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Introduction

The class of univalent functions was simultaneously narrowed up to some
of its subclasses and vice versa, extended to wider classes (see (3], [4]).

One of such extensions was proposed by a German mathematician Ch.
Pommerenke [1] and the author of the paper (see [3]).

Ch. Pommerenke gives a definition by a linearly univalent class of an-
alytic functions in a unit circle F which, in our notation, is formulated as
follows.

Let A;(E) be a class of analytic in E functions f(z), normalized by
conditions f(0) = 0, f’(0) = 1, for which f'(z) # 0,Vz € E and let A be a
set of all linear-fractional functions

w=w(z) = 11 ceos’ (€EE, ©¢€(—00,0),
bijectively mapping the unit circle £ onto itself. We introduce the operator
o = JEEN 1O
e (1 - [¢2) f(¢)

The operator transforms any function from class A;(E) to a function of
the same class. We denote by $(E) a class of analytic functions f(z) from
A1(E) bearing the following property: if the function f(z) € $(E), then
the function Q¢[f(2)] € $1(FE), too, for any w € A. Pommerenke called the
class $4(E) a hnearly invariant class. Class A;(E) as well as the class of
univalent and normed in E function may serve as examples of the linearly
invariant class in the sense of Pommerenke. Pommerenke devoted a great
part of his work [1] to a detailed study of the properties of functions from
different linearly invariant classes $;(E).
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Note, again, that the idea to maximally exploit analytic automorphism
of the unit circle E in combination with the Pommerenke operator for in-
vestigating the properties of univalent normalized in E functions belongs
to a French mathematician Marty [2] who succeeded in obtaining quite a
number of important results (see also [3], [4]).

From the facts mentioned above we see that in order to construct a
linearly invariant class of analytic functions in a unit circle one needs to
introduce a special operator defined on this class and connect it with analytic
automorphism of the unit circle aod normalization of the functions included
in this class.

In the paper the author considers the class AO(E) of analytic functions
f(2) in the unit circle E which is normalized by the condition f(0) =1 and
posseses the property f(z) # 0 in E. The operator

wip — 1 w(2))
V= Teoy
is introduced in the class Ag(E) that transforms any function of the class
Ao(E) to a function belonging to this class. By S(E) we denote a class
of functions f(z) from Ao(E), that possesses the property: if a function
f(z) € (E), then the function Q¥[f(z)] € (F) for any w € A. Following
Pommerenke’s examples the author also calls this class a linearly invariant
class of analytic functons in the unit circle.

1. Notation, definitions and the particular properties

1. Let Ap(F) be a class of analytic in a unit circle E functions f(z)
possessing the property f(z) # 0 in E.

Let us denote by Ag(E) a class of analytic in a unit circle E functions
f(z) from Ag(E), normalized by the condition f(0) = 1.

Let A be a set of all linear fractional functions of the type

s

w=w(z)= —%,

1+ (ei®z
Let us call w = w(z) an omega-transform (in the sequel 0.-t.). It can be
easily seen that the set A of omega-transforms w = w(z) is a group, if we
use the operation of multiplication @ of two omega-transforms w; and wp
according to the rule w; @ we = wy(we).

We introduce the omega-operator

flw(z)) i
QUUf(2)| = =——=%, weA, [f(z)e€ A(E).
@] = 5w (2) € Ao(E)
This operator transforms any function f(z) from the class Ag(E) into a
function also belonging to the class Ag(E).

(€ E, © € (—o00;00).
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Let us describe some properties of the omega-operator introduced above.
If f € Ao(F) and ¢ = const # 0, then Q¥[cf] = Q¥[f],
if fi,fo € 40(E), then fifs € Ao(E) and Qw[flfg] = Qw[fl]ﬂw[fgl,
if f1, f2 € Ao(E), then f1/fa € Ao(E) and Q¥[f1/ fo] = Q°[f1]/Q°[f2],
if f1, f2 € Ao(E), and f1 # fa, then Q¥[f1] # Q°[fa], Yw € A.
We may call a set I(E) of functions f(z) € Ao(E) a linearly invariant
class if from f(z) € S(F) it follows that Q“[f(z)] € S(E) for any w € A.
Let us denote the number
§=6(3(E))= sup
f(2)eS(E)
the bound of the class §(E) and denote class S(E) of the bound 6 by $(E; §).
We also denote by U(E;8) the set of all linearly invariant classes $(E)
the bound of which do not exceed the number . The validity of the following
statements is quite evident.
The class Ag(E) is a linearly invariant class.
One function f(z) =1 forms a linearly invariant class.

