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ON A TOPOLOGICAL PRESENTATION OF GRAPHS

Abstract. In the paper a bitopological presentation of graphs has been described.

1. Introduction

Graphs are widely used as almost “standard” models of various dynamic
systems, networks and many other devices. There exist a lot of presenta-
tions (definitions) of graphs. These presentations define graphs usually as
two sorted relational systems i.e. sequences of the form G = (4, V, o) with
A and V being sets (of edges and vertices resp.) and a structure o which
can be a function (e.g. of the form A — V x V), a relation (e.g. of the
form o CV x Ax V) or e.g. a pair of functions of the form A — V. In the
last, perhaps the most popular, case by a graph it is meant an algebra of the
form G = (V9,EY,d§,dJ) where V9 and EY are sets of vertices and edges
of the graph and d§,d¥ : A — V are functions called incidence functions.
A disadvantage of the mostly used two sorted presentations of graphs is the
fact that their (homo)morphisms are defined in a not “typically algebraic”
way (see e.g. [4] for a comment and an interesting other definitions). The
problem is here the fact that such a homomorphism should respect the par-
tition of the set of elements (that means the set AUV') of a graph into edges
and vertices. The presentation of graphs used in this paper defines graphs
with disjoint sets of vertices and arrows as equationally definable algebras
with one carrier-set only. By a graph we mean any triple A = (X s, t) with
a set X and unary operations s,t : X — X satisfying the conditions

s(s(z)) = t(s(2)) = s(z) & s(t(2)) = t(t(z)) = t(a)
for each z € X. The passage from this definition to the last of two-sorted pre-
sentations mentioned above and in the opposite direction is via the equations

VI={zeX:s(z)=x},E9=X\V9,d§ = leg,d? = t|go
(from triples A = (X s, t) to quadruples G = (V9,ES, dog,df)) and
X(G) =VIUEY,s =dJ Uidye,t = df Uidye
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(backwards). So the vertices of such (one sorted presentation of) graphs are
the comon fix-point of the operations s and t. The class of homomorphisms of
such graphs is richer than the class of “classical” homomorphisms of graphs.
If one wants to use graph homomorphisms as a model of “aggregation of
arrows into vertices” then one has to choose between the simple two-sorted
definition of graphs and complicated definition of their homomorphisms, or
a “non-typical” definition of graphs (in this case of the above one-sorted pre-
sentation) and typical algebraic definition of their homomorphisms. In this
paper the second possibility has been chosen. It seems that in this case,
in contrast e.g. to programming, it is easier to work with one-sorted than
with two-sorted algebras.We show that the one-sorted presentation of graphs
leads to a kind of “topological” presentation of them.

In the paper the standard mathematical notation and terminology (see
e.g. [3]) is used. Exemption is the notation for the composition of relations
and functions ((R o S)(z) = S(R(z))) and the fact that total relations are
written in the form R : X — Y instead of more often used form R C X x Y,
that means if R C X x Y and for every z € X there exists y € Y with
zRy then we write R : X — Y instead of R C X x Y. For all unexplained
concepts of category theory and notation used in the paper the reader is
referred to [3].

2. Topologies induced by functions

Let X be a set and g : X — X be a function satisfying the condition
g2=gog=g,ie gis (considered as a relation) transitive and dense. Let
us note that in this case we have g(X) = g7i; = {z € X : g(z) = z}, that
means the set of all fix-points of g is the image of g. For any A C X we
define C(A) = AU g(A).

FAacT 2.1. The operation C : Pow(X) — Pow(X) is a topological closure
operation in the set X.

The topology and the closure operation determined in a set X by a
transitive and dense function g : X — X will be called induced by g and
denoted by 74 and C4 respectively. We will drop the index g if it does not
cause any confusion. Let X be a set, g : X — X be a transitive and dense
function, C be the closure operation induced by g and g¢;; be the set of all
fix points of g.

FACT 2.2. For every element z of X the one element set {z} is closed in the
topology induced by g iff T € gsiz.

Proof. Let € X and C({z}) = {z}. So we have C({z}) = {z}Ug({z}) =
{z} which implies g({z}) = {z}. The converse is straightforward.
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Fact 2.3. For any set X, transitive and dense function g : X — X and
z € X the set {z} is open iff x € X\gyis.

