

Muhammad Anwar Chaudhry, A. B. Thaheem

## ON $(\alpha, \beta)$ -DERIVATIONS OF SEMIPRIME RINGS, II

**Abstract.** Let  $\alpha, \beta$  be centralizing automorphisms of a semiprime ring  $R$ . Then we show that: (i) If  $R$  is 2-torsion free and 3-torsion free and  $d$  is an  $(\alpha, \beta)$ -derivation of  $R$  such that the mapping  $x \rightarrow [d(x), x]$  is centralizing on  $R$ , then  $d$  is commuting and  $d(u)[x, y] = 0$  for all  $x, y, u \in R$ ; in particular,  $d$  is central. (ii) Let  $R$  be 2-torsion free and  $d, g$  be  $(\alpha, \beta)$ -derivations of  $R$  such that  $d$  commutes with both  $\alpha$  and  $\beta$  and the mapping  $x \rightarrow d^2(x) + g(x)$  is centralizing on  $R$ , then  $d$  and  $g$  are both commuting and  $d(u)[x, y] = g(u)[x, y] = 0$  for all  $x, y, u \in R$ ; in particular  $d$  and  $g$  are central. (iii) If  $R$  admits an  $(\alpha, \beta)$ -derivation  $d$  which is strong commutativity-preserving on  $R$ , then  $R$  is commutative. (iv) An additive mapping  $d$  on  $R$  is an  $(\alpha, \beta)$ -reverse derivation if and only if it is a central  $(\alpha, \beta)$ -derivation. We also show that if  $\alpha, \beta$  are automorphisms and  $d$  an  $(\alpha, \beta)$ -reverse derivation on  $R$  which is strong commutativity-preserving, then  $R$  is commutative.

### 1. Introduction

Throughout,  $R$  denotes a ring with center  $Z(R)$ . We write  $[x, y]$  for  $xy - yx$ . Then  $[xy, z] = x[y, z] + [x, z]y$  and  $[x, yz] = y[x, z] + [x, y]z$  hold in  $R$ .  $R$  is *prime* if  $aRb = (0)$  implies either  $a = 0$  or  $b = 0$ ; it is *semiprime* if  $aRa = (0)$  implies  $a = 0$ . A prime ring is obviously semiprime. An additive mapping  $d$  from  $R$  into itself is called a *derivation* (reverse derivation) if  $d(xy) = xd(y) + d(x)y (d(xy) = d(y)x + yd(x))$  for all  $x, y \in R$ . A mapping  $f$  from  $R$  into itself is *commuting* if  $[f(x), x] = 0$ ; and *centralizing* if  $[f(x), x] \in Z(R)$  for all  $x \in R$ . If  $f$  is commuting then it is trivially centralizing but the converse is not true, in general. However, if  $f$  is a centralizing automorphism or a centralizing derivation of a semiprime ring, then it is commuting [1, Lemmas 2 and 4]. We call a mapping  $f : R \rightarrow R$  *central* if  $f(x) \in Z(R)$  for all  $x \in R$ . Every central mapping is obviously commuting but not conversely,

---

2000 *Mathematics Subject Classification*: Primary 16A12, 16A70, 16A72; Secondary 46L10.

*Key words and phrases*: Automorphism, commuting map, centralizing map, derivation,  $\alpha$ -derivation,  $(\alpha, \beta)$ -derivation, semiprime ring, reverse derivation,  $(\alpha, \beta)$ -reverse derivation.

in general. Recall that if  $f$  is an additive commuting mapping from  $R$  into itself, then a linearization of  $[f(x), x] = 0$  yields  $[f(x), y] = [x, f(y)]$  for all  $x, y \in R$ . A mapping  $f : R \rightarrow R$  is called strong commutativity preserving (SCP) on a set  $S \subseteq R$  if  $[f(x), f(y)] = [x, y]$  for all  $x, y \in S$ . For more information on SCP, we refer to [2, 6] and references therein.