2. LEMMA 1.1. Let fi(z) € Ao(E) and wy,wy € A. If fo(z) = Q1 [f1(2)],
f3(2) = Q2[f2(2)}, then f3(2) = @12 [fy(2)].

Proof. Let

£

ez + G ez + (o
_—_e-, w2(2) = —?—?—
1+¢e*1z 1+ (qe*®22

Since wy,w2 € A, we have w3 = w; @wa € A. The function w3 = w3(z2) is
written as follows:

€92+ G e, €921 +10) G = €18+ ¢
1+ ooz I+016e® " 7 140G

Basing ourselves on the properties of the operator we obtain the following
sequence of equalities:

f3(2) = Q[ fo(2)] = A2 [ [f1(2)]] =
wal £ (wr (2))] = L1 @2(2))) _ fi(ws(2)) _ qunre o,

wi(z) =

w3(z) =

The lemma is proved.
LEMMA 1.2. The equality

o @0 = 2@«
holds.
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Indeed, for any function f(z) € Ag(E) we have
B f(2)] @Q[f(2)] = Q4 (@ [f(2)]) = 21|

flwe (Z))]_
7@(0)
0 [ (wa(a))] = TR — 0 @12

It follows from Lemma 1.2 that the product of two operators Q2“! and
0“2, taken from the set of operators ¥, where w runs over the whole set
of transforms from A, is also an operator from Q“. For the operator (2“°,
where wg is a unit transformation of wp = wp(2) = z, we have Q°[f] = f
for any function f(z) € Ag(E). If w(z) € A, then an inverse transformation
denoted by w*(z) belongs to A and it can be written as

z— e

—i© —i0
W)= =2

Further, O @ " = Q" Q¥ = Q0 and Q" QO = @« = Quo,
Note, that for any w;,wy € A the inequalities
(le ® sz) ®QQS = Qw2 ®w1 ®Qw3 = Q“1 ®(Qw2 ® Qw3)
hold. If w; = ws, then, obviously, Q1 = Q«2,
Conversely, if Q1 [ fl = Q2[f], Vf € Ap(E), then wy = wy. It follows

from the latter equality that

Q11 Q0% [f] = Q271 QQE[f], VS € Ao(E).
Now, according to Lemma 1.2, we obtain

0¥ @ [f] = 0 B« (] = Q0[f], Vf € Ao(E).
By applying last equalities to the functions fo(z) =1+ 2z and fi(z) = 1~z,
belonging to the class Ag(E) we obtain two equalities

@i Q(fo] = fo, QE®(f] = £,

which lead us to the equalities:

1+wi(wi(2)) y = 1+ wo(2) 2
Trase©) T Trm@
Lowjln(a) g, 1ol
1 - wi(w1(0) ' T—wo(0) v

Considering these equalities we conclude that wj(w;) = wp and, therefore,
w1 = wWa.
The above consideration allow us to formulate the following statement:

THEOREM 1.1. A set of operators ¥, w € A, defined on the class /io(E),
forms a group of transformations if the operation @ of multiplication of two
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operators Q! and 22, where wy,wy € A is performed following the rule
Q1 @ Qw2 = QU1[«2].

3. Any o. — t. can be represented as w(2) = wa(2) @ was(z), where

w*( )__ C 10

3 wu(z) =é€ Z.
z

Then
Qw — Qw. ®w.. - Q“"‘ ®Qw..

It follows from the definition of omega-operator “*{f(z)] that it transforms
the function

oo
f(2) =1+ axe* € Ao(E)
k=1
into the function
oo
f#0) =1+ 3 ar(Q)2* € Ao(B).
k=1
Besides, Q“+[f(2)] = f(€®z) € Ag(E). It means, that we can write
f(e92;¢) = Q“[f(2)].
LEMMA 1.3. The ezpansion of the function f(e*©z;() in power series of z
has the form

(L.1) F(€°20) =1+ ) ar((;0)7",
k=1
where
, (k- 1)( nm k~mom e fE™(()
(12) ax(¢;0) = Z = m)'(l_m?) ¢ ekeac__m)_!T(C_).

In particular, it follows from (1.2) that
(13) u(68) = (1= i) T8,

If we add all the functions of the form f (eiez' C) ¢ € E,© € (—o0,00) to
the function f(z) € A¢(F), we will obtain a class of functions that is called
a simple class and is denoted by II(E; f).

LEMMA 1.4. A simple class is a linearly invariant class.

Our statement follows from Lemma 1.1.

Let us denote a simple class II(E; f), whose bound is é by II(E; f;6). It
can easily be seen that the simple class l'I(E f;6) is also a linearly invariant
class.



828 E. G. Kir’ytzkii

LEMMA 1.5. If fi € II(E; fo) then fa € II(E; f1).
To show the validity of the given Lemma, it suffices to apply Lemma 1.1.
4. Let us introduce an operator A;[f] into class Ag(E) by the formula

- (1_\ @)
Ml = (1- 1) 75+
For the fixed z € E we deal with a functional defined on class Ao(E). If we
fix the function f(z) € Ap(E), then A;[f(2)] will be a function of z which
is not analytic in E.
Let us denote

&5 = sup|Ay[f(2)]l.
zeE
The following lemma holds true:

LEMMA 1.6. The bound of a linearly invariant class é‘(E) may be calculated
by the formula
6= sup Iy
f(2)eS(E)

REMARK 1.1. If it is clear from the context which function forms a simple
class, then we frequently write II(E; f) and II(E;6) instead of II(E) and

II(E; ) without indicating the function itself. Basing ourselves on Lemmas
1.1, 1.5., and 1.6. we arrive at the following statement.

