
DEMONSTRATIO MATHEMATICA 
Vol. XXXVII No 4 2004 

Eduard G. Kir'ytzkii 

LINEARLY INVARIANT CLASSES OF FUNCTIONS 
ANALYTIC IN A UNIT CIRCLE OF ZERO TYPE 

Introduction 
The class of univalent functions was simultaneously narrowed up to some 

of its subclasses and vice versa, extended to wider classes (see [3], [4]). 
One of such extensions was proposed by a German mathematician Ch. 

Pommerenke [1] and the author of the paper (see [3]). 
Ch. Pommerenke gives a definition by a linearly univalent class of an-

alytic functions in a unit circle E which, in our notation, is formulated as 
follows. 

Let A\(E) be a class of analytic in E functions f(z), normalized by 
conditions /(0) = 0, / '(0) = 1, for which f'(z) ^0 ,Vz 6 £ and let A be a 
set of all linear-fractional functions 

u = u>{z)= , C eE, © G ( - 0 0 , 0 0 ) , 
1 + Qe^z 

bijectively mapping the unit circle E onto itself. We introduce the operator 

l [ n ~ mm' 
The operator transforms any function from class A\(E) to a function of 
the same class. We denote by a class of analytic functions f(z) from 
Ai(E) bearing the following property: if the function f(z) € (E), then 
the function iif [/(z)] € ^i (E) , too, for any a; € A. Pommerenke called the 
class (E) a linearly invariant class. Class A\(E) as well as the class of 
univalent and normed in E function may serve as examples of the linearly 
invariant class in the sense of Pommerenke. Pommerenke devoted a great 
part of his work [1] to a detailed study of the properties of functions from 
different linearly invariant classes Q\(E). 
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Note, again, that the idea to maximally exploit analytic automorphism 
of the unit circle E in combination with the Pommerenke operator for in-
vestigating the properties of univalent normalized in E functions belongs 
to a French mathematician Marty [2] who succeeded in obtaining quite a 
number of important results (see also [3], [4]). 

From the facts mentioned above we see that in order to construct a 
linearly invariant class of analytic functions in a unit circle one needs to 
introduce a special operator defined on this class and connect it with analytic 
automorphism of the unit circle aod normalization of the functions included 
in this class. 

In the paper the author considers the class AQ(E) of analytic functions 
f(z) in the unit circle E which is normalized by the condition /(0) = 1 and 
posseses the property f(z) ^ 0 in E. The operator 

o ^ u i _ / M * ) ) 
/ M o ) ) ' 

is introduced in the class Ao(E) that transforms any function of the class 
AQ(E) to a function belonging to this class. By ^S(E) we denote a class 
of functions f(z) from Aq(E), that possesses the property: if a function 
f(z) € § (£) , then the function ^[¡(z)} 6 § (£ ) for any u e A. Following 
Pommerenke's examples the author also calls this class a linearly invariant 
class of analytic functons in the unit circle. 

1. Notation, definitions and the particular properties 
1. Let AO{E) be a class of analytic in a unit circle E functions f(z) 

possessing the property f(z) ^ 0 in E. 
Let us denote by AQ(E) a class of analytic in a unit circle E functions 

f(z) from AQ(E), normalized by the condition /(0) = 1. 
Let A be a set of all linear fractional functions of the type 

EI&Z - l R 
u = u(z) = - •• , C © € (—oo;oo). 

1 + £elWz 
Let us call U> = LU(Z) an omega-transform (in the sequel O.-t.). It can be 
easily seen that the set A of omega-transforms UJ — UJ(Z) is a group, if we 
use the operation of multiplication 0 of two omega-transforms u>\ and u>2 
according to the rule u>i = u>i(u>2). 

We introduce the omega-operator 

/("(»)) 
/ M O ) ) ' 

This operator transforms any function f(z) from the class AO(E) into a 
function also belonging to the class AQ{E). 

" I ' M ] - S - / « « A W -
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Let us describe some properties of the omega-operator introduced above. 
l i f e A0(E) and c = const ± 0, then Clu[cf] = Q"[f], 
if fu h 6 A0(E), then f x f 2 6 A0(E) and W[hh] = 
if / i , / 2 € Ao(E), then / i / / 2 € A0(E) and ^ [ / i / / 2 ] = 
if h, h e Aq(E), and f } ± f2, t hen / Vu; 6 A. 

We may call a set 3(E) of functions f(z) e Aq(E) a linearly invariant 
class if from f(z) e 3(E) it follows that ft" [/(*)] € 3(E) for any u e A. 

Let us denote the number 

<5 = 6(3(E)) = sup / '(0) 

the bound of the class 3(E) and denote class 3(E) of the bound 6 by 3(E; 6). 
We also denote by U(E; S) the set of all linearly invariant classes 3(E) 

the bound of which do not exceed the number 6. The validity of the following 
statements is quite evident. 

The class Aq(E) is a linearly invariant class. 
One function f(z) = 1 forms a linearly invariant class. 