Derivations are generalized as  $\alpha$ -derivations and  $(\alpha, \beta)$ -derivations, and have been extensively studied in pure algebra. They have played an important role in the solution of some functional equations (see, e.g., Brešar [4] and references therein). Recently,  $\alpha$ -derivations have been used in [7] in connection with the noncommutative Singer-Wermer conjecture for derivations on Banach algebras. Let  $\alpha, \beta$  be automorphisms of  $R$ . An additive mapping  $d$  of  $R$  into itself is called an  $\alpha$ -derivation ( $\alpha$ -reverse derivation) if  $d(xy) = \alpha(x)d(y) + d(x)y(d(xy) = d(y)\alpha(x) + yd(x))$  for all  $x, y \in R$ . It is called an  $(\alpha, \beta)$ -derivation ( $(\alpha, \beta)$ -reverse derivation) if  $d(xy) = \alpha(x)d(y) + d(x)\beta(y)(d(xy) = d(y)\alpha(x) + \beta(y)d(x))$  for all  $x, y \in R$ . Of course a 1-derivation (1-reverse derivation) or a  $(1, 1)$ -derivation ( $(1, 1)$ -reverse derivation) is a derivation (reverse derivations), where 1 is the identity mapping of  $R$ . Simple calculations show that  $\alpha - 1$  is an  $\alpha$ -derivation and  $\alpha - \beta$  is an  $(\alpha, \beta)$ -derivation. For more information on  $\alpha$ -derivations and  $(\alpha, \beta)$ -derivations, we refer to [4, 5, 7–11, 13, 14]. For information on reverse derivations, we refer to [3].

This research is inspired by the work of Vukman [15, 16]. Vukman [16] has proved the following results:

**THEOREM A.** *Let  $R$  be a 2-torsion free and 3-torsion free semiprime ring and  $d : R \rightarrow R$  a derivation. Suppose that the mapping  $x \rightarrow [d(x), x]$  is centralizing on  $R$ . In this case  $d$  is commuting on  $R$ .*

**THEOREM B.** *Let  $R$  be a 2-torsion free semiprime ring and  $d : R \rightarrow R, g : R \rightarrow R$  be derivations. Suppose that the mapping  $x \rightarrow d^2(x) + g(x)$  is centralizing on  $R$ . In this case  $D$  and  $G$  are both commuting on  $R$ .*

The purpose of this paper is to establish analogues of Theorems A and B, as well as to prove some other results, for  $(\alpha, \beta)$ -derivations of semiprime rings. We prove the following:

(i) Let  $\alpha, \beta$  be centralizing automorphisms and  $d$  an  $(\alpha, \beta)$ -derivation of a 2-torsion free and 3-torsion free semiprime ring  $R$  such that the mapping  $x \rightarrow [d(x), x]$  is centralizing on  $R$ . Then  $d$  is commuting and  $d(u)[x, y] = 0$  for all  $x, y, u \in R$ ; in particular  $d$  is central.

(ii) Let  $\alpha, \beta$  be centralizing automorphisms and  $d, g$  be  $(\alpha, \beta)$ -derivations of a 2-torsion free semiprime ring  $R$  such that the mapping  $x \rightarrow d^2(x) + g(x)$  is centralizing on  $R$ . If  $d$  commutes with both  $\alpha$  and  $\beta$ , then  $d, g$  are

commuting and  $d(u)[x, y] = 0 = g(u)[x, y]$  for all  $x, y, u \in R$ ; in particular  $d$  and  $g$  are central.

(iii) Let  $\alpha, \beta$  be centralizing automorphisms and  $d$  an  $(\alpha, \beta)$ -derivation of a semiprime ring  $R$ , respectively. If  $d$  is strong commutativity-preserving on  $R$ , then  $R$  is commutative.

(iv) An additive mapping  $d$  on a semiprime ring  $R$  is an  $(\alpha, \beta)$ -reverse derivation if and only if it is a central  $(\alpha, \beta)$ -derivation.

We also show that if  $\alpha, \beta$  are automorphisms of a semiprime ring  $R$  and  $R$  admits an  $(\alpha, \beta)$ -reverse derivation  $d$  which is also strong commutativity-preserving, then  $R$  is commutative.

We shall need the following results of Chaudhry and Thaheem in the sequel.