THEOREM 1.2. The functional 65 assumes a constant value in the functions
that belong to one and the same simple class, i.e., 0y = const, Vf € ﬁ(E)
COROLLARY 1.1. One can find the bound of the simple class II(E; f) by the
formula

8¢ = 6(II(E; f)) = sup [As [ ()]

REMARK 1.2. Obviously, two simple classes either do not have a common
function, or they are coincide. Each function of a simple class serves as a
generator of this class. The association of simple classes is a linearly invariant
class. Conversely, any linearly invariant class S(E) is a simple class or a
association of simple classes. Hence, there follows

LEMMA 1.7. The universal class U(E;$) is a linearly invariant class.

2. Major criteria of referring the functions to a particular class

1. The following theorem gives the conditions for the function to belong
to a universal class.
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THEOREM 2.1. In order that the function f(z) belong to U(E;6) it is nec-
essary and sufficient that the inequality

(2.1) é < )
be satisfied.

Proof. Let the function f(2) € U(E;6). By means of the function f(z) we
form a simple class II(E'). According to Lemma 1.4 it is a linearly invariant
class consisting of all the functions of the form (1.1). In addition, by Lemma
1.7, U(E;6) is a universal linearly invariant class and, therefore, I(E) c
U(E, 6). Then, for the coefficients (1.3) of the functions (1.1) the estimate

(2.2) la1((,©)| <6, V(€, VO € (—o0,00)

holds. Hence, the inequality (2.1) follows.

Now, let f(z) € Ao(E) and let the condition (2.1) be fulfilled. By means
of the function f(z) we form a simple linearly invariant class I[I(E) consisting
of the functions (1.1). According to (2.1), (2.2) holds for the coefficients (1.3)
of these functions (2.2) holds, i.e., the bound of a simple class II(E) does not
exceed 4. Then, however, it is contamed in U(E; ), along with the function

f(2).

2. We will need in the sequel the functions analytic in F of the form
1-az

t
(I)t,a,b(z) = (1 — Ez) b—a’ (I)t.a,a(z) = eT-LE”

where |a| < 1,]b] < 1 and t is a complex number. Moreover, it is assumed
that ®,,4(0) = 1, if a # b and $444(0) = 1. Let us call these functions
the basic functions of linearly invariant classes. Some of the particular basic
functions are

$:-10(2) = (1+2)", P01 =

1
_—, @ 2) = e'*.
(1 — z)t’ troyo( )
The product and quotient of two basic functions are also as basic functions.
For the derivative at the basic functions we have the formulas

1-az\ 53 t
o, = t( = ) - b,
tas(?) 1-5z) (-a)1-bz) s

’ —
t,a,a(z) - (1 — ?1'2)2
Also note that

q>;,a.,b(‘z) — t a ?é b ‘I)é,a,a(z) _ t
Piop(z) (1-a2)(1—02) "o ®a6(z)  (1-a2)?
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Using the latter equalities in calculation one can see that, for a # b, the
formula

(-l  t (-a+z -b+z
(23) ArfPrap(2)] = (1-az)(1-bz) (5—6)(1—-‘6:: - 1—52)’

holds, while, for a = b, the formula

(a—fzP)e
24) Mraa()] = ooy
is valid.
LEMMA 2.1. For A1[®;,4(2)] where a # b, |a| = |b] = 1, the equalities
28 . -
sup [M1[Bu0s(2)]| = 5o inE[B1lBeas(@]] =
hold.
Proof. From the formula (2.3) we get
B |2 (—a+z —5+7) <—a+ z b+ z) _
|A1[(I’ta b(z)]l —a2\1-az 1-bz 1—az 1-bz/

- i 12(2+2Re{W(z)})

where

—a+Zb-2
1-az1-bz
It is not difficult to observe that the function w = W(z) maps the diameter
© of the unit circle E, with the ends at the points ++v/ab, onto the unit
circumference |w| = 1, where both end points are mapped into the point
w=-1.

Let us expand the function ®;,4(2) into a power series

W(z) =

)
Qt,a,b(z) =1+ Z gk,a,b(t)zk-

k=1
Then, for the k-th coefficient, the recurrent formula
1 -
(2.5) 9kas(®) = £ (t9kap(®) + (k= (@ +B)gk-1,05()

—(k — 2)abge-2,4(t), )

holds, where it is assumed that g_j 4 5(t) = 0 and go¢5(t) = 1. In particular,
91,06(t) = t. Note that ®g,5(z) = 1 and hence, gk op(0) =0, Vk > 1.1If
a = —1 and b = 1, then we assume, for the sake of brevity, that ®; _11(z) =
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®(2) and gk,—1,1(t) = gi(t). In this case,

Oi(2z) =1+ i gk(t)zk,
k=1

where 1
gk(t) = ¢ (tgk—l(t) + (k- 2)gk-2(t))-
Note that $¢(z) = 1, hence, gx(0) = 0,Vk > 1. It can be easily seen
that the basic function is the unique solution of the linear homogeneous
differential equation

(1 -az)(1 - 2)2'(z) — tZ(z) = 0

of the first order with the initial condition Z(0) = 1.

