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ON HEROD’S QUADRATIC DIFFERENTIAL SYSTEM
WITH INFINITELY MANY UNKNOWNS

1. Purpose of this paper
With z; continuous functions R — R and z, = dzi/dt, the following
system was introduced about fifteen years ago by James Herod [1]:

: 1 ¢
(1a) Tp+ZTp = Tri kz_:_o:z:kzn_k, n=0,12, ...,
(1b) zo(0) =1, z;(0)=0, z£(0)=ck, (k>2).

The system (1) was formulated in the course of a comprehensive investiga-
tion of a class of differential systems related to the Helmholtz equation. It
has a number of very interesting properties and seems well worth investi-
gating for its own sake. Added to this is the fact that a question connected
with it was mentioned in [1] as an open problem and, so far as I know, has
been open ever since. Namely, if the sequence {cx} is in £2, is the same true
of the sequence {z,(t)} for each t > 0?7

One purpose of this paper is to settle this question in the negative.
Another purpose is to study further properties of (1) and, in particular, to
discover under what additional restrictions the £2 result is true. For example
Theorem 7 below shows that it is true if

1
lex| < Tog k)’ k>2,

where @ > 1/2 is constant. In a context involving {ci} € 2 it seems surpris-
ing that such a weak condition could make any difference. Nevertheless the
conclusion fails if we assume only

C
< — >
|Ck| — (logk)a’ k—27
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for a moderately large constant C. Here a can be as large as we please and
the conclusion still fails.

In the course of the work we also study an equation, implicitly contained
in [1], that is less restrictive than (1) but follows from it.

Although the paper is sharply focused on these two equations, an ad-
ditional objective is to illustrate a variety of methods that may apply to
other differential systems of similar quadratic structure. With this thought
in mind we have not hesitated to supply different proofs of related results.

2. Preliminary remarks
Equation (1) admits a reformulation that is more convenient for the
purposes at hand. The initial conditions give in succession

zo=1 x:,=0, x9= CQe't/3, T3 = 63e—t/2.
Since o = 1 and z; = 0, Equation (1) reduces to
=
(2a) Tp + ATy = e émkzn_k, n > 4,
where, as throughout this paper,
(2b) o = % k>l

All empty sums are interpreted as 0. With this convention Equation (2a)
remains valid for 1 < n < 4. Since the equation gives z,, in terms of z; with
k < n - 2, existence of the solution for 0 <t < oo follows by induction.
Our results are hardest to prove when z,, is as large as possible, and this
condition is also desirable for the construction of counterexamples. Hence
we assume all ¢x > 0.
For any vector v = (vl, Vg, V3, ) we set

(llla)® =D @)% loll® =D (o),
k=2 k=2

taking the nonnegative square root, both here and below. For vectors asso-
ciated with sequences such as

{e:}, {ma}, {z:}, {z:(®)}, {wi}, {ye}s {pe(®)},

we use corresponding letters ¢, m, z, z(t), u, y, y(¢).
We now summarize a few elementary results that are needed later. With
a, ¢ constant and p = p(t) continuous, the solution of

(3a) y+ay=p(t), y(0)=c
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is given by

¢
(3b) y(t) = e S e**p(s) ds + ce™*.

0
This expression shows that if both equal signs in (3a) are replaced by < or
>, then (3b) remains valid with the same replacement of its equal sign. More
general results of the same kind are well known from the theory of differential
inequalities, but the proof in this case is so simple that it seemed best to
include it.

If a, b are constant with a > 0 then

4) y +ay <ab, y(0)=c=y<max(b c).
As another result of this kind, suppose
(5a) Y +ay <pe” @R y(0) = ¢

where a, p, h are positive constants and ¢ > 0. Then

(5b) y < et (g + )

Both (4) and (5) follow from (3) and the accompanying remarks.

We will use (4) to show that all solutions of (2) are > 0 and bounded.
This holds for x5 and z3 by inspection. Suppose it holds for z; with k < n—2,
thus

OS-’EkS'mk, 2Sksn—2a

where mj, = sup z,(t) < oo. The differential equation gives =, > 0 and (4)
gives

n—2
1
(6) m, < max <Cn7 — ; mkmn-k>, n > 4.

The proof is completed by induction.