**THEOREM C** [10, Theorem 2.3]. *Let  $\alpha, \beta$  be centralizing automorphisms and  $d$  an  $(\alpha, \beta)$ -derivation of a 2-torsion free semiprime ring  $R$ , respectively, such that  $[[d(x), x], x] = 0$  for all  $x \in R$ , then  $d$  is commuting and  $d(u)[x, y] = 0$  for all  $x, y, u \in R$ ; in particular  $d$  is central.*

**THEOREM D** [9, Proposition 2.3]. *Let  $\beta$  be a centralizing automorphism and  $d$  a commuting  $(\alpha, \beta)$ -derivation of a semiprime ring  $R$ . Then  $d(u)[x, y] = 0$  for all  $x, y, u \in R$ ; in particular  $d$  maps  $R$  into its center.*

## 2. The results

We now prove our main results.

**THEOREM 2.1.** *Let  $\alpha, \beta$  be centralizing automorphisms and  $d$  an  $(\alpha, \beta)$ -derivation of a 2-torsion free and 3-torsion free semiprime ring  $R$ , such that the mapping  $x \rightarrow [d(x), x]$  is centralizing on  $R$ . Then  $d$  is commuting and  $d(u)[x, y] = 0$  for all  $x, y, u \in R$ ; in particular  $d$  is central.*

**Proof.** According to the hypothesis we have

$$(1) \quad [[d(x), x], x] \in Z(R) \text{ for all } x \in R.$$

Linearizing (1) (and using (1) again), we get

$$(2) \quad [[d(x), x], y] + [[d(x), y], x] + [[d(x), y], y] + [[d(y), x], x] \\ + [[d(y), x], y] + [[d(y), y], x] \in Z(R) \text{ for all } x, y \in R.$$

Replacing  $x$  by  $-x$  in (2), we get

$$(3) \quad [[d(x), x], y] + [[d(x), y], x] - [[d(x), y], y] + [[d(y), x], x] \\ - [[d(y), x], y] - [[d(y), y], x] \in Z(R) \text{ for all } x, y \in R.$$

Adding (2) and (3) and using the hypothesis that  $R$  is 2-torsion free, we get

$$(4) \quad [[d(x), x], y] + [[d(x), y], x] + [[d(y), x], x] \in Z(R) \text{ for all } x, y \in R.$$

Replacing  $y$  by  $x^2$  in (4), we get  $[[d(x), x], x^2] + [[d(x), x^2], x] + [[d(x^2), x], x] = x[[d(x), x], x] + [[d(x), x], x]x + [x[d(x), x] + [d(x), x]x, x] + [[\alpha(x)d(x) + d(x)\beta(x), x], x] \in Z(R)$ , for all  $x \in R$ . That is,

$$(5) \quad x[[d(x), x], x] + [[d(x), x], x]x + x[[d(x), x], x] + [[d(x), x], x]x + [(\alpha(x)[d(x), x] + [\alpha(x), x]d(x) + [d(x), x]\beta(x) + d(x)[\beta(x), x]), x] \in Z(R) \text{ for all } x \in R.$$

Since  $\alpha$  and  $\beta$  are centralizing, therefore commuting by [1, Lemma 2]. Thus  $\alpha - 1$  and  $\beta - 1$  are commuting  $\alpha$ -derivation and  $\beta$ -derivation, respectively. Hence by [14, Proposition 2.3],

$$(6) \quad \begin{cases} \alpha(u)[x, y] = u[x, y]; [x, y]\alpha(u) = [x, y]u & \text{for all } x, y, u \in R, \\ \beta(u)[x, y] = u[x, y]; [x, y]\beta(u) = [x, y]u & \text{for all } x, y, u \in R, \quad \text{and} \\ \alpha(u) - u \in Z(R), \beta(u) - u \in Z(R) & \text{for all } u \in R. \end{cases}$$

Thus,  $0 = [\alpha(u) - u, x] = [\alpha(u), x] - [u, x]$  for all  $u, x \in R$ . That is,

$$(7) \quad [\alpha(u), x] = [u, x] \text{ for all } x, u \in R.$$

Similarly,

$$(8) \quad [\beta(u), x] = [u, x] \text{ for all } x, u \in R.$$

Using (6)–(8) and the hypothesis  $[[d(x), x], x] \in Z(R)$ , from (5) we get  $4x[[d(x), x], x] + [x[d(x), x] + [d(x), x]x, x] = 4x[[d(x), x], x] + x[[d(x), x], x] + [[d(x), x], x]x = 6x[[d(x), x], x] \in Z(R)$ . Thus we have

$$(9) \quad 6x[[d(x), x], x] = 6[[d(x), x], x]x \in Z(R) \text{ for all } x \in R.$$