The following two lemmas provide the conditions that the basic functions
belong to the class U(F;§).

LEMMA 2.2. Let |a| = |b| = 1 and a # b. In order that the basic function
®, 05(2) belong to the class U(E; ) it is necessary and sufficient that the
inequality

(2.6)

be satisfied.
Proof. Let (2.6) hold. Then
®: . o(2) t| |-a+z -b+z 2)t|
1-— 2 t,a,b = — _ — < < 5
'( 12 )Qt,a,b(z) pb—glll—-az 1-bz|" |b—7a| ~

and by Theorem 2.1 the function ®; , () belongs to U(E;4).
Now, assume (2.6) does not hold. Then in case z = ar, where 0 < r < 1,
we obtain

aolar)| _ . (L4 _ 2
1—r2)tab o fim s = 55

(1-r )d)t,a,b(ar) r—1 |br — @ b —a

Then there is such a number zy = arg, where 0 < ro < 1, for which we
obtain

lim

r—1

(1~ b))

Qt,a,b(ZO)
Hence, it follows that &, ,,(z) & U(E;$).

IjEMMA 2.3. In order that the function ®;44(2),la] < 1 belong to the class
U(FE;0) it is necessary and sufficient that

(2.7) tl < (1 - |aP).
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Proof. Let the inequality (2.7) holdd for some ¢. Then, we have

(1= o) Bessl] _ A=) W

9t0s(D)] i< 1-a22 T 1ol ~

sup
Jz|<1

and, according to Theorem 2.1, the function &, ,,(2) € U(E; ).
Now, let the function ®;,4(2),|a| < 1 belong to the class U(E;4) for
some t. By Theorem 2.1. we obtain

& (2 (.12
53 sup (1 [¢f?) b _ o AP B
lz|<1 Brop(2) a1 11—az 1— ||

which leads us to the inequality (2.7)

LEMMA 2.4. A simple class formed by the basic function ®;0,0(2), where
a=¢e"* andt#0, has the bound § = co. A simple class formed by the basic
function ®;00(2) has the bound § = |t|.

As a matter of fact, for the first basic function, by the formula (2.4), we

have ) |
AP = =
flelgl 1[ t’a‘a(z)] flelE 1 —eoz2

For the second basic function we obtain
sup | A1 [W;00(2)]| = sup (1 - [22)[t] = |t
zeE z€E

With the aid of Lemma 2.4 it is easy to prove the following

THEOREM 2.2. The bound é of any linearly invariant class satisfies a double
inequality 0 < § < co. Any number from the interval [0, 00} can be the bound
of a particular linearly invariant class.

REMARK 2.1. A linearly invariant class has the bound equal to zero if and
only if it consists of the only one function f(z) = 1. Really, let some function
f(2) belong to the linearly invariant class (E;0). Then §; <0, i.e.

(1 - |z|2)% =0, VzekFE.

Since f(z) # 0 for any z € E and f(0) = 1, it follows from the latter equality
that f(z)=1..

3. We will present more conditions in order that the function belong to
the class U(E;6).

THEOREM 2.3. Let f(z) € Ao(E). If

(2.8) sup |(1- 2
lzl<1

f(Z)l
f() -
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then f(z) € U(E;5). Not every function of the class U(E;6) satisfies the
condition (2.8).

Proof. Basing ourselves on (2.8) we get the inequalities

)L )
(=) 7| s on - 5 <2

and, by Theorem 2.1, we get that f(2) € U(E; d). To prove the second part
of the theorem, let us take the basic function ®;44(2),t = di,a = 4,b =

—4, which belongs to the class U(E;4). This function does not satisfy the
inequality (2.8). Indeed, for 2 = i/2, we obtain a number, on the lefthand
side of (2.8), that is larger than 4.

THEOREM 2.4. If fm(2) € U(E;8),m = 1,....;k and Ay + ... + I = 1,
where Ay, ..., \x are positive numbers, then the function

fa) = 1L far(2)

0y = sup
|zl<1

belongs to U(E; ).
Proof. Evidently, f(z) € Ao(E). Next, we have

(=) fm(2)
f(z mz_: " fm(2)

Consequently,

! k ! (2 k
(l_lzl )If( )I Z (1_|z|2)|fm( z—: —

IF (2~ = |fm(2)] —
By Theorem 2.1 it follows that f(z) € U(E;4).

4. Let us introduce the operator

afr) = a- L8, 1) do)

which differs slightly from the operator A;[f]. Note that
(1 z)A%5 ()} = (1 - 2)Ailf(2)], Vz€E,
Aq[f(2)] = A}[f(2)], ¥z € (-1,1).

For the basic functions we have

(1-2t ¢ —-@+2z -b+z
A3 [@eas(2)] = (1- az)(1—5z)“(z-a)(1a—az_ 1-5z)’
_ 2
AO[Qtaa(Z)] ((:Taz%
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For the fixed z € E we deal with a functional derived on the class Ag(E).
If we fix the function f(z) € Ao(E), then A%[f(z)] will be an analytic in E

function

Wz = (1- AL

f(z)’
0 __ 0

o5 = fgg'AI[f(Z)]l'
The following theorem holds.
THEOREM 2.5. If 6% < 6, then f(2) € U(E;4).