2. LEMMA 1.1. Let / i (z) G A0(E) andujuuj2 e A. If f2(z) = Slwi[h(z)], 
f3(z) = W*[f2(z)}, then h(z) = n*W[fi(z)]. 

P r o o f . Let 
eiQlz + Ci , , ei62z + C2 w l ( z ) = , , -r , "2(z) = 
1 + Cieieiz' w l + (2eie*z' 

Since u>i,uj2 £ A, we have u>z = ®u2 € A. The function u>z = uj$(z) is 
written as follows: 

„ (Z) =
 e i Q ^ + C3 ;e3 = e ^ ( e i 9 l + C l C 2 ) > = eiQlC2 + Ci 

3V ) 1 + C3eie3z 1 + CiC2e^ ' ^ 1 + CiC2eiSl' 
Basing ourselves on the properties of the operator we obtain the following 
sequence of equalities: 

h(z) = n^[f2(z)] = tr»[cr«\fi{z)]\ = 

0"»ff (,, (r\X\ - htoM*))) _ AM*)) _ o"3rf /„U 

The lemma is proved. 

LEMMA 1.2. The equality 

holds. 
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Indeed, for any function F(z) € AQ(E) we have 

i T ' [ / M ] ® i n / M ] = n - { s r ' { f ( z ) \ \ = sr< 

It follows from Lemma 1.2 that the product of two operators fi"1 and 
ClW2, taken from the set of operators where u runs over the whole set 
of transforms from A, is also an operator from . For the operator fiwo. 
where UJQ is a unit transformation of u>o = UJQ(Z) = z, we have i)wo [/] = / 
for any function F(z) 6 AQ(E). If ui(z) € A, then an inverse transformation 
denoted by UJ*(Z) belongs to A and it can be written as 

u (z) = ; t • 

Further, i i" ® f K = i K <g)fl" = and i K <g) i*" = = 
Note, that for any a>i, u>2 6 A the inequalities 

(Qwi (g) i iW 2)(g) n " 3 = (g) n^ = ( g ) ( i r 2 ^ 

hold. If wi = uj2, then, obviously, = fiW2. 
Conversely, if CLUL [f] = SV*[F\, V/ <E A0(E), then u>i = u 2 . It follows 

from the latter equality that 

n U l [/](8)^[/ l = ^[ /](g)^ 2 [ / ] , v/ 6 AO(E). 

Now, according to Lemma 1.2, we obtain 

[/] = ®W2[f) = r r ° [ / ] , v / e A0(E). 

By applying last equalities to the functions fo(z) = 1 + z and f\(z) = 1 — z, 
belonging to the class AQ(E) we obtain two equalities 

<8M [ / o] = / o > ^ ¡fl] = f h 

which lead us to the equalities: 
l+o%(wi(z)) _ -I , _ l + m>(z) v F 

l + w5(wi(0)) l + wo(0)' 
1 - t ^ Q j i f c ) ) 1 - m>(*) v F 

l - w j ( a ; i ( 0 ) ) 1-«JO(0)' " 
Considering these equalities we conclude that ^ ( w i ) = cjo and, therefore, 
u>i = 

The above consideration allow us to formulate the following statement: 

THEOREM 1.1. A set of operators ,u> G A, defined on the class Aq(E), 
forms a group of transformations if the operation (g) of multiplication of two 
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operators fi"1 and fi"2, where a>i,a>2 € A zs performed following the rule 
n"1 <g> = a " 1 ^ 2 ] . 

3. Any o. — t. can be represented as u(z) = a;*(z) <S> w**(z), where 

/ \ z + C i \ i& 
"MZ) = 1 . 7 » = e 

1 + C Z 
Then 

f T = <S>a'** = i T " 

It follows from the definition of omega-operator f [ / ( - z ) ] that it transforms 
the function 

f(z) = l + jrakzkeÂ0(E) 
k=1 

into the function 

Hz,o = i + '£ak(OzkeÂo(E). 
k=1 

Besides, [/(«)] = f(ei&z) € ÂQ(E). It means, that we can write 
/ (e^z jC) = «"[/(*)]• 
L E M M A 1 . 3 . The expansion of the function f{exQz\ ( ) in power series of z 
has the form 

(1-1) /(e i 6z;C) = l + f > ( < ; e ) z f c , 
k=1 

where 

(12) afc(c-G) = Y (1 - \c\2)k~mrcike /(fc"m)(0 
(1.2) flfcic, « ) m ! ( f c _ 1 _ ro)l Kl j C e { k _ m ) ! / ( c ) . 

In particular, it follows from (1.2) that 

(1-3) ai(C;e) = e i e ( l - | C | 2 ) ^ . 

If we add all the functions of the form F(ETQZ-,^X € E, © € (—00,00) to 
the function / (z) 6 we will obtain a class of functions that is called 
a simple class and is denoted by II(E; f ) . 
L E M M A 1 . 4 . A simple class is a linearly invariant class. 

Our statement follows from Lemma 1.1. 
Let us denote a simple class n(£?; / ) , whose bound is S by FL(E\ /; S). It 

can easily be seen that the simple class FL(E\ / ; 6) is also a linearly invariant 
class. 
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LEMMA 1 . 5 . If fr e U(E]f2) then f2 e n ( £ ; / I ) . 

To show the validity of the given Lemma, it suffices to apply Lemma 1.1. 

4. Let us introduce an operator Ai[/] into class Aq(E) by the formula 

For the fixed z G E we deal with a functional defined on class Ao(E). If we 
fix the function f(z) e Aq(E), then Ai[/(z)] will be a function of z which 
is not analytic in E. 

Let us denote 
6f = sup |Ai[/(z)]|. 

zeE 
The following lemma holds true: 

LEMMA 1 .6 . The bound of a linearly invariant class 3(E) may be calculated 
by the formula 

6 = sup 5f. 
f(z)eQ(E) 

REMARK 1 . 1 . If it is clear from the context which function forms a simple 
class, then we frequently write II(E; / ) and Ii(E; 6) instead of n (E) and 
II(£'; 6) without indicating the function itself. Basing ourselves on Lemmas 
1.1, 1.5., and 1.6. we arrive at the following statement. 

