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ON HEROD'S QUADRATIC DIFFERENTIAL SYSTEM 
WITH INFINITELY MANY UNKNOWNS 

1. Purpose of this paper 
With ifc continuous functions R —• R and ±k = dxk/dt, the following 

system was introduced about fifteen years ago by James Herod [1]: 

1 n 

(la) x n + x n = — — y ] XkXn-k, n = 0, 1, 2, . . . , 

(lb) xo(0) = l, xi(0) = 0, Xfc(0) = Cfc, (k > 2). 
The system (1) was formulated in the course of a comprehensive investigar 
tion of a class of differential systems related to the Helmholtz equation. It 
has a number of very interesting properties and seems well worth investi-
gating for its own sake. Added to this is the fact that a question connected 
with it was mentioned in [1] as an open problem and, so far as I know, has 
been open ever since. Namely, if the sequence {cfc} is in P , is the same true 
of the sequence (xn(t)} for each t > 0? 

One purpose of this paper is to settle this question in the negative. 
Another purpose is to study further properties of (1) and, in particular, to 
discover under what additional restrictions the t 2 result is true. For example 
Theorem 7 below shows that it is true if 

where a > 1/2 is constant. In a context involving {c^} 6 t2 it seems surpris-
ing that such a weak condition could make any difference. Nevertheless the 
conclusion fails if we assume only 
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for a moderately large constant C. Here a can be as large as we please and 
the conclusion still fails. 

In the course of the work we also study an equation, implicitly contained 
in [1], that is less restrictive than (1) but follows from it. 

Although the paper is sharply focused on these two equations, an ad-
ditional objective is to illustrate a variety of methods that may apply to 
other differential systems of similar quadratic structure. With this thought 
in mind we have not hesitated to supply different proofs of related results. 

2. Preliminary remarks 
Equation (1) admits a reformulation that is more convenient for the 

purposes at hand. The initial conditions give in succession 

x0 = 1, xi = 0, x2 = c2e~t/3, x3 c3e~t/2. 

Since xq = 1 and x\ = 0, Equation (1) reduces to 
j n - 2 

(2a) xn + anxn = —— ) xkxn-k, n > 4, 
^ fc=2 

where, as throughout this paper, 

(2b) ak = , k > 1. 

All empty sums are interpreted as 0. With this convention Equation (2a) 
remains valid for 1 < n < 4. Since the equation gives xn in terms of xk with 
k < n — 2, existence of the solution for 0 < t < oo follows by induction. 

Our results are hardest to prove when xn is as large as possible, and this 
condition is also desirable for the construction of counterexamples. Hence 
we assume all ck > 0. 

For any vector v = («i, v2, • • •) we set 
n oo 

(IMIn)2 = IMI2 = E M 2 > 
fc=2 fc=2 

taking the nonnegative square root, both here and below. For vectors asso-
ciated with sequences such as 

{Cih Wi}> {ziK {zi(f)}> (yfc}> {yk(t)}, 
we use corresponding letters c, m, x, i ( i) , u, y, y(t). 

We now summarize a few elementary results that are needed later. With 
a, c constant and p = p(t) continuous, the solution of 

(3a) y + ay = p(t), y(0) = c 
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is given by 
t 

( 3 b ) y{t) = e~at \ easp(s) ds + ce~at. 
o 

This expression shows that if both equal signs in (3a) are replaced by < or 
>, then (3b) remains valid with the same replacement of its equal sign. More 
general results of the same kind are well known from the theory of differential 
inequalities, but the proof in this case is so simple that it seemed best to 
include it. 

If a, b are constant with a > 0 then 

(4) y' + ay < ab, y(0) = c=> y < max(6, c). 

As another result of this kind, suppose 

( 5 a ) y' + a y < p e ~ ^ t , y(0) = c 

where a, p, h are positive constants and c > 0. Then 

(5b) y < c - « ( £ + c ) . 

Both (4) and (5) follow from (3) and the accompanying remarks. 
We will use (4) to show that all solutions of (2) are > 0 and bounded. 