Indeed, it can be easily seen that d; < 6? < 4, and by Theorem 2.1. the

function f(z) belongs to U(E;6).

THEOREM 2.6. Let h(z) be a function analytic in E satisfying the inequality
|h(z)| < 8,Vz € E. Then, the function

Let us denote

s = e { [ 20}, 01,
0

belongs to the class U(E, d).

Indeed, since
6? = sgglh(z)l <4,

by Theorem 2.5 we conclude that f(z) € U(E;4).

3. A set of values of some functionals
Let us find the set of values of the following two functionals.

THEOREM 3.1. Let zp € E and be ﬁ:t;ed Then, all the values of the functional
f! (Zo)

defined on the class U(E; d), are in the dzsk lw| < 8, completely filling it.

Proof. Since f(z) € U(E;6) then, by Theorem 2.1 the inequality

GRY (1-1aal) 2| <5

holds. By virtue of an arbitrary choice of the function f(z) in the class
U(E;$) we obtain that all the values of the functional (3.1) are situated in
the disk |w| < 4. Let now ¢ be an arbitrary complex number subject to the
condition |c| < 4. Let us take the function

®ap(z), t=c, a= —e®,  p=¢® Oy =argz.

By Lemma 2.2, this function belongs to the class U(E;é).
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Calculations show that
o (2
(1- o) 32205 =
This means that the functional (3.1) assumes any value from the circle
[w] < 6.
COROLLARY 3.1. Let zg € E be fized. Then all the values of the functional

f'(20) o,
(z0)” f(z) € U(E; 6)

defined on the class U(E;§) are situated in the disk,

completely filling it.

4. Some estimates

_ 1. Let us estimate |In f(2)|,[f(2)},1f'(2)|,|arg f(2)|, where f(z) €
U(F;6). We need the following lemma:

LEMMA 4.1. Let u(z) be a complez-valued function of a real variable z,
continuous in the interval [a,b]. In order to fulfil the equality

(4.1) l/bu(x)d:z = /blu(z)ldx,

it is necessary and sufficient that all the values of the function u(z) be situ-
ated on a segment of the ray [(3) going out of the origin of coordinates and
inclined to the real azis at a certain angle B, i.e., that u(z) = |u(z)|e*? for
any z € [a,b).

Proof. Let the equality (4.1) be fulfilled for the function u(z) indicated in
the Lemma. Assume that

b b
/u(z)d:z: = ‘/u(m)dz

Then the equality (4.1) can be rewritten in the form

eiﬁ .

b b
(4.2) /Re {e7Pu(z)}dz = /|ewu(m)|dz.

In addition,
(4.3) Re {e—iﬂu(a:)}d:r < |ePu(z)|, Vz € [a,b).
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The functions Re {e~fu(z)} and |e!Pu(z)| are continuous in the interval
[a, b]. Therefore, from (4.2) and (4.3) it readily follows that
Re {e~Pu(x)} = [ePu(z)|, Vz € [a,b).

In such a case, it can be easily seen that all the values of the function u(z)
are situated on the ray {(3).
Let all the values of the function u(z) be situated on a certain radius

I(B). Then, it is clear that
b b b
l/u(x)dm = I/]u(m)leiﬂdm =/|u(m)|dm.
THEOREM 4.1. For any function f(z) € Ao(E), the estimate
1 1 + |z
@9 G <ty (e =3

holds. The sign of equality in (4.4) for z = 2o = rpe"™, where 0 < 1o < 1
and 0 < o < 2m, is realized only by the basic functions of the form ®, 4 p(2),

Vze E

a= -0, b = e, where t is any complez number that belongs to the class
Ao(E).
Proof. Let f(z) € Ao(E). For z = r¢'?,0 < r < 1, 0 < v < 2, we have the
equality 5 70

5 lnf(z) = m v
Therefore,

|Inf(2)| =

ln f(re™) d'r

' / s Alf(redr

) o/ el

Basing ourselves on the definition of the function 7 we get

r 1 : f of 1 147
—_— vy R A—
(4.5) 0/1_r2|A1[f(re )]'drgo/l_TZd Jfln

_

and the inequality (4.4) is established.

Let us return to the problem of the sign of equality in (4.4). Let there
be the sign of equality for the function ¢(z) € Ao(E) in (4.4) as z = zp =
roei™ #£ 0, i.e.,

1 1+ |z
(4.6) | In(z0)| = 50,1n o]

1-— |20|.
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Then, we obtain two equalities

1 )
——|Aulp(re™)]|dr,
0

ro
by

/ 1—7r2 dr.