THEOREM 1 . 2 . The functional 6f assumes a constant value in the functions 
that belong to one and the same simple class, i.e., Sf = const, V/ € n(£'). 
COROLLARY 1 . 1 . One can find the bound of the simple class Tl(E]f) by the 
formula 

6f = 5(U(E;f)) = snp\A1[f(z)}\. 
zeE 

REMARK 1 . 2 . Obviously, two simple classes either do not have a common 
function, or they are coincide. Each function of a simple class serves as a 
generator of this class. The association of simple classes is a linearly invariant 
class. Conversely, any linearly invariant class Q(E) is a simple class or a 
association of simple classes. Hence, there follows 

LEMMA 1 .7 . The universal class U(E',8) is a linearly invariant class. 

2. Major criteria of referring the functions to a particular class 
1. The following theorem gives the conditions for the function to belong 

to a universal class. 
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T H E O R E M 2.1. In order that the function f(z) belong to U(E;6) it is nec-
essary and sufficient that the inequality 

(2.1) 6 f < & 

be satisfied. 

Proo f . Let the function f(z) € U(E]5). By means of the function f(z) we 
form a simple class n(-E'). According to Lemma 1.4 it is a linearly invariant 
class consisting of all the functions of the form (1.1). In addition, by Lemma 
1.7, U{E\S) is a universal linearly invariant class and, therefore, n(i?) C 
U(E,Ô). Then, for the coefficients (1.3) of the functions (1.1) the estimate 

( 2 . 2 ) | a i ( C , e ) | < 5 , V C € , V © € ( - 0 0 , 0 0 ) 

holds. Hence, the inequality (2.1) follows. 
Now, let f(z) € AQ(E) and let the condition (2.1) be fulfilled. By means 

of the function f(z) we form a simple linearly invariant class n ( £ ) consisting 
of the functions (1.1). According to (2.1), (2.2) holds for the coefficients (1.3) 
of these functions (2.2) holds, i.e., the bound of a simple class n(i?) does not 
exceed 5. Then, however, it is contained in U(E; £), along with the function 

2. We will need in the sequel the functions analytic in E of the form 

/ l - ô z \ b f i ' j 
*t,a,b(z) = [ j Z ï ; ) ' **.«.»(*) = ' 

where |a| < 1, \b\ < 1 and t is a complex number. Moreover, it is assumed 
that $t,a,fc(0) = 1, if a ^ b and $t,a,a(0) = 1. Let us call these functions 
the basic functions of linearly invariant classes. Some of the particular basic 
functions are 

- 1 , 0 ( 2 ) = ( 1 + z ) \ $ t i 0 , i = Q ^ y * t , 0 , 0 ( 2 ) = etz. 

The product and quotient of two basic functions are also as basic functions. 
For the derivative at the basic functions we have the formulas 

Also note that 
t &t,a,a(Z) t a 

*t,a,b(Z) (l-âz)(l-bzY r ' $i,a,a(z) (1 " âzf ' 
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Using the latter equalities in calculation one can see that, for a ^ b, the 
formula 

ttttAfd> M l - fl-N2)* - * + z ~b + z \ 

holds, while, for a = 6, the formula 

(2 .4) = 

is valid. 
Lemma 2.1. For AI[$t>ai6(z)] where a^b, |a| = |6| = 1, the equalities 

A l l * , . , = i ^ L , i n f l A U W W l h o 

hold. 

Proof . Prom the formula (2.3) we get 

| A M f - i i ) - -

j i 2 

\b-at 
where 

urr \ -a + z b - z w ( z ) = 1 — — ; — 7 p -1 — az 1 — bz 
It is not difficult to observe that the function w = W(z) maps the diameter 
© of the unit circle E, with the ends at the points ±s/ab, onto the unit 
circumference |u/| = 1, where both end points are mapped into the point 
w = —1. 

Let us expand the function $t,a,b(z) into a power series 
oo 

*t,o,b(z) = l + Effk,a,b(t)*k-
k=1 

Then, for the fc-th coefficient, the recurrent formula 

(2-5) gk<a,b(t) = 1 (t<7M,6(t) + (fc - l)(a + % f e _ 1>a>6(t) 

-(k - 2)abgk_2,a,b(t),) 

holds, where it is assumed that g-i,a,b(t) = 0 and 50,a,&(0 = 1- In particular, 
5i,o,b(<) = t. Note that $o,a,b(z) = 1 and hence, gk,a,b(°) = °> ^ If 

a = — 1 and 6 = 1 , then we assume, for the sake of brevity, that $ t ,-i , i(z) = 

= A j (2 + 2Re{W(z)}), 
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$t(z) and 5fe,_i,i(i) = 9k(t). In this case, 
00 

*t{z) = \ + YJ9k(t)z\ 

where 

831 

Jt=i 

9k(t) = zi^k-iit) + (k - 2)gk-2(t)). k 
Note that $0(2) = 1, hence, gk(0) = 0,Vfc > 1. It can be easily seen 

that the basic function is the unique solution of the linear homogeneous 
differential equation 

(1 - az)( 1 - bz)Z'{z) - tZ{z) = 0 

of the first order with the initial condition Z(0) = 1. 
The following two lemmas provide the conditions that the basic functions 

belong to the class U(E; 6). 

