,n(u) > 0 for u > 0. Let u : (0,T) —
R* be a continuous function satisfying the inequality

t
3) u(t) £ a(t) + {(t — )’ F(s)w(u(s))ds, t € (0, T),

0

where 0 < B < 1 and let € be a positive number. Then the following assertions
hold:

(i) If B> % and the couple (w,n) satisfies the condition (r,q) with r = 2¢
and q = 2, then

(4) Q([u(t)e“‘]f) < Q(2a(t)?) + g1(t,€), t € (0,T),
u(t) < e [Q(2a(t)?) + g1 (t, )]}, t € (0, Th),

where

g1(t,€) = —ﬁ(m SR( )F(s)%ds,



Global solutions 875

' is the Eulerian Gamma function, Q(v) = S:O %, v > 0,07 is the
inverse of  and Ty > 0 is such that Q(2a(t)?) + g1(t) € Dom(S21) for all
te (0,T1).

(ii) Let B = 73—, z 2 1 and the couple (w,n) satisfies the condition (r,q)

T4z
with g =1+ 2+ 0, r = ge, where § is a positive number. Then
(5) Q[u(t)e™]?) < Q27 'a(t)) + ga(t,€), t € (0, T)
or .

u(t) £ Q7[R a(t)?) + ga(t, ]}, € (0, T,
where
29-11(1 ~ ap) ¢ 14246
e JROF(e)ds, a=1-p, p= =123
and Ty > 0 is such that Q29 a(t)?) +g2(t) € Dom(Q71) for all t € (0, T).

Proof. We shall prove the assertion (i) using the method of desingulariza-
tion presented in [19]. Applying the Cauchy - Schwarz inequality we obtain
from (3)

g2(t,€) =

6)  u(t) £ a(t)+ |(t - )P e F(s)e*w(u(s))ds £
0

t 3t 3
Sat)+ B(t - s)w"zez“ds] BF(s)ze—2e’w(u(s))2ds 7.

For the first integral in (6) we have an estimate
t t t
S(t _ 3)23—2e2ssds — ST2B—2e2e(t—T)dT = e2¢t S T2ﬂ—2€—2€'rd,r —
0 0 0
1 2¢et 9
— 2et 28-2 — 2¢et
= azjme S a e %do < e** Zm—_—l'r(ZB - 1)
0

Using this estimate, the condition (r, ¢) with r = 2¢, ¢ = 2 and the inequality
(A + B)? £ 2(A? + B?), we obtain

Q) o(t) < a(t) + K(e) | F(s)*R(s)n(v(s))ds, t € (0,T),
0

where
—c 1
u(t) = (e™u(t))?, a(t) = 2a(t)?, K(e) = mr(zﬂ - 1).
Then applying the Bihari lemma (see e. g. [4, 5, 11, 15, 16]) we obtain the
inequality (5).
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Now let us prove the assertion (ii). If p = 1424% then 1 z+¢=1and
using the Holder inequality we obtain
1 ¢ 1

8)  wu(t) < a(t)+ [(S](t—s)“"pse”"ds}p BF(s)qe_q“w(u(s))qu "

where oo = 1 — 3. For the first integral in (8) we have the estimate

t pet

(t — s)"PePode = Pt | 77 WP P < ———
(S) §, (pe)t—op

Obviously, 1 — ap = sz(m)- > 0 and so I'(1 — ap) < oo. Using the
condition (r,q) with ¢ = (1 + 2z + §),r = ge and the inequality (A + B)? <
29-1(A? 4+ B9), A, B = 0 we obtain

pet
'l - ap).

o(t) S @(t) + L(e) | F(s)*R(s)n(v(s))ds,
0

where

v(t) = (e™u(t))?, ®(t) =2"""a(t)?, L(e) = W

Then applying the Bihari lemma to this inequality we obtain the inequality
(5).

As a consequence of Theorem 1 we have

THEOREM 2. Let 0 < T £ o0, a(t), F(t) be as in Theorem 1 andu : (0,T) —
R* be a continuous, nonnegative function satisfying the inequality
t
u(t) £ a(t) + {(t - )’ F(s)u(s)ds, (0,T),
0
where 0 < B < 1. Then the following assertions hold:

(i) If 8 > % and € is an arbitrary positive number, then

2I‘(2ﬂ

u(t) € v2a(t) exp (et +— D SF )2ds>, te (0,7).
0

(if) If p = L}_—z, z 2 1 and 4, € are arbitrary positive number, then

29710(1 — ap)
q(pe)i—r

wherea=1-0,p= ltfr}‘&,q—(l+z+(5).

u(t) € 2%7 a(t) exp (et + SF( )st), te (0,T),
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REMARK. We need no other restrictions on ¢,d in Theorem 2, because the
linear function w(u) = u satisfies the condition (r, ¢) with any r,¢ > 0 and
with R(t) = 1,w = 1. We also remark that all results presented in the papers
(19], [21], [22] can be reformulated and improve in the style of Theorem 1.