As noted above, global existence of the solution follows trivially without
any need for a local Lipschitz condition, although such a condition is easily
estsblished for finite segments

T2, T3, ***y Tny, Y2, Y3," ', Yn
of solutions on a finite interval. But the Referee stated a global Lipschitz
condition which applies to the full solutions
T= (xO, T1, 22"")7 y=(yo, y17y2a"')

whenever ||z]| and ||y|| are bounded. His result is not used here but is repro-
duced because of its collateral interest.
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In this paragraph only, we return to the original equation (1) and we
change the definition of ||v|| to

o0
loi? =) " w.
k=0
Let f(z) be defined by f(z) = (uo, u1, ug,---) where

Then the Referee’s result (included by permission) is
n

If(z) - F@ll < Zgllz+vllllz =l + =~y

Concluding these preliminary remarks, we determine the exact values of
my4 and ms. These values are not needed for the subsequent analysis, but
they shed light on the nature of the difficulties involved.

With constants ¢ > 0,d > 0, a > 0, h > 0 suppose

9y + ay = hde~(a+h)t, y(0) =c.

Then maxy(t) = c if dh < ac and

a/h 1+a/h

maxy(t) = h(g) / (::Z)( /h)
if dh > ac. In this case the location of the max is at ¢* where
Gt d(a + h).

a(c+ d)

(The proof is not difficult and is omitted.) Since

T4+ %104 = %0226_(2/3”, £4(0) = ¢4,

the above result gives my = ¢4 if 3c4 > c3? and otherwise

(3 9 3co2 4 ¢4 10 ot = 10co? 15
M=\ 2 10 : “\9c2+3cs/) -

Similarly from

z5 + gzs = %Czcae_(s/s)t, z5(0) = cs

3

follows ms = c5 if 2¢c5 > coc3 and otherwise

_ 2 4 cs + 2cac3 5 et‘ _ 5cocs 6
ms = CgoC3 5 ’ h 205 + 46263 )




Herod’s quadratic differential system 861

A similar attempt to evaluate mg leads to hopeless complication. How-
ever these results are already enough to show that m,, is an elaborate func-
tion of the ¢; and that the location of the maximum of z,(t) can depend in
the wildest way on n.

3. Bounds for the solution
Our first two theorems require the following lemma:

LEMMA 1. Forn > 4 and 2 < k < n — 2 we have ax + an—r > an, +1/15,

that is,
k-1 n—-k-1 n-1 1
— > —.
(™ k¥l n ksl ntyl>T15
Proof. We show that the minimum of the left side is attained when k = 2

or n — 2 and in that case the inequality holds. The derivative with respect
to k is

2 2
(k+1)2 (n-k+1)2
which is positive for £ < n/2 and negative for k > n/2. This gives the first
assertion. When k = 2 the left side of (7) is

1 4

3 n2-1
This is least when n = 4 and then has the value 1/15.
THEOREM 1. With z as in (2) there exist constants d,, such that
cne %t <z, (t) < dpeont, t>0, n>2
We can choose d,, = 1/30 independent of n if sup ¢, < 1/60.

The left-hand inequality follows from z, +a,z, > 0, so we consider only
the right-hand inequality.

Proof. The desired result holds for z2 and z3 with dy = ¢; and d3 = c3. If
it holds for z; with k < n — 2, then

n—2
. —axt —Gn-ixt
Tn + QnZn < Tl kE—2 dre”***d,_ie k) n > 4.
By Lemma 1 we can replace ax + an— by an, + h where h = 1/15. Thus

Ep + anZy < ppe(@nthlt

where
n—-2
1

= didn_.
Pn n+1k2=;zk k
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Equations (5) with h = 1/15 yield
T, < (15p, + cp)e %t

This gives z, < d,e™%t if d,, = 15p, + c,. Thus the d,, can be determined
by recursion, giving the first statement in Theorem 1.
To get d,, = d, a constant, let ¢ < ¢ for all k. Then it suffices to have

n—3

d>15 d*+¢ oralso d>15d®>+¢.

n+1
This holds when d = 1/30 and ¢ < 1/60, giving the second statement.
Theorem 1 shows that lim z,,(t) = 0 ast — oo and hence m,, = max z,(t)

is attained for each n > 2. If the maximum exceeds ¢, it is attained at some
point t* > 0. At this point Z,(t*) = 0 and the differential equation gives

i n—

n-2
1
mtax:cn(t) < max (cn, max 1 kz-; xk(t):cn_k(t)).