LEMMA 2 .2 . Let |a| = |6| = 1 and a ^ b. In order that the basic function 
belong to the class U(E; 6) it is necessary and sufficient that the 

inequality 
2\t\ 

(2.6) 

be satisfied. 

P r o o f . Let (2.6) hold. Then 

\b-a\ 
<5 

( I - I * N 
*t,e,b(z) 

Itl —a + z 
\b-a\ 1 — az 

-b + z 
l-bz 

< - -

2\t\ 
\b-a\ 

< S 

and by Theorem 2.1 the function $t,a,b(z) belongs to U(E]6). 
Now, assume (2.6) does not hold. Then in case z = ar, where 0 < r < 1, 

we obtain 

lim 
r—»1 

(1 - r 2 ) _ l i m ( l + r)|t|_ 2\t\ >6. 

( i - N 2 ) ; >6. 

r-*l |br — a\ |6 — a| 
Then there is such a number zo = aro, where 0 < ro < 1, for which we 
obtain 

$t,a,b(Z O) 
Hence, it follows that $t,a,b(z) & U{E\8). 

LEMMA 2.3. In order that the function $t,a,a{z), |a| < 1 belong to the class 
U(E; 8) it is necessary and sufficient that 

(2.7) |i | < ¿(1 - |a | 2 ) . 
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P r o o f . Let the inequality (2.7) holdd for some t. Then, we have 

sup I I - \z\ J — -. t t = sup — To - ; r io - 0 

Iz|<iv ' 1^,6(2)1 |2|<1 |1 — azj2 1 — |a|2 

and, according to Theorem 2.1, the function $t,a,b(z) € Ù{E\ 8). 
Now, let the function $t,a,b(z), |a| < 1 belong to the class U(E\8) for 

some t. By Theorem 2.1. we obtain 

8 > sun ( 1 1*1 0 d. SUp II — \Z\ )— T-T- = SUp — _ |2 = j jo ) 

which leads us to the inequality (2.7) 

LEMMA 2 . 4 . A simple class formed by the basic function $T ) a ,a (z) , where 
a = e i a and t ^ 0, has the bound 8 = oo. A simple class formed by the basic 
function $t,o,o(z) has the bound 8 = |t|. 

As a matter of fact, for the first basic function, by the formula (2.4), we 
have 

( i - M 2 ) | i | sup 
zeE 

$t,aAz) = sup • 
TS |1 — eiaz\2 

For the second basic function we obtain 

= oo. 

sup 
zeE 

Ai 0,0(2) = s u p ( l - \z\2)\t\ = |i|. 
L zeE 

With the aid of Lemma 2.4 it is easy to prove the following 

THEOREM 2.2. The bound 8 of any linearly invariant class satisfies a double 
inequality 0 < 8 < 00. Any number from the interval [0,oo] can be the bound 
of a particular linearly invariant class. 

REMARK 2.1. A linearly invariant class has the bound equal to zero if and 
only if it consists of the only one function f(z) = 1. Really, let some function 
f(z) belong to the linearly invariant class 9?(E; 0). Then 8f < 0, i.e. 

I/Ml 
Since f(z) ^ 0 for any z £ E and / (0) = 1, it follows from the latter equality 
that f(z) = 1. 

3. We will present more conditions in order that the function belong to 
the class U(E',8). 

THEOREM 2 . 3 . Let f(z) e A0(E). If 

(2 .8 ) sup 1(1 - z 2 ) 
M<i' m 

<S, 
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then f(z) € U(E]S). Not every function of the class U(E;S) satisfies the 
condition (2.8). 

Proof . Basing ourselves on (2.8) we get the inequalities 

^ s u p l i l - M 2 ) ^ < s u p (1 < sup 
W<i 

< 5 

and, by Theorem 2.1, we get that f(z) € U(E; 6). To prove the second part 
of the theorem, let us take the basic function $t,a,b(z),t = 5i,a = i,b = 
—i, which belongs to the class U(E\6). This function does not satisfy the 
inequality (2.8). Indeed, for z = i/2, we obtain a number, on the lefthand 
side of (2.8), that is larger than S. 

T h e o r e m 2.4 . If fm(z) e U(E-,S),m = 1 , . . . , k and Ai + ... + Ak = 1, 
where Ai,..., Afc are positive numbers, then the function 

/ ( * ) = n / * » ( * ) m=l 
belongs to U(E\ S). 

Proof . Evidently, f(z) € AQ(E). Next, we have 

M H M*Y 

Consequently, 

By Theorem 2.1 it follows that f(z) e U(E; 6). 

4. Let us introduce the operator 

A?[/(*)] = ( l - * 2 ) ^ , f(z)eAo(E) 

which differs slightly from the operator Ai[/]. Note that 

(1 - M2)A?[/(.z)] = (1 - ^ [ / ( z ) ] , Vz € E, 
A1[f(z)] = A°l[f(x)}, Vx 6 (—1,1) . 

For the basic functions we have 

A°r<b M l - _ J l z _ f 5 L _ * f-a + z -b + z^ 
M * * * « ] - (1 — az)(l — bz) = ( T ^ ) ' T^Tz)' 
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For the fixed z £ E we deal with a functional derived on the class Aq(E). 
If we fix the function f(z) £ Aq(E), then A°[/(z)] will be an analytic in E 
function ,,, . 