This holds for X2 and £3 by inspection. Suppose it holds for Xk with k < n—2, 
thus 

0 < xk < mfc, 2 < k < n - 2, 

where mk = supxfc(i) < 00. The differential equation gives xn > 0 and (4) 
gives 

(6) mn < max ( cn, —i— mfcmn_fc ), n > 4. 
V ) 

The proof is completed by induction. 
As noted above, global existence of the solution follows trivially without 

any need for a local Lipschitz condition, although such a condition is easily 
estsblished for finite segments 

X2, x3, • • • , £„, 7/2, 2/3, • • • , Vn 

of solutions on a finite interval. But the Referee stated a global Lipschitz 
condition which applies to the full solutions 

x = (x0, xu x2, •••), y = (y0, yu 2/2, • • •) 

whenever ||x|| and ||y|| are bounded. His result is not used here but is repro-
duced because of its collateral interest. 
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In this paragraph only, we return to the original equation (1) and we 
change the definition of ||u|| to 

oo 

H a = 5 > 2 -
fc=0 

Let /(x) be defined by f(x) = (ito, U2, • • •) where 
n 1 ^ 

n + 1 t o 
Then the Referee's result (included by permission) is 

||/(x)-/(y)||<^||« + y||||x-y|| + ||®-y||. 

Concluding these preliminary remarks, we determine the exact values of 
m4 and m5. These values are not needed for the subsequent analysis, but 
they shed light on the nature of the difficulties involved. 

With constants c > 0, d>0, a> 0, h> 0 suppose 

y + ay = hde~('a+^t, y{ 0) = c. 

Then maxy(i) = c if dh < ac and 

maxy(i) - ' ( 5 ) (5 °/fc /~ + d\ ( 1 + a / h ) 

+ h) 
if dh > ac. In this case the location of the max is at t* where 

ehf = d ( a + h ) 
a(c + d)' 

(The proof is not difficult and is omitted.) Since 

¿4 + 7X4 = 7C22e~(2/3)t, x4(0) = c4, 
5 5 

the above result gives 7714 = C4 if 3c4 > c22 and otherwise 

( 3 \ g f 3 c S + c A 1 0 t . ( 10c22 V 5 

m 4 = W ) \ 10 ) ' 6 = \9C2^+3C4/ ' 
Similarly from 

2 1 
¿ 5 + 3Z5 = x5(0) = c5 

follows 7TI5 = C5 if 2c5 > C2C3 and otherwise 
4 / \ 5 / 

\ (C5 + 2C2C3 \ t- I 5 c 2 c 3 m5 
2c 5 + 4c 2 c3 
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A similar attempt to evaluate me leads to hopeless complication. How-
ever these results are already enough to show that mn is an elaborate func-
tion of the Ci and that the location of the maximum of xn(t) can depend in 
the wildest way on n. 

3. Bounds for the solution 
Our first two theorems require the following lemma: 

LEMMA 1. For n > 4 and 2 < k < n — 2we have ak + an-k > a n + 1 / 1 5 , 
that is, 

. . fc — 1 n — fc — 1 n — 1 1 
fc + 1 + n - f c + 1 ~ n + 1 ~ 15' 

P r o o f . We show that the minimum of the left side is attained when fc — 2 
or n — 2 and in that case the inequality holds. The derivative with respect 
to fc is 

2 2 
(fc + 1)2 ( n - f c + 1)2 

which is positive for k < n/2 and negative for fc > n /2 . This gives the first 
assertion. When fc = 2 the left side of (7) is 

1 _ 4 
3 n2 - 1' 

This is least when n — 4 and then has the value 1/15. 

THEOREM 1. With x as in ( 2 ) there exist constants dn such that 

cne~a"t < xn(t) < dne~ant, t > 0 , n > 2. 

We can choose dn = 1 / 3 0 independent ofn if sup Ck < 1 / 6 0 . 

The left-hand inequality follows from x„ + anxn > 0, so we consider only 
the right-hand inequality. 

P r o o f . The desired result holds for x<i and 13 with ¿2 = C2 and ¿3 = C3. If 
it holds for Xk with fc < n — 2, then 

j n—2 
xn + anxn < —— J 2 dke-aktdn-ke-a"-kt, n > 4 . 