Proof. Let z € X\g(X) and let us consider the interior of {z}. Let I :
Pow(X) — Pow(X) be the interior operation in the topological space
(X,74). From the property I(A) C Ait follows that I({z}) =0 or I({z}) =
{z}. If it was I({z}) = @ then {z} would be a frontier set, i.e. it would be
closed in 74, which is impossible because z € X\gyi (c.f. fact 2.2 above). So
it must be I({z}) = {z}, i.e. {z} is an open set. The converse is evident. m

The topological space (X, 7,) may be very “irregular” and needn’t satisfy
even very weak separation conditions. On the other side, if 74 is a T} topol-
ogy, then g must be the identity relation in X and 74 is the discrete topology.
Some “between cases” are determined by the request that g has a noh empty
set of fix-points. These fix-points are exactly one element closed sets. All
other one element sets are open. This property characterizes topological
spaces induced by transitive and dense functions.

DEFINITION 2.1. A topological space (X,7) will be called T} /o-space iff any
one element set is either open or closed.

The frontier of a one element set in a topological space induced by a
function is always a one element set. In general in a T;/o-space it needn’t
be the case.

EXAMPLE 2.1. Let us consider the space (X, 7) with X = {a,b,c} and 7 =
{0, {a}, {a, b}, {a,c}, X}. This is evidently a T o-space because the set {a} is
open as an element of the topology T and sets {b} and {c} are closed because
their complements {a,c} and {a,b} are open. Now we have closure({a})=X
and frontier({a})={b,c}. This space can be seen as an (undirected) graph
consisting of one edge a and vertices (the end-points of a) b and c.

DEFINITION 2.2. For any Ty/5-space (X,7) and a point € X we define

gr(z) =y yeC({z}) & C({y}) = {v}
Let us note that g, : X — X is a well defined function because the fontier

set of {z} is a one element set. If there were exist two elements y and y’
satisfying the condition

yeC({z}) & C{y}) = {v} & ¥ € C({z}) & C{y'}) = {¥'},
then the set {y,y’} would be included in the frontier of {z}. So this frontier

would have more then one element. Let us also note that if the set {z} is
closed then we have g,(z) = {z} that is z is a fix-point of g,.

LEMMA 2.1. For any Ty/p-space (X,T) and any point x € X there holds
Fr({z} = g-(z).
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FACT 2.4. The function g, is transitive and dense.

Proof. Let z,y € X and let us assume that {z} is an open set. We have
g2(z) =y © g-(x) = 2 & g-(2) = y for some z € X [def. of superposition]
@ z€C({z}) & C({z}) = {2} &y € C({z}) & C({y}) = {y} [def. of g;]

= 2€C({z}) &y =2 & C({z}) = {2} [ye C({z}) &
C({z}) = {2} = y = 7]

=y € C({z}) & C({y}) = {y} [y = 2]
= gr(z)=y.

So we have shown that g2 C g,. Now

g-(z) =y e yeC({z}) & C({y}) = {y} [def. of g2]
=yeC({z}) & C({y})={y} & yeC({y}) & C({y})={y} [pPAg=>pAgAq]
>9@)=y&g:(y) =y [def. of g;]
= 3,29,z & 29,y [P(z0) = 3 P(z)]

€ (grogr)(z)=y
which completes the proof of the first part of proposition in the case when
{z} is open. If {z} is closed then the proof is straigthforward.

Let g and ¢’ be transitive and dense functions in the sets X and X’
respectively and f: X — X’ be a function transforming ¢ into ¢’. =

FACT 2.5. The triple f : (X,79) — (X', 7y) is a continuous mapping from
the topological space (X, 1,) into (X', 7y).

Proof. If (f x f)(9) C g/, ie. if go f C fog than we have

f(C(A4)) = f(AUg(A)) [def. of the closure operation]
= f(A) U f(g(4)) [f(AUB) = f(A) U f(B)]
= f(A)U (g0 f)(A) [f(g(A4)) = (g0 f)(A)]
C f(AU(fog')(A4) [go fC fo(g Uidx)]
=f(A)Ug'(f(A))

= C'(f(A)). [def. of the closure operation]|

LEMMA 2.2. For any Ty /o-space (X,T) and any points z,y € X there holds

z#y & {z}er &yeC({z}) = C({y}) = {v}.