4. Global solutions of semilinear evolution equations
In the papers [8] and [23] sufficient conditions for the existence of global
solutions solutions of the evolution equation
9 T+ Az = H(t,z), z(0) =z0 € E
are proved. It is assumed there that —A is the infinitesimal generator of a
Co-semigroup {S(t)};>o on a Banach space V, S(t) € L(V,E),t >0,FE is a
Banach space densely and continuously embedded into V' with
(10) WS®llLv,py S ™%, >0,
where ¢ > 0, € (0,1) are constants, H : Rt x E — V, is a continuous map
(see [27]).
By the mild solution of the problem (9) on the interval (0,T) (0 < T <
0o) we mean a map z € C({0,T), E) satisfying the integral equation
¢
(11) z(t) = S(t)zo + | S(t — s)H(s,x(s))ds, 0S t < T.
0
We say that z € C((0, ), F) is a global solution of the problem (9) if
it is the mild solution of (9) on any finite interval (0, T).

THEOREM 3. Let T > 0,H : Rt x E — V be a continuous map satisfying
the condition

(12) IH (¢, v)llv £ G()w(llvlle), (t,v) € RT x E,

where w : RY — R, is a continuous, nondecreasing function and G : Rt —
R* is a continuous function. Let {S(t)};>o be a Co-semigroup satisfying the
condition (10). Assume that n: R* — R* is a continuous, nondecreasing

function with S8° Hd% = 0o and such that one of the following conditions is
satisfied:

(a) B > 3 and the couple (w,n) satisfies the condition (r,q) with ¢ =
2,7 = 2¢, where ¢ > 0.

(b) B = 1_+z, where z 2 1 and the couple (w,n) satisfies the condition
(r,q) withq=1+ z+ 6,r = ge, where § > 0,¢ > 0.

Then sup;c(o,1) |12(t)||E < 00 for any mild solution x(t) of the problem
(9) defined on the interval (0,T).

Proof. Let z(t) be a mild solution of the problem (9) defined on the interval
(0,T) with lim;_,r- ||z(¢)]|g = oo. From the conditions (10), (12) and the
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equation (11) we have

(13)  [lz(®)lle S IS@)2ol e + felt — )P~ G(s)w(ll=(s)l|z)ds,
0

where 8 =1 — a. Applying Theorem 1 with
w(t) = |lz()l|e, a(t) = a:= mazic(o,n)[IS(t)zollE, F(t) = cG(t)

we obtain that the assertlon (i) withe=%,if 8 > 7 and the assertion (ii)
withe=Z,if0 < B = 2, of this theorem. If 8 > , then by (i)

(14) Qle™u(t)]?) £ Q(26%) + g1, ),
where

(26 —

31 (t, 6) Zﬂl—wl S R( )F(s)2ds

Since lim;_,p-[Q(2a2) + g1(t,€)] < oo we obtain from the inequality (14)
that lim;_,7- Q([e™*u(t)]?) < co. However

[e™*“u(t)]? g
do do
. —et 2\ : —_— —_—
tBI:lr"l- e ) = tll’ril}— I X I n(e) llzoll ne)
To o

This contradiction can also be obtained in the case 0 < 8 £ -;— by using the
assertion (ii).

THEOREM 4. Let T > 0 and H : R* x E — V be a continuous map satisfying
the condition (12) with w(u) = In(k + Vu), £ > 1, i.e.

IH (¢, v)|lv £ G(t)In(k + V/]lvl|&), (t,v) € RY X E,

where G : Rt — R% is a continuous function and {S(t)},>o s a Co-
semigroup satisfying the condition (10) defined on the interval (0,T). Then

sup ||z(t)||e < o0
te(0,T)

for any mild solution z(t) of the problem (9) defined on the interval (0,T).

Proof. By Proposition 2 the couple (w, ) satisfies the condition (r, q) with
r =q¢ =2 and R(t) = 1. Since k > 1, obviously

[
o M) gKto

and the assertion of the theorem follows from Theorem 3.

o« r
e

= S —dr =0
T

Ink
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THEOREM 5. Let T > 0,9 > 1 and H : R* x E — V be a continuous map
satisfying the condition (12) with w(u) = In(k + u9),k = €771, i. e.

lH (¢, v)lv £ G(t)In(x + ||v[|E), (¢,v) € R x E,
where G : R* — R* is a continuous function and {S(t)};>o be a Co-
semigroup satisfying the condition (10). Then

sup ||z(¢)|le < oo
t€(0,T)

for any mild solution z(t) of the problem (9) defined on the interval (0,T).
Proof. By Proposition 3 the couple (w, ), where n(u) = [In(x+u)]? satisfies
the condition (r,q) with r = ¢ and R(t) = 1. Obviously
I:=°S° da\=°§° do =°S°e"
o M) 3 ln(k+0)]
If m(t) = :—:, then d—méﬂ = ft—t‘;,—_i[t —g] > 0 for all £ > ¢ and this yields
m(t) > ;—: for allt > ¢ =Ink +1 > Ink. Thus we obtain that

dr.