The same result follows from (4).
Theorem 1 and its proof suggest the following:

THEOREM 2. With z as in (2), let 0 < ||c|} < 00. Then
0.3978
flell
It is rather remarkable that the same conclusion is obtained in Theorem

6 below, though the proof (which makes no use of Lemma 1) is entirely
different, and the result is based on (11) rather than (2).

lz@ll < 2flell for 0<t<

Proof. If yp > zo, y3 > z3, yk(0) > ¢ for k > 4, and

n—2
1
8 .77. nn> n—K» 247
(8) Un + any _n+1k§=2yky k n

it follows by induction that yx > zi for k > 2. Equation (8) can be solved
by setting

Y = (e + cp)e™®* — e (R k>,
where each 7, > 0 and h = 1/15. This gives

Yk = e~ (ry + cp — rre ™) < e (ck + i)

where 7, = htr. Hence (8) holds if
1 n—2
rohe”(@nth)t > ——t ;(Fk + ck)e " (o + Cn—k)e T2 kE
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By Lemma 1 the inequality holds if

n—2

hr, > ;{% Z(Fk + Ck)(Fn—k + cn—k)

ko
[\V]

or also if
-2

]. 2
r>——§ Tr. + .
hn 1k2(k Ck)

Since (|IF+clln—2)? < (IFlln—2+llclln-2)? < (Il +llc]l)? and since h = 1/15,
it suffices to have
15

©) > (I + fel)?.

We choose ry, = 8/(k + 1) where § is a constant. Then

T2

)
(10) Ir|f? = Z % = f?B? where B?=——
k=3

] o

6

Thus (9) holds if 8 > 15(BS + ||c||)?, where B = htB. We want to choose
B in such a way as to have ||c|| as large as possible. If A, B, C are positive
constants, it is easily checked that

8= A(BB+C)?

has a solution 3 if and only if C < 1/(4AB), and then 3 = 1/(4AB?). In the
present case this requires ||c|| < 1/(4tB), which agrees with the hypothesis
on t in Theorem 2. We then have z; < y, hence

Izl < lyll < 7+ ell < N7+ llell < BB + llell = 2lle]l-

4. A counterexample
The following theorem settles the question raised by Herod:

THEOREM 3. If ¢y is sufficiently large and ¢, = 0 for k > 3, the solution of
(2) satisfies ||jz(1)]} = oo.

Proof. The functions y, defined for k > 2 by yx = e®*'x; satisfy yo =
¢z, y3 = 0 and

ant T

2
[
—ait —Qn-kt
E e e —k-

We assume 0 < t < 1. Since yx/e < zx < yk, the conditions ||y(1)|} = oo
and ||z(1)|| = oo are equivalent.

Yn =
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The inequalities ax < a, < 1 give

(1/6) Z
>
Yn n T 1 YelYn—k, nz 4a

where, as above, e = 2.718 - - - is the base of natural logarithms. Let ¢; = p?e
where p is a somewhat large number to be determined later. Then y; >
pte/5, which gives

4

t
y42p—5?-2p2et if p®>5.

In the series

Y2, Y4, Ysy, Y16 "
each g, beyond the first involves the square of its predecessor. Hence we
confine attention to y, when n is a power of 2. This gives s > p*et?/9 so

p43

27

Ys > >pet3 if p>2r1.

The same process gives
Cy1e > plet’ if p?>T7x1T.
The last two equations agree with the inequality
Yo > phet?
for n = 3 and 4 respectively. If this holds for a given n > 4 then

. In_,2"—2
Yt 2 o e
and hence

1 n
y2n+1 = p e 27-1
P F 127 — 1

This gives the desired result

y2’1+1 2 pn+let2n—‘1

provided p"~1 > (2" — 1)(2"*! + 1). When n = 3 this agrees with the
condition p?> > 7 x 17 obtained above for the passage from ys to y16. A
sufficient condition in general is

p > 2@nH+)/(n=1)

Since the right side decreases in n, the inequality p > 5 suffices when n > 16.
This completes the proof.
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5. A weaker hypothesis
By the Schwarz inequality (2) implies

n—2
1 2
.'n, n < y 24’
(11a) Tp + AnTy < ] k§=2zk n

which is, in several respects, a much weaker condition. Although we use the
same letter z, the results obtained now are based on (11) rather than (2),
with the same initial conditions as those for (2); namely

et 2x(0) = ck, k>4
In view of our convention regarding empty sums, (11a) remains valid for
n=2and 3.
The analog of Theorem 1 for (11) is
zo(t) <dne= 3 t>0, n>2

This is easily proved by induction. It shows that each z, is bounded and
tends to 0; hence

(11b) Ty = cpe~ %, 3 = cge”

my = max T (t)
is attained for each k > 2. If we replace z; in (11) by my, then apply (4),
and finally take the max of the left side, we get