By Lemma 1 we can replace + an-Jb by an + h where h = 1/15. Thus 

in + anXn < Pne-^+V* 

where 
j n - 2 

Pn = ~ ^ Y l d k d n - k -
k=2 
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Equations (5) with h = 1/15 yield 

xn < ( 1 5 p n + c n ) e ~ a n t . 

This gives xn < d n e ~ a n t if d n = 15pn + c n . Thus the d n can be determined 
by recursion, giving the first statement in Theorem 1. 

To get dn = d, a constant, let ck <c for all k. Then it suffices to have 
n — 3 d > 15 -d2 + c or also d > 15d2 + c. 
n + 1 

This holds when d = 1/30 and c < 1/60, giving the second statement. 

Theorem 1 shows that lim xn(t) = 0 as t —> oo and hence mn = max xn(t) 
is attained for each n > 2. If the maximum exceeds cn, it is attained at some 
point t* > 0. At this point x n ( t * ) = 0 and the differential equation gives 

maxxn(i) < max fcn, max ——- S^ ifc(i)i„_fc(i) ). 
4 V 4 n ~ l f 2 J 

The same result follows from (4). 
Theorem 1 and its proof suggest the following: 

T H E O R E M 2 . With X as in ( 2 ) , let 0 < | | c | | < o o . Then 

0 *iQ78 
| |x(t) | |<2| |c | | for 0 

It is rather remarkable that the same conclusion is obtained in Theorem 
6 below, though the proof (which makes no use of Lemma 1) is entirely 
different, and the result is based on (11) rather than (2). 

P r o o f . If y2 > x2, y3 > x3, yk(0) > ck for k > 4, and 
J n—2 

( 8 ) yn + a n y n > ——T ykVn-k, n > 4 , 
n + 1 fc=2 

it follows by induction that yk > xk for k > 2. Equation (8) can be solved 
by setting 

Vk = (rk + c k ) e - a k t - r k e - ( a k + V \ k > 2 , 

where each rk > 0 and h = 1/15. This gives 

y k = e ~ a k \ r k + c f c - r k e ~ h t ) < e~akt(ck + f k ) 

where f k = htrk. Hence (8) holds if 
1 n—2 

r n h e - ^ + W > — — V ( f f c + c k ) e - a k t ( r n _ k + c n ^ k ) e ~ a — ' t . 
n + 1 f—• 
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By Lemma 1 the inequality holds if 
^ n-2 

hrn > — — \ (ffc + Ck){f n—K I 

or also if 
j n - 2 

hrn > ——- Y(ru + cjfc)2. 

Since ( | | f+c| |n_2)2 < (| |f | |n_2 + ||c||n_2)2 < (||f|| + ||C||)2 and since h = 1/15, 
it suffices to have 

(9) r n > - ^ - ( \ \ f \ \ + \\c\\)2. 

n + 1 

We choose r^ = (3 / (k + 1) where f3 is a constant. Then 
00 o2 2 e (10) IMI2 = E w h e r e b 2 = T - ! -

Thus (9) holds if /? > 15(5/3 + ||c||)2, where B = htB. We want to choose 
(3 in such a way as to have ||c|| as large as possible. If A, B, C are positive 
constants, it is easily checked that 

p = A(B/3 + C)2 

has a solution (3 if and only if C < 1/(4AB), and then ¡3 = 1/(4AB2). In the 
present case this requires ||c|| < l / (4t£) , which agrees with the hypothesis 
on t in Theorem 2. We then have Xk <yk, hence 

IMI < llvll < If + c|| < ||f|| + ||c|| < (3B + ||c|| = 2||c||. 

4. A counterexample 
The following theorem settles the question raised by Herod: 

THEOREM 3. If c 2 is sufficiently large and Ck = 0 for k > 3, the solution of 
(2) satisfies ||a;(l)|| = oo. 

P r o o f . The functions j/jt defined for k > 2 by yk = e"ktXk satisfy j/2 = 
C2, 2/3 = 0 and 

ant n ~ 2 

yn = - ^ T £ e - ^ y k e - ^ y n - k . 