Proof. Let us assume z # y & {z} € 7 & y € C({z}). From the property
C({z}) = {z} U Fr({z}) we infer that y € Fr({z}) that means for any
A € 7 with y € A we have AN {z} # 0. If the set {y} would not be closed
then it had to be open and from the fact that (X, 7) is of the type Ty, and
z # y we obtain y € {y} € 7 & {y}N{z} = @ which contradicts the property
y€ Fr({z}). =

LEMMA 2.3. For any Tyjp-space T = (X, 7) and points z,y € X there holds

t#y&yeC(x)= {z} e



On a topological presentation of graphs 765

Proof. Ifitwasz # y & y € C(z) & {z} ¢ 7 then it would be C({z}) = {z}
because T is Ty /p-space. Now it would be

ye{z}=C({zh) &y#=z
which is impossible. =

COROLLARY 2.1. For any Ty/9-space (X,T) and any points z,y € X there
holds

z#y &yeC({z}) = C({y}) = {v}.
Proof. Straightforward. =

FACT 2.6. For any Ty/s-spaces T = (X,7) and T' = (X', 7') and any con-
tinuous mapping f:T — T' we have

9:(2) =y = g (f(2)) = f(y)
forallz,ye X.
Proof. Let z,y € X and let g.(z) = y. So we have

y € C({z}) & C({y}) = {y}.

From the continuity of f we obtain

f(y) € f(C({=})) C C'(f({=}) & f(C({y})) = {f()}-

Let us consider the set {f(y)}. If it is closed then C'({f(v)}) = {f(y)}
and g (f(z)) = f(y). If it is open then f(z) = f(y) by Corollary 2.3
above (if it was f(z) # f(y) then it would be C'({f(y)}) = {f(v)} because
1(v) € C(f({z)). =

For any T3 -space T = (X, 7) let I'(Y) = (X, g-) and for any continous
mapping f: T — Y let I'(f) : I(Y) — I'(Y’) be given by the assignment
I'(f)(z) = f(z) for any z € X. Then I : Top;/, —»TDfun is a functor from
the category Top, /s of Ty/3 -spaces into the category TDfun of transitive
and dense functions. Analogously assigning to any pair v = (X, g) with
X being a set and ¢ a transitive and dense function from X into X the
topological space (X, 7,) and to any triple f : (X, g) — (X'g’) with g and
g’ being transitive and dense funtions g : X — X and ¢’ : X’ —» X' and
f: X — X' being a fuction transforming g into ¢’ the triple f : (X, 7,) —
(X', 74) we obtain a functor A : TDfun—Top;/, from the category TDfun
into the category Top .

COROLLARY 2.2. Categories TDfun and Top,/, are equivalent.
Proof. It is an immediate consequence of the fact 2.6 and 2.7 above. =

The above corrollary allows to consider unary algebras of the form (A,w)
with the operation w : A—4 satisfying the condition wow = w as Ty,
topological spaces and vice versa. As we have seen in the introduction graphs
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can be treated as unary algebras of the form A = (X, s, t) with a set X and
unary operations s,t : X — X satisfying the conditions

s(s(z)) = t(s(z)) = s(z) & s(t(z)) = t(t(z)) = t(x)
that means a kind of “merging” of two algebras of the form (X ,w) with
(seeing as relations) transitive and dense operations s and t. The topological
counterparts of such structures are triples of the form (X, m, ) with T /2
topoplogies 71, 7a C Pow(X). Such triples are known as bitopological spaces
They will be considered in the next section.
Let us note some simply properties of T /o-spaces.

COROLLARY 2.3. For any Ty9-space T = (X, 7) and z,y € X it holds
zRryerz=y&CE)={z}orz#£y & yeC(z).

Proof. If xR,y then

2Ry & (c=yorz#y) & (ye Clz) & Cy) = {y})

cr=y&yelC(z) & Cy)={y}or

z#y&yeClr) & Cy) = {y}
Now

zt=y&yeC(z) & Cly)={y} @ z=y & C(z) = {z} [evident]
and

z2y&yeC(z) & Cy) ={y} ®z#y & ye C(z).[Corollary 2.1] =
LEMMA 2.4. For any set A C X it holds

C(A\A = R-(A\A.