(12) m, < max (cn, m 1 - f‘j(mk)?)-

k=2

The equality corresponding to (11a) is

1 n—2
Tp+ QpTp = —— kza n>4
n+1
k=2
Under the boundary conditions
Ty = Cze—azt, ck,=0 for k>3,
Theorem 3 shows that the solution satisfies ||z(1)|| = oo provided ¢z is

sufficiently large. Here, however, we consider z,, for all even n, not just for
n of the form 27. The result is that ||z(1)|| can have an extremely rapid rate
of growth; indeed we get a lower bound of the form

1122,,,(1) > AQH

no matter how large A may be. (The proof is similar to the proof of Theorem
3 and need not be repeated.) In spite of this spectacular failure of the con-
dition ||z(t)|| < oo, it will be seen that (11) admits much the same positive
theorems as were valid for (2). This is one of several surprises provided by
problems associated with [1].
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For example if z is as in (11) and ¢; < 1, then an easy induction depend-
ing on (12) gives m, < 1. As another illustration, suppose supcy = € < 0o.
Then z,(t) < 2¢ on an interval of length 1/(4¢). To see why, suppose by
some means we have found a constant a such that

zi(t) < g, 2t 2<k<n-2

By (11) we get i, < a? on this interval, hence z, < ¢+ a?t < a on the same
interval. By induction this holds for all n > 2. To get started we must have
a > max(cy, c3). The choice a = 2¢ satisfies this condition and maximizes
the interval.

6. Sums of squares revisited
The theorems given in the rest of this paper pertain to z in (11), hence
they apply also to z in (2).

THEOREM 4. Let z be as in (11). Then |lc|| < 0.7085 = sup |[z(t)| < oo.
Proof. Let (s,)% = (J|z(t)|ln)?. Then

Sndn = ) zk(t)E(t).
k=2

For k > 2 Equation (11a) gives

.’Ek S k+ 1 Z:EJ — QTk.

(In view of the initial conditions thls holds as an equality when k = 2 or 3.)
Hence for n > 4

n
(13) Snén < Z o Z::z:J Zakzkz.

]—2 k=2
We start at k = 4 because the middle sum is empty for & < 4. By the
Schwarz inequality

2
Tk , ™ 5 1 1

—_—< _e—— = —— ——,
kE4k 1 asy where a 6 1 9 16

Since each a,, > 1/3 and since sx—2 < s, Equation (13) gives

$n < asp? — §sn

after division by s,. Thus y = s,, satisfies a Riccati inequality y < ay? — by
with b = 1/3 and y(0) < ||c||. Such an inequality is easily solved by setting
y = 1/u. It turns out that y is bounded (and actually tends to 0 as ¢t — o00)
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if ac < b. The resulting condition 3a|lc|} < 1 agrees with the hypothesis of
Theorem 2. This completes the proof.

The following is related to Theorem 4, but the proof is entirely different:
THEOREM 5. Let = satisfy (11) with nl|c|| < 1/3/2. Then the vector m given
by m; = sup z;(t) satisfies |m|| < V3/.

The condition ||m|| < oo is much stronger than sup ||z(t)|| < oo.

Proof. Suppose we have found a sequence {ux} such that ug = mp =
C2, Uz = M3 = C3 and

(14) u, > max ( Z(uk) ) n>4.
n—1
k=2
We then get in succession u4 > my4, us > ms and so on. Thus u,, > m,, for
n>4.
Let us set A = ||c||?, B > |u]|* assuming for the moment that the latter
is finite. For (14) it then suffices to have

(15) Uy = mMax (cn, Ij 1) n
Whenever ¢, > 0 and d,, > 0 we have

v
o

(max(cn, dn))’ = max(c2, d2) < & + 2,
and hence M,, = max(c,, d,,) satisfies [|M||> < ||c||? + {|d||*>. (Equality holds
if c;d; = 0 for all <.) In (15) this gives
2
ol < llef? + & B2
We want this to be < B or equivalently
72
el < B~ %8,

so {u;} satisfies the needed condition ||u}}> < B. Choosing B = 3/72, we
get Theorem 5.