We assume 0 < t < 1. Since y^/e < Xk < yk, the conditions ||y(l)|| = oo 
and ||x(l)|| = oo are equivalent. 
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The inequalities dk < an < 1 give 

f-t t \ n—^ 
J/n > ~~T~r £ ffc»«-*« n ^ 4 ' 

where, as above, e = 2.718 • • • is the base of natural logarithms. Let c2 = p2e 
where p is a somewhat large number to be determined later. Then y4 > 
p 4e/5, which gives 

2/4 > i - — > p et if p2 > 5. 
5 

In the series 

J/2, 3/4, J/8, J/16, ••• 

each j/jfc beyond the first involves the square of its predecessor. Hence we 
confine attention to yn when n is a power of 2. This gives yg > p 4e£ 2 /9 so 

p4ei3 o , 
J/8 > > p et3 if p > 27. 

The same process gives 

J/16 > PAet7 if p2 > 7 x 17. 

The last two equations agree with the inequality 

y2n > p ^ e i 2 " " 1 - 1 

for n = 3 and 4 respectively. If this holds for a given n > 4 then 

^ 1 2n .2n-2 
ft"" ^ 2 " + i + 1 P 6 

and hence 
1 p2ne 2n_1 

This gives the desired result 

y2n+1 > p n + 1 e i 2 " - 1 

provided p n _ 1 > (271 - l ) ( 2 n + 1 + 1). When n = 3 this agrees with the 
condition p2 > 7 x 17 obtained above for the passage from y& to y\s- A 
sufficient condition in general is 

> 2(2n+i)/(n-i) 

Since the right side decreases in n, the inequality p > 5 suffices when n > 16. 
This completes the proof. 
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5. A weaker hypothesis 
By the Schwarz inequality (2) implies 

j 71 — 2 
(11a) xn + anxn<—— V i i 2 , « > 4 , 

which is, in several respects, a much weaker condition. Although we use the 
same letter x, the results obtained now are based on (11) rather than (2), 
with the same initial conditions as those for (2); namely 

(lib) x2=c2e-a2\ xz = c 3 e- a s t , zfc(0) = ck, k > 4. 

In view of our convention regarding empty sums, (11a) remains valid for 
n = 2 and 3. 

The analog of Theorem 1 for (11) is 

xn(t) < d n e - ( 1 / 3 ) t , t > 0, n > 2. 
This is easily proved by induction. It shows that each xn is bounded and 
tends to 0; hence 

mfc = maxxfc(i) 
is attained for each k > 2. If we replace Xk in (11) by rrik, then apply (4), 
and finally take the max of the left side, we get 

(12) mn < max (cn, —i— V W ) 2 ). 
V n ~ 1 t ^ 2 > 

The equality corresponding to (11a) is 
j n—2 

xn + anxn = —"T/J^fc2' n > 4. 

Under the boundary conditions 

x2 = c2e~a2t, ck = 0 for k > 3 , 

Theorem 3 shows that the solution satisfies ||a;(l)|| = oo provided c2 is 
sufficiently large. Here, however, we consider xn for all even n, not just for 
n of the form 2 J . The result is that ||x(l)|| can have an extremely rapid rate 
of growth; indeed we get a lower bound of the form 

X2n(l) > A2" 
no matter how large A may be. (The proof is similar to the proof of Theorem 
3 and need not be repeated.) In spite of this spectacular failure of the con-
dition ||z(i)|| < oo, it will be seen that (11) admits much the same positive 
theorems as were valid for (2). This is one of several surprises provided by 
problems associated with [1]. 
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For example if a; is as in (11) said c^ < 1, then an easy induction depend-
ing on (12) gives mn < 1. As another illustration, suppose sup Ck = c < oo. 
Then xn(t) < 2c on an interval of length l/(4c). To see why, suppose by 
some means we have found a constant a such that 

x k ( t ) < a, 0 < t < 2 < fc < n - 2. 

By (11) we get xn < a2 on this interval, hence xn < c + a2t < a on the same 
interval. By induction this holds for all n > 2. To get started we must have 
a > max(c2, C3). The choice a = 2c satisfies this condition and maximizes 
the interval. 