Since  $R$  is 2-torsion free and 3-torsion free, therefore  $[[d(x), x], x]x \in Z(R)$ , which gives  $[[d(x), x], x]x, y] = 0$ . That is,

$$(10) \quad [[d(x), x], x][x, y] = 0 \text{ for all } x, y \in R.$$

Replacing  $y$  by  $y[d(x), x]$  in (10) (and using (10) again), we get  $0 = [[d(x), x], x]y[x, [d(x), x]] = -[[d(x), x], x]y[[d(x), x], x]$ . Since  $R$  is semi-prime, we get

$$(11) \quad [[d(x), x], x] = 0 \text{ for all } x \in R,$$

which by Theorem C implies that

$$(12) \quad d(u) \in Z(R) \text{ and } d(u)[x, y] = 0 \text{ for all } x, y, u \in R. \blacksquare$$

REMARK 2.2. (i) It will be interesting to prove the above theorem without one or both assumptions:  $R$  is 2-torsion free and 3-torsion free.

(ii) Since derivations are  $(1, 1)$ -derivations, therefore Theorem A becomes a special case of Theorem 2.1.

**THEOREM 2.3.** *Let  $\alpha, \beta$  be centralizing automorphisms and  $d$  and  $g$  be  $(\alpha, \beta)$ -derivations of a 2-torsion free semiprime ring  $R$  such that the mapping  $x \rightarrow$*

$d^2(x) + g(x)$  is centralizing on  $R$ . If  $d$  commutes with both  $\alpha$  and  $\beta$ , then  $d$  and  $g$  are both commuting and  $d(u)[x, y] = 0 = g(u)[x, y]$  for all  $x, y, u \in R$ ; in particular  $d$  and  $g$  are central.

**Proof.** Since  $R$  is 2-torsion free and the mapping  $x \rightarrow d^2(x) + g(x)$  is centralizing, therefore by Brešar [5, Proposition 3.1], it is commuting. Thus we have

$$(13) \quad [d^2(x) + g(x), x] = 0 \text{ for all } x \in R.$$

Linearizing (13) (and using (13) again), we get

$$(14) \quad [d^2(x) + g(x), y] + [d^2(y) + g(y), x] = 0 \text{ for all } x, y \in R.$$

Replacing  $y$  by  $yx$  in (14), we get

$$(15) \quad [d^2(x) + g(x), yx] + [d^2(yx) + g(yx), x] = 0 \text{ for all } x, y \in R.$$

Now,

$$\begin{aligned} [d^2(yx) + g(yx), x] &= [d(d(yx)) + g(yx), x] \\ &= [d(\alpha(y)d(x) + d(y)\beta(x)) + \alpha(y)g(x) + g(y)\beta(x), x] \\ &= [\alpha^2(y)d^2(x) + d(\alpha(y))\beta(d(x)) + \alpha(d(y))d(\beta(x)) \\ &\quad + d^2(y)\beta^2(x) + \alpha(y)g(x) + g(y)\beta(x), x] \\ &= [\alpha^2(y)d^2(x) + \alpha(d(y))\beta(d(x)) + \alpha(d(y))\beta(d(x)) \\ &\quad + d^2(y)\beta^2(x) + \alpha(y)g(x) + g(y)\beta(x), x]. \end{aligned}$$

That is,

$$(16) \quad [d^2(yx) + g(yx), x] = [\alpha^2(y)d^2(x) + \alpha(y)g(x), x] + [d^2(y)\beta^2(x) \\ + g(y)\beta(x), x] + 2[\alpha(d(y))\beta(d(x)), x] \text{ for all } x, y \in R.$$