THEOREM 6. With z as in (11), let 0 < llc|| < co. Then
0.3978
el

=@l < 2fell for 0<t< ———

Proof. The function yx = zx — cre™%** satisfies

Yn +@nYn < —— Z(yk + cre )2
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together with the initial conditions yx(0) = 0 and yo = y3 = 0. If y, > 0
then

n—2

Un S~ Z(yk +cx)?
The latter sum is (Jly + ¢||n— 2) , SO

(16) in < — (s + e, 724

provided y, > 0. As shown in [2], the condition y, > 0 has no effect on the
use we shall make of (16) and can be ignored until later.

Let M be a constant such that ||y(¢)lln—2 < M on a given interval
0 < t < to. Then (16) gives an inequality for g which implies the right-hand
inequality in

t
—p S Yp K e 2 <k<n-2
e Sy < gy (M40, 4<k<n-2,

where C = ||c||. The left-hand inequality follows from x; > 0. Hence

2
lylin < max (C, tB(M + 0)2) where B?= % - Z

The inequality ||y|l» < M holds for 0 < t < g if
or i< 1 M

= B(M+0)?
Repetition gives the same for n + 1, n 4+ 2 and so on. Taking M = C yields
the theorem, since 1/(4B) > 0.3978 and |jz|| < ||y|l + ||c}i-

THEOREM 7. With = as in (11), suppose ||c|| < 0o and ¢, < 1/(logn)* for
n > 2, where a > 1/2 is constant. Then my, = max zk(t) satisfies ||m|] < oo.

M>C and M >tB(M+C)?,

The definition of s, in the following lemma is more convenient for present
purposes than that in the proof of Theorem 4:

LEMMA 2. With z as in (11) set s, = ({|m||.)? and suppose ||c|| < 0o. Then
oo 8
E — <ooésupsn<oo
n?
n=2

Proof. Equation (13) gives

Sp— Sp—
my < max | e, ——= | < max | ¢,, ==~ ).
n-—-1 n—1
Hence

(17) Sn — Sn—1 = mp? < max ((cn)2, (:"_‘11)2).
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Without loss of generality we take c; > 0, so s, > (c2)?2 > 0 for n > 2. By
(17) forn > 3

2
Cn Sn—-1
Sn < sn—1{1+¢€,) where ¢, = (g) + (n—-—1)2

Since ) €, < 00, the infinite product

converges as n — 00, and this completes the proof.

Proof of Theorem 7. We take 2a > 1 but close to 1 and assume for the
moment that ¢, = 1/(logk)® for k > 2. It is a principal objective to show
that m,, as given by (12) satisfies m,, < 1/(logn)® for n > 2. This holds
for n = 2 and 3, since my = ¢y and m3 = c3. By a brief calculation it
also holds for 3 < n < 8. (A simple procedure is to set a = 1/2 and show
that the desired inequalities are strict.) We assume that m, < 1/(logn)®
for 2 < k < n, where n > 8, and show that the same holds for n + 1.

In view of (12) an adequate hypothesis and conclusion are respectively

1 1 n—2
(logn)e 2 n—1 ;(mk)z’ (log(n+ 1))° n Z i)’

Since (mn—1)? < 1/(log(n - 1))2a, the second inequality follows from the
first if
n—1 1 n

+ < .
(logn)* * (log(n —1))** ~ (log(n + 1))
With ¢(z) = z/(log(z + 1))*, the desired inequality holds if

1 /
(18) (og(n —1)y% = <¢(n)—d(n—-1)=¢'(§), n—-1<€<n

We have

, 1 ( azr 1 )
= (1= .
¢'() (log(z + 1)) T+ 1log(z +1)
Since az/(x + 1) < a it is easily seen that

/ 1 a
#02 G (1- )
Hence (18) holds if

(log(n+1))” . a
(log(n— 1))2a - logn’
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A short calculation shows that the left side is a decreasing function of n and
the right side is clearly increasing. Hence if the inequality holds for any n
it also holds for any larger n. Since it holds for n = 9, it holds for n > 9,
completing the proof.

In all this we used the fact that ¢, = 1/(logk)®, where 2a is close to
1. However the result also holds for ¢x < 1/(logk)?, since diminishing any
¢k usually diminishes both z,(t) and m,, and never increases either. The
inequality is compatible with [|c|| < oo as the equality was not.

The result we have just obtained gives

o= Y ()2 < (ma)? 4 | e

,c; 5 (log z)?

Furthermore
'§ dz ‘/S— dzx S vn 22an
p (logz)? = 3 (log2)® - (log \/' 2= = (og2)% " (logm)2*

This shows that the sum is O(n/ (log n)?2) and hence that the hypothesis of
Lemma 2 is fulfilled. The lemma gives sup s,, < 0o, completing the proof.
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