Let us denote . . 
<jJ = sup A?[/(z)] . 

zeE1 1 

The following theorem holds. 
THEOREM 2 . 5 . If 6°f < 6, then f(z) e U(E\8). 

Indeed, it can be easily seen that Sf < 6j < 5, and by Theorem 2.1. the 
function f(z) belongs to U(E;6). 
THEOREM 2 . 6 . Let h(z) be a function analytic in E satisfying the inequality 
Î COI < <5,Vz 6 E. Then, the function 

z 

/ (z) = e x p { | i ^ d z } ) /(0) = 1, 
o 

belongs to the class U(E\5). 
Indeed, since 

5°f = sup\h{z)\ < 6, 
zeE 

by Theorem 2.5 we conclude that f(z) € U(E;6). 

3. A set of values of some functionals 
Let us find the set of values of the following two functionals. 

THEOREM 3 . 1 . Let zq € E and be fixed. Then, all the values of the functional 

fi*o) 
/(*o) ' 

defined on the class U(E; 5), are in the disk |w| <6, completely filling it. 
Proof . Since f(z) e U(E; S) then, by Theorem 2.1 the inequality 

\f'(z0) (3-1) ( i - ko|2) | : < 5 
f(zo) 

holds. By virtue of an arbitrary choice of the function f(z) in the class 
U(E;6) we obtain that all the values of the functional (3.1) are situated in 
the disk |iu| < S. Let now c be an arbitrary complex number subject to the 
condition |c| < 5. Let us take the function 

*t,a,b(z), t = c, a = — e i 6°, b = e i e°, ©0 = arg ZQ. 
By Lemma 2.2, this function belongs to the class U(E;6). 
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Calculations show that 

V J $c,a,b(Z) 
This means that the functional (3.1) assumes any value from the circle 
M < 

COROLLARY 3.1. Let ZQ G E be fixed. Then all the values of the functional 

7 M - M e O W 

defined on the class U(E; J) are situated in the disk, 

completely filling it. 

4. Some estimates 
1. Let us estimate |ln/(z)|,\f(z)\,\f'{z)\, \argf(z)\, where f(z) G 

U(E\8). We need the following lemma: 

LEMMA 4 . 1 . Let u(x) be a complex-valued function of a real variable x, 
continuous in the interval [a, 6]. In order to fulfil the equality 

b b 
(4.1) j Ju(x)dx| = J \u(x)\dx, 

a a 

it is necessary and sufficient that all the values of the function u(x) be situ-
ated on a segment of the ray l(f3) going out of the origin of coordinates and 
inclined to the real axis at a certain angle /3, i.e., that u(x) = \u{x)\e1^ for 
any x G [a, 6]. 

Proof . Let the equality (4.1) be fulfilled for the function u(x) indicated in 
the Lemma. Assume that 

b b 
J u(x)dx = | J u(x)da ¿P. 

Then the equality (4.1) can be rewritten in the form 
6 b 

(4.2) J R e { e - ^ u { x ) } d x = J \ei0u{x)\dx. 
a a 

In addition, 
(4.3) Re{e~ i l 3 u(x) }dx < \eifiu{x)\, Vz G [a,b]. 
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The functions Re{e 1/3u(x)} and \el^u{x)\ are continuous in the interval 
[a, 6]. Therefore, from (4.2) and (4.3) it readily follows that 

Re{e~ i l3u{x)} = \eil3u(x)\, Vx 6 [a, b]. 

In such a case, it can be easily seen that all the values of the function u(x) 
are situated on the ray /(/?). 

Let all the values of the function u(x) be situated on a certain radius 
l(/3). Then, it is clear that 

b b b 

J u(x)dx = U (x)\e^dx\ = J \u{x)\dx. 

THEOREM 4.1. For any function f ( z ) 6 Aq(E), the estimate 

(4.4) |ln/(z)|<ln$ i/(|z|) = ^ / l n i ± M , Vz € E 

holds. The sign of equality in ( 4 - 4 ) f o r z = zq = roe170, where 0 < ro < 1 
and 0 < 70 < 27r, is realized only by the basic functions of the form, $t,a,b(z), 
a = — e110, b = e170, where t is any complex number that belongs to the class 
A0(E). 

Proof . Let f ( z ) e A0(E). For z = re i 7 ,0 < r < 1, 0 < 7 < 2tt, we have the 
equality 

0-, f'(z) ,vy 

Therefore, 
r t 

|ln/(z)| = | | ( | In/(re i 7)) J = I J ^ A ^(re^dr 
0 0 

T 

< J jl^lAmr^)]\dr. 
0 

Basing ourselves on the definition of the function 6f we get 

(4-5) / Y^T^iifire^dr < J ^ d r = ¿i/ln^I 
0 0 

and the inequality (4.4) is established. 
Let us return to the problem of the sign of equality in (4.4). Let there 

be the sign of equality for the function <p(z) € Aq(E) in (4.4) as z = zq = 
roe*70 ^ 0, i.e., 

(4.6) 
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Then, we obtain two equalities 
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(4.7) 

(4.8) 

ro ro 

| / Y ^ A i K r e ^ l d r l = J - ^ ^ ( r e ^ d r , 

, T° 
M 

dr 
T 0 

- / r 
rdr. Ai^(re'T)] 

0 0 
By considering (4.5) and (4.8) we get the equality 

Ai[</?(rei70)]| = Vr€[0,r 0 ] . 