6. Sums of squares revisited 
The theorems given in the rest of this paper pertain to x in (11), hence 

they apply also to x in (2). 
THEOREM 4. Let x be as in ( 11 ) . T h e n ||c|| < 0 . 7 0 8 5 =S> sup ||a;(i)|| < 00 . 

P r o o f . Let (sn)2 = (||a;(i)||n)2. Then 
n 

S n S n = " Y ^ X k ( t ) X k ( t ) . 

k—2 

For k> 2 Equation (11a) gives 
j k—2 

i k < J_ | ^ R ^ I 2 ~ a k x k -

3=2 

(In view of the initial conditions this holds as an equality when k = 2 or 3.) 
Hence for n > 4 

n fc—2 n 
(13) s n s n TTTT £ X J 2 ~ a k X k 2 • 

k=4K + L 3=2 k=2 

We start at k = 4 because the middle sum is empty for fc < 4. By the 
Schwarz inequality 

Xk , 9 7T2 5 1 1 < asn where a — —— - — - — —. 
k + 1 - 6 4 9 16 FC=4 

Since each on > 1/3 and since Sk-2 < sn Equation (13) gives 

Sn S - s n 

after division by sn. Thus y = sn satisfies a Riccati inequality y < ay2 — by 
with 6 = 1/3 and y(0) < ||c||. Such an inequality is easily solved by setting 
y = 1 /it. It turns out that y is bounded (and actually tends to 0 as t —> 00) 
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if ac < b. The resulting condition 3a||c|| < 1 agrees with the hypothesis of 
Theorem 2. This completes the proof. 

The following is related to Theorem 4, but the proof is entirely different: 

THEOREM 5. Let x satisfy (11) with 7r||c|| < \ / 3 / 2 . Then the vector m given 

by mi = sup %i(t) satisfies ||m|| < y/S/n. 

The condition ||m|| < oo is much stronger than sup ||x(£)|| < oo. 

P r o o f . Suppose we have found a sequence {ujt} such that U2 = rri2 = 
c2, u3 = rri3 — C3 and 

(14) un > max ( Cn, - - L . £ ( u f c ) 2 ) , n > 4. 

We then get in succession ut>m\, 1x5 > 7715 and so on. Thus un > mn for 
n > 4. 

Let us set A = ||c||2, B > ||u||2 assuming for the moment that the latter 
is finite. For (14) it then suffices to have 

(15) un = max ^ , n > 2. 

Whenever Cn > 0 and dn > 0 we have 

(max(cn , dn))2 = max(c2, ¿1) <c2n + d2n, 

and hence Mn = max(cn, dn) satisfies \\M\\2 < ||c||2 + ||d||2. (Equality holds 
if Cidi = 0 for all i.) In (15) this gives 

IMI2 < ||c||2 + y B 2 . 

We want this to be < B or equivalently 

||c||2 < B -

so {tii} satisfies the needed condition ||u||2 < B. Choosing B = 3/7r2, we 
get Theorem 5. 

THEOREM 6 . With x as in ( 1 1 ) , let 0 < ||c|| < 0 0 . Then 

fl "}Q78 
||x(i)||<2||c|| for 0 < i < ^ g p . 

P r o o f . The function yk = X k ~ Cke~akt satisfies 
j n—2 

J/n + anyn < —— Y]{yk + cke~akt)2 n + 1 

fc=2 
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together with the initial conditions yfc(O) = 0 and 2/2 = 2/3 = 0. If yn > 0 
then 

n—2 
yn < — j + ck)2. 

' " k=2 
The latter sum is (||y + c | |N_2)2 , so 

(16) y n < -4r(||y||n-2 + IMU -2) 2 , n > 4 
n + 1 

provided yn > 0. As shown in [2], the condition yn > 0 has no effect on the 
use we shall make of (16) and can be ignored until later. 

Let M be a constant such that ||y(i)||N-2 < M on a given interval 
0 < t < to. Then (16) gives an inequality for yk which implies the right-hand 
inequality in 

-Ck <Vk < - ^ - ¡ - ( M + C)2 , 4 < fc < n — 2, 

where C = ||c||. The left-hand inequality follows from Xk > 0. Hence 

7r2 5 
||y||n < max (C, tB(M + C f ) where B2 — —— 

6 4 
The inequality ||y||n < M holds for 0 < t < t0 if 

M>C and M > t0B(M + C)2, or i 0 < 1 M 
B(M + C)2' 

Repetition gives the same for n + 1, n + 2 and so on. Taking M = C yields 
the theorem, since 1/ (4B) > 0.3978 and ||x|| < ||y|| + ||c||. 