Since  $\alpha$  is commuting, therefore  $[\alpha(x), x] = 0$ , which after linearization gives

$$(17) \quad [\alpha(x), y] + [\alpha(y), x] = 0 \text{ for all } x, y \in R.$$

Replacing  $y$  by  $\alpha(x)$  in (17) we get  $[\alpha^2(x), x] = 0$  for all  $x \in R$ . Hence  $\alpha^2$  is a commuting automorphism. Similarly, one can show that  $\beta^2$  is a commuting automorphism. Thus  $\alpha^2 - 1$  and  $\beta^2 - 1$  are commuting  $\alpha^2$ -derivation and  $\beta^2$ -derivation, respectively. Using (6)–(8) for  $\alpha, \beta, \alpha^2$  and  $\beta^2$ , from (16) we get

$$\begin{aligned} [d^2(yx) + g(yx), x] &= \alpha^2(y)[d^2(x), x] + [\alpha^2(y), x]d^2(x) + \alpha(y)[g(x), x] \\ &\quad + [\alpha(y), x]g(x) + [d^2(y), x]\beta^2(x) + d^2(y)[\beta^2(x), x] + g(y)[\beta(x), x] \\ &\quad + [g(y), x]\beta(x) + 2\alpha(d(y))[\beta(d(x)), x] + 2[\alpha(d(y)), x]\beta(d(x)) \\ &= y[d^2(x), x] + [y, x]d^2(x) + y[g(x), x] + [y, x]g(x) + [d^2(y), x]x \\ &\quad + [g(y), x]x + 2d(y)[d(x), x] + 2[d(y), x]d(x) \\ &= y[d^2(x) + g(x), x] + [y, x](d^2(x) + g(x)) + [d^2(y) + g(y), x]x \\ &\quad + 2d(y)[d(x), x] + 2[d(y), x]d(x) \text{ for all } x, y \in R. \end{aligned}$$

Replacing this in (15), we get

$$(18) \quad [d^2(x) + g(x), y]x + y[d^2(x) + g(x), x] + [y, x](d^2(x) + g(x)) + [d^2(y) + g(y), x]x + 2d(y)[d(x), x] + 2[d(y), x]d(x) = 0 \text{ for all } x, y \in R.$$

Using (13) and (14), from (18) we get

$$(19) \quad [y, x](d^2(x) + g(x)) + 2[d(y), x]d(x) + 2d(y)[d(x), x] = 0 \text{ for all } x, y \in R.$$

Replacing  $y$  by  $xy$  in (19), we get

$$\begin{aligned} 0 &= [xy, x](d^2(x) + g(x)) + 2[d(xy), x]d(x) + 2d(xy)[d(x), x] \\ &= x[y, x](d^2(x) + g(x)) + 2[\alpha(x)d(y) + d(x)\beta(y), x]d(x) \\ &\quad + 2(\alpha(x)d(y) + d(x)\beta(y))[d(x), x] \\ &= x[y, x](d^2(x) + g(x)) + 2\alpha(x)[d(y), x]d(x) + 2[\alpha(x), x]d(x) \\ &\quad + 2d(x)[\beta(y), x]d(x) + 2[d(x), x]\beta(y)d(x) + 2((\alpha(x) - x)dy + xd(y) \\ &\quad + d(x)\beta(y))[d(x), x] \\ &= x[y, x](d^2(x) + g(x)) + 2x[d(y), x]d(x) + 2d(x)[y, x]d(x) + 2[d(x), x]yd(x) \\ &\quad + 2(d(y)(\alpha(x) - x) + xd(y) + d(x)\beta(y))[d(x), x] \\ &= x[y, x](d^2(x) + g(x)) + 2x[d(y), x]d(x) + 2d(x)[y, x]d(x) + 2[d(x), x]yd(x) \\ &\quad + 2xd(y)[d(x)x] + 2d(x)y[d(x)x]. \end{aligned}$$

That is,

$$(20) \quad x[y, x](d^2(x) + g(x)) + 2x[d(y), x]d(x) + 2d(x)[y, x]d(x) \\ + 2[d(x), x]yd(x) + 2xd(y)[d(x), x] + 2d(x)y[d(x), x] = 0 \text{ for all } x, y \in R.$$

Using (19), from (20) we get  $0 = 2d(x)[y, x]d(x) + 2[d(x), x]yd(x) + 2d(x)y[d(x), x]$ , which gives

$$(21) \quad [d(x), x]yd(x) + d(x)[y, x]d(x) + d(x)y[d(x), x] = 0 \text{ for all } x, y \in R.$$