Taking into account the above equality and applying Lemma 4.1 to (4.7) we 
have 

(4.9) |A i[<p{rjn)]\ = &9eifi, Vre[0, r 0 ] , 

where is a real number. Let us write (4.9) as an equality 

(4.10) 
<p(z) 1 - e~2i/y°z2 

valid for any z = re'10,0 < r < ro- By virtue of the analytical character 
of the functions on the left-hand and right-hand sides of the equality (4.10) 
we obtain that this equality holds for all z G E. In solving (4.10) relative to 
<p(z) we get 

or 
(4.11) <p(z) = where a = -e*», b = e i70, t = Sve^. 

Thus, if the function <p(z) G Aq(E) realizes the sign of equality in (4.4), 
then, it is of the form (4.11). We will show that actually any function of the 
form (4.11) satisfies the condition (4.6). First, we will find 6V of the function 
(p(z) = $t,a,b(z)- Using Lemma 4.1, we can easily see that 

Sv = sup |Ai i$t,a,&(.z)l = |i|. 
zeE1 L 

Substituting now the function of the form (4.11) into (4.6) and taking into 
consideration (4.9), we obtain 

¿¿«e^e'T0 
|ln$t,a,&(20)| = In (i+I2.Y 

U -ro) 
1 l + r0 1,.,, 1 + M 

= 2' T ^ r o = 2 ' ' 
Hence, it follows that any function of the form (4.11) satisfies the condition 
(4.6). Thus the functions <&t,a,b(z) indicated in the theorem, where a = 
—e170, b = e*70, and t - is any complex number, are the only functions which 
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realize the sign of equality in (4.4). These functions belong to the class 
AQ(E). Note also that, if the sign of equality in (4.4) is realized at some 
point ZQ / 0, then it is realized at all the points of the radius of the circle 
E passing through the point ZQ. 

COROLLARY 4.1. For any function f(z) belonging to the simple class Ti(E; 6) 
the inequality | l n / ( z ) | < ln$,$(|z|), Vz G E, holds. 
COROLLARY 4.2. For any function f(z) e 5$(E\ 5), the inequality | ln / (z) | < 
l n^ f l zQ , Vz € E, holds. 
COROLLARY 4.3. For any function f{z) € U(E-,S), the inequality | ln / (z ) | < 
ln$j( |z |) , Vz € E, holds. As z = ZQ = roe170, where 0 < ro < 1 and 
0 < 70 < 2tt, the sign of equality is realized only by the basic functions 
$t,a,b(z), where a = - e i 7 0 , 6 = e^°,t = Seie,Q 6 [0,27r], that belong to the 
class U(E\8). 

THEOREM 4.2. For the module of any function f(z) 6 AQ(E), the inequali-
ties 
(4.12) *-sf(\z\) < \f(z)\ < ^ ( k l ) , Vz € E, 
hold, i.e., 

The signs of equality in (4-12), for z = zo = roe170, where 0 < ro < 1 and 
0 < 70 < 2ir, are realized only by the basic functions 

$ t,a,6(z), t = ± | t |e - i 7° , a = —ei70, 6 = ei7°, 

that belong to the class AQ{E). 
P r o o f . Obviously, | l n | / ( z ) | | < | ln / (z) | , Vz 6 E. Hence, according to 
Theorem 4.1, we have the inequality | In | /(z) | | < Ini>5/(|z|), Vz € E or 

- l n $ 5 / ( | z | ) < In | / (z) | < l n ^ d z l ) , Vz e E. 
However, it can be easily seen that —In$^(1^1) = ln$_f / ( |z | ) . It means, 
that the latter double inequality is equivalent to double inequality (4.12) 
indicated in given Theorem. 

Let us now go back to the problem of the sign of equality in (4.12). Let, 
on the right-hand side of (4.12), for z = ZQ = roe*70, with 0 < ro < 1 and 
0 < 70 < 2tt, there hold the sign of equality for some function <p(z) € AQ(E), 
i.e. 
(4.13) ln|^(zo)| = l n ^ ( | z o | ) . 

Taking into consideration (4.4) and (4.13), we obtain 
(4.14) ln |^(zo) |=ln$ i v ( |zo | ) . 
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Since the function ^?(z)belong to AQ(E) and satisfies (4.14), according 
to Theorem 4.1 it is of the form 

(4.15) <p(z) = $t,a,&(z), where a = —e'70, b = e'70. 

Consequently, In $t,a,b(zo)| = | In #t>a>fc(zo) Hence, 

arg fct,«,6(zd) = arg ( y ^ ) 

and therefore fe'70 = ±|t|, while te'70 = ±|t|e~i7°. It means, that in (4.15) 
we take only those functions for which ie'70 = ±|i |e - , 7°. These are the 
functions considered in Theorem 4.2. 

Based on (4.13) we can conclude that only the functions $t,a,b(z), where 
t = |t |e - '70, a = —e®70, b = e'70, realize the sign of equality on the right-hand 
side of (4.12), when as z = ZQ and belong to the class AQ(E). 

In a similar way, we get convinced that only the functions $t>a)(,(z), with 
t = |i|e~'70, a = —e*70, b = e®70, realize the sign of equality on the left-hand 
side of (4.12) when z = ZQ and belong to class AQ(E). 

Note also that, if the sign of equality is realized at the point ZQ / 0, then 
it is realized at all the points of the radius of the unit circle E crossing this 
point. 