0

By considermg (4.5) and (4.8) we get the equality

|Aslp(re™)]

Taking into account the above equality and applying Lemma 4.1 to (4.7) we
have

4.7) I 7 T _1r2A1[ga(rei70)]dr =

(4.8) I / | Asptremijer] =

=4y, Vrel0,mg]

(49) |Asle(re))| = dpe®,  Vr € [0,ro],
where ( is a real number. Let us write (4.9) as an equality
(4.10) () _ _ dpe”

o(z)  1—e 2032
valid for any z = re",0 < r < ro. By virtue of the analytical character
of the functions on the left-hand and right-hand sides of the equality (4.10)
we obtain that this equality holds for all z € E. In solving (4.10) relative to
v(z) we get
1+ e 02 78pePeiro
w(z) = (T:;)

or

(4.11)  p(2) = B10p(2), wherea= —e, b=¢", t =g,

Thus, if the function ¢(z) € Ag(E) realizes the sign of equality in (4.4),
then, it is of the form (4.11). We will show that actually any function of the
form (4.11) satisfies the condition (4.6). First, we will find J,, of the function
¢(2) = B4 4 (2). Using Lemma 4.1, we can easily see that

bp = sup 'Al [‘Pz,a,b(Z)] = |¢].

Substituting now the function of the form (4.11) into (4.6) and taking into
consideration (4.9), we obtain

1+r°>_¢w‘ﬁm70 1 1+ro 1., 14|z
In(l & = 3l8oln 72 = Zlelin 0

Hence, it follows that any function of the form (4.11) satisfies the condition
(4.6). Thus the functions ®;,4(z) indicated in the theorem, where a =
—e' b = €°, and t - is any complex number, are the only functions which

| In®; 6 4(20)| =
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realize the sign of equality in (4.4). These functions belong to the class
Ao(E). Note also that, if the sign of equality in (4.4) is realized at some
point zp # 0, then it is realized at all the points of the radius of the circle
E passing through the point zg.

COROLLARY 4.1. For any function f(z) belonging to the simple class II(E; 6)
the inequality |In f(2)| < In®4(|2]), V2 € E, holds.

COROLLARY 4.2. For any function f(z) € S(E; 8), the inequality |In f(z)| <
In®;(|z|), Vz € E, holds.

COROLLARY 4.3. For any function f(z) € U(E;$), the inequality |In f(z)| <
In®s(|z]), Vz € E, holds. As z = zp = roe", where 0 < 19 < 1 and
0 < 70 < 2w, the sign of equality is realized only by the basic functions
®;05(2), where a = —€™0, b = et = §¢'©,0 € [0,27], that belong to the
class U(E; 6).

THEOREM 4.2. For the module of any function f(z) € Ag(E), the inequali-
ties

(4.12) D5, (l2) < 1f() < B54(l2]), Vz € E,

hold, i.e.,
1|2\ 2% L+ |2\ #%
< < .
(1+|z|) -'f(z)'-(l—m)

The signs of equality in (4.12), for z = zg = roe"°, where 0 < ro < 1 and
0 < v < 27, are realized only by the basic functions

Qt’a,b(Z), t = :tltle_i“’o, a = _ei'YO’ b — ei'yo’
that belong to the class Ag(E).

Proof. Obviously, |In|f(2)|| £ |Inf(z)|, Vz € E. Hence, according to
Theorem 4.1, we have the inequality |In|f(2)|| < In®s,(|2]), Vz€ E or

~In®s,(|2]) < In|f(2)] <In®s,(|2]), Vze€E.

However, it can be easily seen that —In®;,(|2]) = In®_5,(|2|). It means,
that the latter double inequality is equivalent to double inequality (4.12)
indicated in given Theorem.

Let us now go back to the problem of the sign of equality in (4.12). Let,
on the right-hand side of (4.12), for z = 2o = 7€', with 0 < 79 < 1 and
0 < 40 < 2, there hold the sign of equality for some function ¢(z) € Ao(E),
ie.

(4.13) : In fp(20)| = In 5, (|20])-

Taking into consideration (4.4) and (4.13), we obtain

(4.14) Injp(z0)| = In ®5,(|20l)-



Linearly invariant classes of functions 839

Since the function ¢(z)belong to Ag(E) and satisfies (4.14), according
to Theorem 4.1 it is of the form

(4.15) @(z) = Dy ap(2), where a = —€", b=e".

Consequently, In Iq)"“’b(z‘))l = Iln <I>t,a,b(zo)|. Hence,

14,870
1 ~§te
+ 1‘0) ~0

arg ®; . 4(20) = arg ( rp—

and therefore te"® = %|t|, while te??® = %|tle~*. It means, that in (4.15)
we take only those functions for which te'™® = +|t|e=. These are the
functions considered in Theorem 4.2.

Based on (4.13) we can conclude that only the functions ®; 4 (2), where
t=|tle™*1,a = —e"™, b = ", realize the sign of equality on the right-hand
side of (4.12), when as 2z = 2 and belong to the class Ao(E).

In a similar way, we get convinced that only the functions ®; 4 5(2), with
t = |tle™"°,a = —e* ™, b = €9, realize the sign of equality on the left-hand
side of (4.12) when z = 2o and belong to class Ag(E).

Note also that, if the sign of equality is realized at the point zy # 0, then
it is realized at all the points of the radius of the unit circle E' crossing this
point.