Replacing  $y$  by  $yd(x)z$  in (21), we get  $0 = [d(x), x]yd(x)zd(x) + d(x)[yd(x)z, x]d(x) + d(x)yd(x)z[d(x), x]$ . That is,

$$(22) \quad [d(x), x]yd(x)zd(x) + d(x)[y, x]d(x)zd(x) + d(x)y[d(x), z]zd(x) \\ + d(x)yd(x)[z, x]d(x) + d(x)yd(x)z[d(x), x] = 0 \text{ for all } x, y, z \in R.$$

Using (21), from (22) we get  $d(x)yd(x)[z, x]d(x) + d(x)yd(x)z[d(x), x] = 0$ , which (using (21) again) reduces to

$$(23) \quad d(x)y[d(x), x]zd(x) = 0 \text{ for all } x, y, z \in R.$$

Multiplying (23) by  $y[d(x), x]$  on right, we get

$0 = d(x)y[d(x), x]zd(x)y[d(x), x]$ , which, by semiprimeness of  $R$ , gives

$$(24) \quad d(x)y[d(x), x] = 0 \text{ for all } x, y \in R.$$

Replacing  $y$  by  $xy$  in (24), we get

$$(25) \quad d(x)xy[d(x), x] = 0 \text{ for all } x, y \in R.$$

Left multiplication of (24) by  $x$  gives

$$(26) \quad xd(x)y[d(x), x] = 0 \text{ for all } x, y \in R.$$

Subtracting (26) from (25), we get  $[d(x), x]y[d(x), x] = 0$ , which, by semi-primeness of  $R$ , implies

$$(27) \quad [d(x), x] = 0 \text{ for all } x \in R.$$

Linearizing (27), we get  $[d(x), y] + [d(y), x] = 0$  for all  $x, y \in R$ . In particular for  $y = d(x)$ , we get

$$(28) \quad [d^2(x), x] = 0 \text{ for all } x \in R.$$

Using (28), from (13) we get  $[g(x), x] = 0$  for all  $x \in R$ . Thus  $d$  and  $g$  are both commuting  $(\alpha, \beta)$ -derivations. Hence, using Theorem C, we get  $d(u), g(u) \in Z(R)$  and  $d(u)[x, y] = 0 = g(u)[x, y]$  for all  $x, y, u \in R$ . ■

**REMARK 2.4.** Taking  $\alpha = \beta = 1$  in Theorem 2.3, we note that Theorem B is a special case of Theorem 2.3.

**PROPOSITION 2.5.** *Let  $\alpha, \beta$  be centralizing automorphisms of a semiprime ring  $R$ . If  $R$  admits an  $(\alpha, \beta)$ -derivation  $d$  which is strong commutativity-preserving on  $R$ , then  $R$  is commutative.*

**Proof.** Brešar (in the proof of Theorem 1 [6, page 458]) has proved that every additive strong commutativity-preserving mapping on a semiprime ring is commuting. Thus  $d$  is a commuting  $(\alpha, \beta)$ -derivation. By Theorem D we conclude that  $d$  is central. Thus,  $0 = [d(x), d(y)] = [x, y]$  for all  $x, y \in R$ . Hence  $R$  is commutative. ■

**REMARK 2.6.** Taking  $\alpha = \beta = 1$  in Proposition 2.5, we get the result of Bell and Daif [2, Corollary 1] which states: If  $R$  is a semiprime ring admitting a derivation which is strong commutativity-preserving on  $R$ , then  $R$  is commutative.

We now establish a characterization of  $(\alpha, \beta)$ -reverse derivations of semi-prime rings.