COROLLARY 4 .4 . For the modulus of any function f(z) belonging to the 
simple class Il(E]6), the estimates $ _ i ( | z | ) < \f(z)\ < $ i ( | z | ) , Vz 6 E 
hold. 

COROLLARY 4 .5 . For any function f(z) € 3(E;6), the inequality 
(4.16) *_5(\z\)<\f(z)\<<i>s(\z\), VzeE 
holds. 

COROLLARY 4 .6 . For any function f(z) e U(E-,S), the inequality 
(4.17) *_i(|z|) < \ f ( z ) \ < *s(\z\), VzeE 
holds. The sign of equality for z — ZQ = roe'70, where 0 < ro < 1 and 
0 < 70 < 27r is realized only by the basic functions 

*t,a,b(z)> a = -e i 7D , i> = ei7°, t = ±5e"i7°, 
that belong to the class U{E\8). 

THEOREM 4 .3 . For the modulus of the argument of any function f(z) € 
AQ(E) the following inequality holds: 

(4.18) | a r g / ( z ) | < S 5 / ( | z | ) = W 6 E. 
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The sign of equality for z = ZQ = roe170, where 0 < ro < 1 and 0 < 70 < 2ir 
is realized only by the basic functions 

(4.19) $t,a,b(z), where t = ±z|£|e-i7°, a = —eiyo, b = e*70, 

belonging to class AQ(E). 

Proo f . According to Theorem 4.1, we have a double inequality 

( 4 . 2 0 ) - \ S f In l ± ] i ! < a r g / W < ¡6, In I ± J j [ , V , <E E, 

equivalent to the inequality (4.18) considered in the given Theorem. 
Let us return to the problem of the sign of equality in (4.18). Let, on 

the right-hand side of (4.20), for z = ZQ = roe170, with 0 < ro < 1 and 
0 < 70 < 27r, there hold the sign of equality for some function ^(z) € AQ(E), 
i.e., 

(4.21) „ g ^ ^ I l M . 

Considering (4.4) and (4.21) we obtain In |^(zo)| = 0 and therefore, 

(4.22) i n | ^ ) | = I ^ i n l ± M . 

By Theorem 4.1, the function \I>(z) of the class AQ(E) satisfying (4.22) is of 
the shape ^(z) = $t,a,b(z), where a = —e170, b = eiyo. It has been established 
above that 

ln|tf(z0) | = ln^ t,a,6(zo) = In ( j ^ ) ^ ° = 0-

Hence, it follows that ie n o = ±| i | i or t = ±i\t\e~11Q. Let us now consider the 
functions (4.19). It is easy to verify that these functions belong to the class 
AQ(E) and realize the sign of equality in (4.18), when z = zo- Thus, it has 
been established that only the functions indicated in Theorem 4.3 realize 
the sign of equality in (4.18) and belong to the class AQ{E). Moreover, 
the functions $t,a,b(z), with t = i\t\e~no,a = — e*70,b = e n o , are the only 
functions that realize the sign of equality on the right-hand of (4.20), when 
z = zo, while the functions $t,a,b(z), with t = -¿ | i |e - 1 7 0 , a = —eno, b = et70, 
are the only functions realizing the sign of equality on the left-hand of (4.20), 
when z = zo-

Note also that, if the sign of equality is realized at the point zo ^ 0 
then it is realized at all the points of the radius of the unit circle E passing 
through this point. 
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COROLLARY 4.7. For the modulus of the argument of any function f(z) 
belonging to the simple class 11(2?; 6), the estimate 

= Vz e E 

holds. 

COROLLARY 4.8. For the modulus of the argument of any function f(z) € 
9F(E;6) the estimates 

| a r g / ( z ) | < $ 5 ( H ) = ^ l n [ ± M , Vz 6 E 

are valid. 

COROLLARY 4.9. For the modulus of the argument of any function f(z) 6 
U(E\8) the estimates 

| a r g / ( z ) | < ^ ( | z | ) = ^ l n i ± ^ J , Vz e E 

hold. When z = ZQ = roe170, with 0 < ro < 1 and 0 < 70 < 2n, the sign of 
equality is realized only by the basic functions $t,a,b(z), with t = :H$ei7°, a = 
—eiyo,b = e*70, that belong to the class U(E\8). 

THEOREM 4.4. For the modulus of the derivative of any function f(z) € 
AO(E) the inequalities 

(4.23) 0 < \f'(z)\ < V z e E , 

are valid. 
The sign of equality on the left-hand side of (4.23) is realized by the 

function f(z) = 1 belonging to the class AQ(E). On the right-hand side of 
(4.23), for z = zQ = r 0e i 7°, with 0 < r 0 < 1 and 0 < 70 < 2ir, the sign of 
equality is realized only by the basic functions 

(4.24) $t,a,b(z)> where * = \t\e~iyo, a = - e i 7 ° , b = e i7°, 

that belong to the class AQ(E). 

P r o o f . Since f(z) 6 A0(E), by Theorem 4.1 

(4.25) |/'(z)| < Y ^ j j l / W l , Vz e E, 

and by Theorem 4.2 

(4,6) N H ^ f . 
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Hence, (4.23) follows. Obviously, the function f(z = 1) belongs to the class 
Ao(E) and realizes the sign of equality on the left-hand side of (4.23), with 
any value of z € E. Let now the sign of equality hold on the right-hand side 
of (4.23), when z — z0 = roe'70, with 0 < r 0 < 1 and 0 < 70 < 27r, i.e. 