COROLLARY 4.4. For the modulus of any function f(z) belonging to the
simple class II(E; ), the estimates ®_;(|z]) < |f(2)| < ®5(|2]), Vz € E
hold.

COROLLARY 4.5. For any function f(z) € S(E;§), the inequality

(4.16) ®_s5(lzl) < f(2)| < Bs(l2l), VzeE

holds.

COROLLARY 4.6. For any function f(z) € U(E;§), the inequality
(4.17) _s(lzl) < 1f(2)| < Bs(l2]), VzeE

holds. The sign of equality for z = zy = roe, where 0 < 19 < 1 and
0 < Y0 < 27 is realized only by the basic functions

Qt’a’b(z)’ a= _eryo) b = e""o, t = :i:ée_"m’
that belong to the class U (E;9).

THEOREM 4.3. For the modulus of the argument of any function f(z) €
Ao(E) the following inequality holds:
1+ 2|

T[]’ Vz e E.

@18 | f(2)] < @, () = Fn
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The sign of equality for z = zp = e, where 0 <19 < 1 and 0 < 7o < 27
is realized only by the basic functions

(4.19) ®:05(2), where t = Liltle™™°, a = —e"?, b= €M,
belonging to class Ag(E).

Proof. According to Theorem 4.1, we have a double inequality

(4.20) ——Jfl : : <arg f(z) < 6 In 1+:z:
equivalent to the inequality (4.18) considered in the given Theorem.

Let us return to the problem of the sign of equality in (4.18). Let, on
the right-hand side of (4.20), for z = 20 = 7€', with 0 < ro < 1 and
0 < 7 < 2, there hold the sign of equality for some function ¥(z) € Ao(E),
ie.,

_ 1.1+ IZ()]
(4.21) arg \I/(Zo) = 2(5\1;1 — lzol .

Vz e E,

Considering (4.4) and (4.21) we obtain In I\I!(zo)l = 0 and therefore,
1+ |20|
1— |z

By Theorem 4.1, the function ¥(z) of the class Ao(E) satisfying (4.22) is of
the shape ¥(z) = ®; 4 4(2), where a = —e"?,b = €"°. It has been established
above that

(4.22) In |¥(z0)| = —6¢,1

1+mg -te"Yo
=0.
1- 7"0>

In l\Il(zo)l =In V¥ 45(20) = In (

Hence, it follows that te*¥ = %|t|i or t = +i|t|e~**. Let us now consider the
functions (4.19). It is easy to verify that these functions belong to the class
Ao(E) and realize the sign of equality in (4.18), when z = 2. Thus, it has
been established that only the functions indicated in Theorem 4.3 realize
the sign of equality in (4.18) and belong to the class Ag(E). Moreover,

the functions ®;,4(2), with t = ijtje™,a = —e',b = €0, are the only
functions that realize the sign of equality on the right-hand of (4.20), when
z = 29, while the functions @, ,;(2), with t = —i|t|e™*°, a0 = —€*°,b = &',

are the only functions realizing the sign of equality on the left-hand of (4.20),
when z = z.

Note also that, if the sign of equality is realized at the point 2y # 0
then it is realized at all the points of the radius of the unit circle F passing
through this point.
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COROLLARY 4.7. For the modulus of the argument of any function f(z)
belonging to the simple class II(E; ), the estimate

e £(2)| < @s(12D) = S 11

=]z’ VzeE

holds.

COROLLARY 4.8. For the modulus of the argument of any function f(z) €
S(E;8) the estimates

g )] < @s1el) = S

Vze E

are valid.
COROLLARY 4.9. For the modulus of the argument of any function f(z) €
U(E;$) the estimates
0, 1+ |2
< = —
Jarg £(2)| < ®s(1)) = 310 71,

hold. When z = 29 = r9e"™, with 0 < 79 < 1 and 0 < o < 27, the sign of
equality is realized only by the basic functions ®; 4 4(2), with t = +ide*°,a =
—e!10 b = ' that belong to the class U(E;4).

THEOREM 4.4. For the modulus of the derivative of any function f(z) €
Ao(E) the inequalities

(4.23) 0<|f'(2)] <

are valid.

The sign of equality on the left-hand side of (4.23) is realized by the
function f(z) = 1 belonging to the class Ag(E). On the right-hand side of
(4.23), for z = zp = roe’™, with 0 < 79 < 1 and 0 < 7o < 2m, the sign of
equality is realized only by the basic functions

(4.24) ®:05(2), wheret = |tje™™, a = —€°, b=,
that belong to the class Ag(E).
Proof. Since f(z) € Ag(E), by Theorem 4.1

(4.25) )] < 2 @l Ve E,
and by Theorem 4.2

Vze E

6

| I2¢6I(|ZI)’ Vze E,

(4.26) 11(2)| < ( |z:)%6f’ Vz € E.
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Hence, (4.23) follows. Obviously, the function f(z = 1) belongs to the class
Ag(E) and realizes the sign of equality on the left-hand side of (4.23), with
any value of z € E. Let now the sign of equality hold on the right-hand side
of (4.23), when z = zp = rpe'™®, with 0 < 79 < 1 and 0 < vy < 27, i.e.