**THEOREM 2.7.** *Let  $\alpha, \beta$  be automorphisms of a semiprime ring  $R$ . An additive mapping  $d : R \rightarrow R$  is an  $(\alpha, \beta)$ -reverse derivation if and only if it is a central  $(\alpha, \beta)$ -derivation.*

**Proof.** Let  $d$  be an  $(\alpha, \beta)$ -reverse derivation. Then

$$\begin{aligned} d(xy^2) &= d(y^2)\alpha(x) + \beta(y^2)d(x) = (d(y)\alpha(y) + \beta(y)d(y))\alpha(x) + \beta(y)\beta(y)d(x) \\ &= d(y)\alpha(y)\alpha(x) + \beta(y)d(y)\alpha(x) + \beta(y)\beta(y)d(x). \end{aligned}$$

That is,

$$(29) \quad d(xy^2) = d(y)\alpha(y)\alpha(x) + \beta(y)d(y)\alpha(x) + \beta(y)\beta(y)d(x) \text{ for all } x, y \in R.$$

Also,

$$\begin{aligned} d((xy)y) &= d(y)\alpha(xy) + \beta(y)d(xy) \\ &= d(y)\alpha(x)\alpha(y) + \beta(y)[d(y)\alpha(x) + \beta(y)d(x)] \\ &= d(y)\alpha(x)\alpha(y) + \beta(y)d(y)\alpha(x) + \beta(y)\beta(y)d(x). \end{aligned}$$

That is,

$$(30) \quad d((xy)y) = d(y)\alpha(x)\alpha(y) + \beta(y)d(y)\alpha(x) + \beta(y)\beta(y)d(x) \text{ for all } x, y \in R.$$

From (29) and (30), we get  $d(y)\alpha(x)\alpha(y) = d(y)\alpha(y)\alpha(x)$ . Thus,

$$(31) \quad d(y)[\alpha(x), \alpha(y)] = 0 \text{ for all } x, y \in R.$$

Since  $\alpha$  is onto, therefore (31) gives  $0 = d(y)[x, \alpha(y)] = d(\alpha^{-1}(y))[x, y]$ .

Thus,

$$(32) \quad d(\alpha^{-1}(y))[x, y] = 0 \text{ for all } x, y \in R.$$

Replacing  $x$  by  $zx$  in (32) (and using (32) again), we get

$$\begin{aligned} 0 &= d(\alpha^{-1}(y))[zx, y] = d(\alpha^{-1}(y))z[x, y] + d(\alpha^{-1}(y))[z, y]x \\ &= d(\alpha^{-1}(y))z[x, y]. \end{aligned}$$

That is,

$$(33) \quad d(\alpha^{-1}(y))z[x, y] = 0 \text{ for all } x, y, z \in R.$$

Linearizing (32) in  $y$  (and using (32) again), we get

$$\begin{aligned} 0 &= d(\alpha^{-1}(y+u))[x, y+u] = (d\alpha^{-1}(y) + d\alpha^{-1}(u))([x, y] + [x, u]) \\ &= d(\alpha^{-1}(y))[x, y] + d(\alpha^{-1}(y))[x, u] + d(\alpha^{-1}(u))[x, y] + d(\alpha^{-1}(u))[x, u] \\ &= d(\alpha^{-1}(y))[x, u] + d(\alpha^{-1}(u))[x, y]. \end{aligned}$$

That is,

$$(34) \quad d(\alpha^{-1}(y))[x, u] = -d(\alpha^{-1}(u))[x, y] \text{ for all } u, x, y \in R.$$

Replacing  $z$  by  $[x, u]zd(\alpha^{-1}(u))$  in (33) and then using (34), we get  $0 = d(\alpha^{-1}(y))[x, u]zd(\alpha^{-1}(u))[x, y] = -d(\alpha^{-1}(u))[x, y]zd(\alpha^{-1}(u))[x, y]$ , which, by semiprimeness of  $R$ , implies

$$(35) \quad d(\alpha^{-1}(u))[x, y] = 0 \text{ for all } x, y, u \in R.$$

Using Herstein [12, Lemma 1.1.8], from (35) we get that  $d(\alpha^{-1}(u)) \in Z(R)$  for all  $u \in R$ . Since  $\alpha^{-1}$  is onto, therefore  $d(u) \in Z(R)$  for all  $u \in R$ . Thus

$d$  is central. Now,  $d(xy) = d(y)\alpha(x) + \beta(y)d(x) = \alpha(x)d(y) + d(x)\beta(y)$  for all  $x, y \in R$ . This implies that  $d$  is an  $(\alpha, \beta)$ -derivation.