<-> l / ' M ^ G ^ f -
From (4.25) and (4.27) we get that 

In view of the inequality (4.26), we obtain 

Now by Theorem 4.2 we arrive at the basic functions of (4.24). These 
functions belong to the class Ao(E) and only they realize the sign of equality 
in (4.23) when z = zo. 

Note, also, that if the sign of equality in (4.23) is realized at the point 
zo 0, then it is realized at all the points of the radius of the unit circle E 
as above this point. 
COROLLARY 4 . 1 0 . For the modulus of the derivative of any function f(z) 
belonging to the simple class 11(1?; 5) the estimates 

0 < \f'(z)\ < r=^$5(|*|), Mz € E 

are valid. 
COROLLARY 4 . 1 1 . For the modulus of the derivative of any function f(z) € 

5) the estimates 

0 < | / ' (z) | < r = L p * , ( | a ; | ) , v* € E 

are valid 
COROLLARY 4 . 1 2 . For the modulus of the derivative of any function f(z) 6 
U(E; <5) the estimates 

0 < | / ' (z) | < 1 ^ 2 ^ ( 1 * 1 ) , Vz e E% 

are valid. The sign of equality for z = zq — roe*7 0 , where 0 < ro < 1 and 
0 < 70 < 2tt is realized only by the basic functions 

t = « = b = e^, 

that belong to class U(E]6). 
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THEOREM 4 . 5 . For any function F(z) E AQ(E) the inequalities 

f(*i) 
(4.28) 

(4.29) 

hold. 

Proof. Let 

then 

In 
~ 2 

larg 
/ ( * I ) ! " 2 m 

1 + 
Z2-Z1 

1 + 1 - 2 1 *2 

1 - 2 2 - 2 1 1 -
1 - 2 1 2 2 

h 1 + 
2 2 - 2 1 

1 + 1 - 2 1 2 2 

1 -
2 2 - 2 1 

1 - 1 - 2 1 2 2 

VzhZ2€E, 

Vzi,z2eE, 

23 = 22 
1 -Z\Z-L 

/(*2) 

Applying the inequality (4.4) to the function /(z; zi) belonging to the class 
AQ(E) as z = Z3, we obtain 

Prom this inequalities (4.28), (4.29) follows In |/(z3)| < sirj(si) + S2T)(S2). 

2. Let s be a positive number. We define a quantity TJ(S) as follows: 

t/(S) = sup max -ln|/(z)|, 
f(z)eU(E;6) l*l=tanh« s l l 

where 

tanhs = 
e" + e~a 

THEOREM 4.6. The following propositions hold: 
1) For any si > 0 and S2 > 0 the inequality 

(4.30) (sx + s2)i?(«i + s2) < SITJ(SI) + S2T](S2) 
are valid. 

2) For any s > 0 the inequality 
(4.31) r;(s) < S 
holds. 

3) If$s(z) € §(£; S) thenj](s) = <J,Vs > 0. 
4) If the function f(z) € §(¿2; 6) and is such that T)(s\) = Ô, for which 

si > 0, then rj(s) = S for any s > 0. 



844 E. G. Kir'ytzkii 

P roof . Since f ( z ) € we have f ( z - , ( ) € St(E;S) for any f € E. 

Then, it can be easily seen that 

ln | / (z3) | = ln | / (z i ;z2) | + ln| /(zi) | , V^, 23,23 € E, 

, Z1+Z2 where 23 = - — - — . 
1 + Z2Z\ 

Let z\ = rie1 0 , z<i = 7-2e*e,23 = r3e , e , where r i = tanhsi, r<i — tanhs2, 
r3 = tanhs3, 0 < © < 2n. 

Then ln|/(23) < sirj(si) + s2f](s2). The right-hand side of the latter 
inequality does not depend on the choice of the function in the class 6) 
or on © G [0, 2tt). Consequently, 

sup max In \ f ( z ) \ = (si + s2)v(si + s2) < sir?(si) + s2?7(s2) 
f(z)eQ(E;S) l^l=tanh(si+s2) 

and the inequality (4.30) is proved. Let us prove the validity of the inequality 
(4.31). Indeed, if the function f ( z ) belong Q(E;S), then f ( z ) 6 U(E\5). 
Therefore, for such a function f(z), Theorem 4.2 holds, by which we obtain 
the inequality 

. n | / ( „ | < f . n i ± M , y , e B . 

Assuming \z\ = tanh s in the above inequality and dividing its both sides by 
s, we get In |/(2)| = Ss. Hence, (4.31) follows. Now, suppose that $5(2) e 
^(E; S). In this case, calculations show that 

max - In |$<s(2)| = 5, Vs > 0. 
|z|=tanhs S I wl 

Relying on (4.31), we obtain t](s) = 6 for any s > 0. Now, let f(z) e 
5) and rj(so) = S for some so > 0- It means that there exists zq — roe170 

corresponding to the number so, at which sqT](so) = ln|/(zo)|. Moreover, 

2sq = In . Consequently, 

M-(££})' 
According to Theorem 4.2 we have f ( z ) = &t,a,b(z) where a = —e®70,6 = 

eiyo, t = ¿e_i7°. Besides, the function f ( z ) = $t,a,b(z) € U(E]6) and 

$t,a,b{Z) = V s > ° -max - In 
lz|=tanhs S 

Basing ourselves on (4.31) we obtain r}(s) = S for any s > 0. Theorem 2.6 
thereby is completely proved. 
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