8§ (1+|z0]\ 3%
4.27 (20)| = —L ( )
( ) lf (ZO)I 1— IZOI2 1— |ZO|
From (4.25) and (4.27) we get that

If(zo)l IZO' lf( )|(1+|zo|)

In view of the inequality (4.26), we obtain

'f(zo)l (1+|20D

Now by Theorem 4.2 we arrive at the basic functions of (4.24). These
functions belong to the class Ag(E) and only they realize the sign of equality
in (4.23) when 2z = 2.

Note, also, that if the sign of equality in (4.23) is realized at the point
29 # 0, then it is realized at all the points of the radius of the unit circle F
as above this point.

COROLLARY 4.10. For the modulus of the derivative of any function f(z)
belonging to the simple class II(E; 6) the estimates

0<|f' () € 7—p®sllz)), Vz€E

IP’

are valid.

COROLLARY 4.11. For the modulus of the derivative of any function f(z) €
S(F;0) the estimates

0<f (&) € 57—z ®s(l2l), Vze€E

||2

are valid

COROLLARY 4.12. For the modulus of the derivative of any function f () €
U(E; ) the estimates

0<|f (N < 7 %s(l2), VzeE,

I |2
are valid. The sign of equality for 2 = zg = roe’™®, where 0 < 1o < 1 and
0 < 7o < 27 is realized only by the basic functions

Qt,a,’b(Z), t= :ti6ei70’ a= _.ei'YO, b= ei‘yo

that belong to class U(E;$).
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THEOREM 4.5. For any function f(z) € Ag(E) the inequalities
] _ 5, 14|52
|f(zz)| 21—
f (22) ln 1+ Iz—'fz_'xzzz

(21)—2 1- |22

(4.28) In , Vz,29€E,

(4.29) I arg ———= , Vz,z€E,

hold.

Proof. Let
Z29 — 21

3= puny
1-3%12’

Applying the inequality (4.4) to the function f(z;21) belonging to the class
Ao(E) as z = 23, we obtain

llnf 23,21)|

then

fl 1+ |23|
1|z

From this inequalities (4.28), (4.29) follows In | f (z3)| < sin(s1) + sgﬁ(sg).

2. Let s be a positive number. We define a quantity n(s) as follows:

n(s) = sup max ln (2)
f(z)eU(E;3) |zI=tanhs 3 I |
where
s -8
ta-nhs = € € .
e +e~s

THEOREM 4.6. The following propositions hold:
1) For any s; > 0 and s; > 0 the inequality

(4.30) (814 s2)n(s1 + s82) < s1n(s1) + s2m(s2)
are valid.
2) For any s > 0 the inequality
(4.31) n(s) <6
holds.

3) If @5(z) € S(E; 8) then n(s) = 6,Vs > 0.
4) If the function f(z) € S(E;d) and is such that n(s1) = 9, for which
81 > 0, then n(s) =4 for any s > 0.
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Proof. Since f(z) € S(E;d), we have f(z;¢) € $(E;6) for any ¢ € E.
Then, it can be easily seen that

In |f(23)| =In 'f(ZI;ZQ)l +1n 'f(zl)l, V2z1,20,23 € E,

21+ z
where 23 = 1Tz
147z z2z1
Let 21 = 71€™©, 29 = 10€©, 23 = r3¢*®, where r; = tanh sy, ro = tanh ss,

r3 = tanhsz, 0 < © < 27.
Then lnl f (23)| < s1n(s1) + s2n(sg). The right-hand side of the latter

inequality does not depend on the choice of the function in the class é‘(E; d)
or on © € [0, 27). Consequently,

sup max In|f(2)] = (s1+ s2)n(s1 + s2) < s1n(s1) + san(s2)
f(z)ES‘(E 5) Izl—tanh (81+82)
and the inequality (4.30) is proved. Let us prove the validity of the inequality
(4.31). Indeed, if the function f(z) belong $(E;é), then f(2) € U(E;4).
Therefore, for such a function f(z), Theorem 4.2 holds, by which we obtain
the inequality
6. 14|z
< =
In|f(z)| < 31n rt
Assuming |z| = tanh s in the above inequality and dividing its both sides by

s, we get In|f(z)| = ds. Hence, (4.31) follows. Now, suppose that ®;(2) €
3(E; 6). In this case, calculations show that

Vze F.

max —ln|<I>5(z)|—6 Vs > 0.

|z|=tanhs 8

Relying on (4.31), we obtain 7(s) = § for any s > 0. Now, let f(z) €
S(E 6) and 7(so) = & for some s > 0. It means that there exists zg = roe*?

corresponding to the number sg, at which sen(so) = In | f (zo)l. Moreover,
250 =1In H%. Consequently,

00 = (k=

According to Theorem 4.2 we have f(z) = ®,0(2) where a = —ei0 b =
€1, t = §e~*1. Besides, the function f(z) = &, 44(2) € U(E;5) and

max —lnl@tab(z)’ =6, Vs>0.

|z|=tanhs 8

Basing ourselves on (4.31) we obtain n(s) = § for any s > 0. Theorem 2.6
thereby is completely proved.
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