THEOREM 7. With x as in (11), suppose ||c|| < 00 and cn < l/(logn)a for 
n > 2, where a > 1/2 is constant. Then rrik = maxxfe(i) satisfies ||m|| < 00. 

The definition of sn in the following lemma is more convenient for present 
purposes than that in the proof of Theorem 4: 

LEMMA 2. With x as in (11) set sn = (||m||n)2 and suppose ||c|| < 00. Then 
00 

Sr E-^ < 00 => sup sn < 00. 
„ nz 

n=2 
P r o o f . Equation (13) gives 

. ( s n _ 2 \ ( s n _ i 
mn < max cn, < max cn, 

\ n—1J \ n-1 
Hence 

(17) sn - s n _ ! = mn2 < max ^(cn)2, 
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Without loss of generality we take > 0, so sn > (C2)2 > 0 for n > 2. By 
(17) for n > 3 

Sn < Sn-i( l + Cn) where e„ = ( — ) + S n _ 1 
c2J ' (n-1)2' 

Since en < oo, the infinite product 
n 

Sn Sn Sn—1 

S2 «n-1 Sn-2 S2 fc=2 

converges as n —> 00, and this completes the proof. 

P r o o f of Theorem 7. We take 2a > 1 but close to 1 and assume for the 
moment that c/t = l / ( logk) a for k > 2. It is a principal objective to show 
that m n as given by (12) satisfies mn < l / (log n)a for n > 2. This holds 
for n = 2 and 3, since m2 = C2 and 7713 = C3. By a brief calculation it 
also holds for 3 < n < 8. (A simple procedure is to set a = 1 / 2 and show 
that the desired inequalities are strict.) We assume that mn < l / ( logn)° 
for 2 < k < n, where n > 8, and show that the same holds for n + 1. 

In view of (12) an adequate hypothesis and conclusion are respectively 
1 1 71— 2 1 -, 71—1 •L i. T ^ / \ 9 J-

(logn)» - n - 1 ^ " (log(n + l) ) e - fc=2 

m n _ ! ) 2 < l / ( l o g 
first if 
Since (m n _i ) 2 < l / ( l o g ( n — 1))2°, the second inequality follows from the 

n — 1 1 n 
+ - : ^ r < (logn)» ( l o g ( n - l ) ) 2 a ~ (log(n + l ) ) a " 

With (f>(x) = xj(log(i + 1))°, the desired inequality holds if 

( 1 8 ) O o g ( n - l ) ) a » = 

We have 

4 1 { x ) = (log(x + l ) ) a i 1 " x + l log(x + l ) ) • 
Since ax/(x + 1) < a it is easily seen that 

^ - i J + D l - i " ^ ) ' 
Hence (18) holds if 

( l o g ( n + l ) ) a a 

( l o g ( n - l ) ) 2 a ~ log«' 
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A short calculation shows that the left side is a decreasing function of n and 
the right side is clearly increasing. Hence if the inequality holds for any n 
it also holds for any larger n. Since it holds for n = 9, it holds for n > 9, 
completing the proof. 

In all this we used the fact that c/t = l/(log k)a, where 2a is close to 
1. However the result also holds for Ck < l/(logfc)a, since diminishing any 
Cfc usually diminishes both xn(t) and mn and never increases either. The 
inequality is compatible with ||c|| < oo as the equality was not. 

The result we have just obtained gives 

*„ = | > k ) 2 < ( m 2 ) * + J ^ . 

Furthermore 

S
n dx ^r" dx ? dx y/n 22on 

, (logi)2 a - J (log 2)2a + ]_ (log < (log2)2a + (logn)2a 
2 2 y/jl 

This shows that the sum is 0(n/(log n)2a) and hence that the hypothesis of 
Lemma 2 is fulfilled. The lemma gives sup sn < oo, completing the proof. 
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