T9
Ink

© o1 © g
I>S——d‘r>§—d7'=oo.
T9 qq

q q

We have proved that all assumptions of Theorem 3 are satisfied and so the
assertion of the theorem follows from this result.

THEOREM 6. Let T > 0 and H : Rt X E — V be a continuous map satisfying
1
the condition (12) with w(u) = [In(k +u?)]*, > 1,¢> 1., i. e.

Py
|H (@, v)|lv £ G(#)[In(s + |v[IE)] 7, (t,v) € Rx E,

where G : R*t — Rt is a continuous function and {S(t)};>o is a Co-
semigroup satisfying the condition (10). Then

sup ||z(t)]| < oo

t€(0,T)

for any mild solution z(t) of the problem (9) defined on the interval (0,T).
Proof. By Proposition 4 the couple (w,7), where n(u) = In(k + u), K > 1,
satisfies the condition (r, ¢), with r = g and R(t) = 1. Since the function 7(u)
is the same as in Theorem 4 we have Sgc’ ﬁ%; = oo and thus the assertion of
theorem follows from Theorem 3.

Obviously
® do ® do T e T
Vo = Vs ) > J e

and the assertion of theorem follows from Theorem 3.
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5. Applications to reaction—diffusion problems

In this section we apply Theorems 3-6 to the reaction diffusion problem
considered in the paper (8] as an example 1. The reaction - diffusion problems
studied in [8] as examples 2 - 4 can also be solved analogously by using these
theorems and we do not formulate the corresponding results.

Consider the perturbed heat equation

(15) Ou = Au+ f(t, Du), u|0Q =0,

where Q C R? is a bounded domain with C*®-boundary, f : Rt x R —
R is continuous, f(t,0) = 0 and D is the gradient operator. In [8] the
same problem is studied, however the function f is independent of t. One
can rewrite (15) in the form (9), where E = {u € C}(Q) : v = 0, Du =
0ondQN}, V={ueC®):u=00n00}and H: R* x E — V,(t,v) —
f(t, Dv(.)). The map H is obviously continuous and the Laplace operator
A with the Dirichlet boundary condition is the generator of the compact,
Cp-semigroup

S(t)¢(z) = | G(t,z,v)é(y)dy,
Q
where G is the corresponding Green function such that

(16) g Klt_%H(K% [:II - y|)a Jj= L2,.. '$da t>0,

0
?%—jG(t,w,y)

M(t,z) = (2rt)~fexp{-LL}, 2 € R4 Ky, K, > 0. This yields S(¢) €
L(V,E) and it satisfies the condition (10) with & = £ (see [8]).

THEOREM 7. Let q =2+ 6,6 > 0,7 = q, f being as in (15),
|£(t,5)| £ GW)fa(s), t€ RY,s € R,
where G : Rt — R, fi : R — R* are continuous functions, F : Rt —

R*,F(u) = 14supy, <, f1(s) £ w(u) for allu € R*. Assume that there are

continuous functions w,n : Rt — R* such that the couple (w,n) satisfies

the condition (r,q) and {3 ;‘(‘% = 00. Then

sup ||z(t)||g < o0
t€(0,T)

for any T > 0 and any mild solution z(t) of the problem (15).

Proof. Since the condition (10) is satisfied with @ = %, wehave 8 =1—a =
%, i.e. 8 in Theorem 3 is equal to ﬁ with 2 = 1 and thus ¢ = 1+2+6 = 2+4.
Obviously

IH(E )llv & sup £ (¢, Dv(z))| £ GO)F(|lvlle) £ GB)w(lvllp), v € E,
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i.e. the condition (12) is satisfied. Since also all other assumptions of Theo-
rem 3 are satisfied, the proof is finished.

As a consequence of Theorems 4-7 we obtain

THEOREM 8. Let the assumptions of Theorem 7 be satisfied with w(u) =
In(k + ya), k > 1, or w(u) = In(k + u?), k = e971,q¢ > 1 or w(u) =

[1n(fc+u‘1)]%, k>1,g> 1. Then

sup |lz(t)||e < oo
te(0,T)

for any T > 0 and any mild solution z(t) of the problem (15).
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