Conversely, let  $d$  be a central  $(\alpha, \beta)$ -derivation. Then,  $d(xy) = \alpha(x)d(y) + d(x)\beta(y) = d(y)\alpha(x) + \beta(y)d(x)$ . Thus  $d$  is an  $(\alpha, \beta)$ -reverse derivation. ■

**COROLLARY 2.8.** *Let  $\alpha, \beta$  be automorphisms of a semiprime ring  $R$ . If  $R$  admits an  $(\alpha, \beta)$ -reverse derivation  $d$  which is strong commutativity-preserving on  $R$ , then  $R$  is commutative.*

**Proof.** By Theorem 2.7,  $d$  is central. Since  $d$  is strong commutativity-preserving, therefore  $[x, y] = [d(x), d(y)] = 0$  for all  $x, y \in R$ . Hence  $R$  is commutative. ■

Taking  $\alpha = \beta = 1$  in Theorem 2.7, the following corollary is immediate.

**COROLLARY 2.9.** *Let  $R$  be a semiprime ring. An additive mapping  $d: R \rightarrow R$  is a reverse derivation on  $R$  if and only if it is a central derivation.*

**Acknowledgement.** The authors gratefully acknowledge the support provided by the King Fahd University of Petroleum and Minerals during this research.

## References

- [1] H. E. Bell and W. S. Martindale, III, *Centralizing mappings of semiprime rings*, Canad. Math. Bull. 30 (1987), 92–101.
- [2] H. E. Bell and M. N. Daif, *On commutativity and strong commutativity-preserving maps*, Canad. Math. Bull. 37 (1994), 443–447.
- [3] M. Brešar and J. Vukman, *On some additive mappings in rings with involution*, Aequationes Math. 38 (1989), 178–185.
- [4] M. Brešar, *On the composition of  $(\alpha, \beta)$ -derivations of rings, and application to von Neumann algebras*, Acta Sci. Math. (1992), 369–376.
- [5] M. Brešar, *Centralizing mappings and derivations on prime rings*, J. Algebra, 156 (1993), 385–394.
- [6] M. Brešar and C. R. Miers, *Strong commutativity preserving maps of semiprime rings*, Canad. Math. Bull. 37 (1994), 457–460.
- [7] M. Brešar and A. R. Villena, *The noncommutative Singer-Wermer conjecture and  $\varphi$ -derivations*, J. London Math. Soc. 66 (2002), 710–720.
- [8] M. Anwar Chaudhry and A. B. Thaheem, *On  $(\alpha, \beta)$ -derivations of semiprime rings, I*, Demonstratio Math. 36 (2003), 285–292.
- [9] M. Anwar Chaudhry and A. B. Thaheem, *Centralizing mappings and derivations on semiprime rings*, Demonstratio Math. 37 (2004), 285–292.
- [10] M. Anwar Chaudhry and A. B. Thaheem,  *$(\alpha, \beta)$ -derivations on semiprime rings*, International Mathematical Journal, to appear.
- [11] T. C. Chen, *Special identities with  $(\alpha, \beta)$ -derivations*, Riv. Mat. Univ. Parma 5 (1996), 109–119.
- [12] I. N. Herstein, *Rings with Involution*, The University of Chicago Press, 1976.

- [13] V. K. Kharchenko and A. Z. Popov, *Skew derivations of prime rings*, Comm. Algebra 20 (1992), 3321–3345.
- [14] A. B. Thaheem and M. S. Samman, *A note on  $\alpha$ -derivations on semiprime rings*, Demonstratio Math. 34 (2001), 783–788.
- [15] J. Vukman, *Commuting and centralizing mappings in prime rings*, Proc. Amer. Math. Soc. 109 (1990), 47–52.
- [16] J. Vukman, *Derivations on semiprime rings*, Bull. Austral. Math. Soc. 53 (1995), 353–359.

DEPARTMENT OF MATHEMATICAL SCIENCES  
KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS  
DHAHRAN 31261, SAUDI ARABIA  
E-mail: [chaudhry@kfupm.edu.sa](mailto:chaudhry@kfupm.edu.sa) (M. Anwar Chaudhry)  
[athaheem@kfupm.edu.sa](mailto:athaheem@kfupm.edu.sa) (A. B. Thaheem)

*Received May 7, 2003.*