Proof. a) C(A)\A C R,(4)\A.
Let y € C(A)\A. If it was ~(zR;y) that means y ¢ C(z) for every z € A
(see Corollary 2.3) then we would have

vé |Jowco(Uisd) =ca
z€A z€EA
which contradicts the assumption = € C(A). So it must exist z € A with
y € C(z). Now let us assume that {y} # C(y), i.e. that {y} is an open set
and let o € A satisfy the condition y € C(zo) (see the reasoning above).
So zo # y (y ¢ A) and we obtain zoR,y by Corollary 2.2. We have proved
that

y€EC(ANA= e sRry &y ¢ A y € (R (A)\A)
which completes the proof.
b) R-(A)\A C C(A\A.
If y € (R-(A)\A) then there exists zp € A such that zR,y & y ¢ A.
So we have

y€C(z) & Cy) ={y} &z #y



On a topological presentation of graphs 767

(because zo € A & y ¢ A). Now
yel(m) CCA) &y¢ A
(because {y} C A) and consequently
y € C(A)\A. n
PROPOSITION 2.1. For any set A C X we have
C(A) = Cr(A).

Proof. If A C X then we have:
C(A)=(C(A\AH)UA

= (R, (A\A)U A [C(A\A = R;(A)\A by Lemma 2.4.]
= AUR,(4)
= Cgr(4). [def. of Cr] =

PROPOSITION 2.2. In any Ty /9-space T = (X, T) there holds

C( U At) = U C(Ar)

teT teT
for any family (A¢)ier of subsets of X.

Proof. For any y € X and any family (A¢)¢er it holds
yeC(U A) e yeCr( U A [Proposition 2.1.]
teT teT

eye |J Aror 3¢ U 4. 2Ry [def. of Cr]

teT teT
ye | As or pexTier = € A; & zRy.
teT
If y € |J A; then y € to for some ¢y € T and consequently
teT

ye |y
teT

because A; C C(A;) for any t € T.
Let 2o and Ap € T satisfy the condition

y ¢ |J Ac & zoRry & 70 € Ay,
teT
Now
Yy ¢ Ato & mORry & To € Ato
that means y € R, (Ay), i.e. y € Cr(As) which implies y € C(Ay,) by
Proposition 2.2. So, there exists t € T such that y € C(4;), i.e.
ye | JC4)
teT
which completes the proof.
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Ify¢ |J A; then y ¢ A, for every t € T. So we have proved
teT

clJAaclJecw.

teT teT
The converse inclusion holds for any family of sets in any topology. =

COROLLARY 2.4. In any Ty/y-space T = (X,7) and any family of subsets
(At)ter of X there holds

VierAr€ T = ([ 4:) € T.

teT

Proof. Evident by De Morgan’s laws. =

2.1. Bitopological spaces. By a bitopological space we mean a set en-
dowed in two topologies, i.e. a triple of the form (X, m,7), ((X, C1,C2)or
(X, Ih,I2) resp.) with 71,72 being families of open sets (Ci, C2 being topo-
logical closure operations and I3, Iz being topological interior operations
resp.). Of course topologies in X may be defined in many other ways
(e.g. by bases, subbases etc.). A triple f : (X,71,72) — (X', 71, 7) with
(X,m1,72),(X', 71, 75) being bitopological spaces and f : X — X' being a
function will be called bicontinuous mapping iff both f : (X, 1) — (X', 71)
and f : (X,m) — (X’,75) are continuous mappings. For more detailed
description of bitopological spaces the reader is referred to [2].

T, /2 bitopological spaces in which the frontier of any one element set is
a one element set as well correspond to graphs. More precisely a graph can
be seen as a bitopological T, /o-space (X, 71,72) in which the frontier of any
one element set is (in both topologies) a one element set. In what follows we
will frequently use such spaces. They will be called d-spaces (directed graph
spaces). Let ¥ = (X, 1, 72) be such a d-space and C;,,C;, : Pow(X) —
Pow(X) closure operations in ¥ corresponding to the topologies 71 and
To. If we will seen ¥ as a graph, then the operations C;, and C;, are our
candidates for the source and target operation in the set X. Unfortunately
in general they needn’t have the common set of fix-poins.

EXAMPLE 2.2. Let ¥ = (X, 71,72) be the space with X = {a,b,c} and
topologies 11 = {0, {b}, {b,c}, X} and 7, = {0, {b}, {a,b}, X}. Now we have
fiz(Cr) = {a} and fiz(C,,) = {c}. So if we would like to see the closure
operations in the space as the source and target operations of a graph struc-
ture on the set X then the set {a} would be a vertex in the sense of Cr, but not
in the sense of Cr,. Consequently we have (Cr, 0Cr,)({b}) = Cry({a,b}) = X
and (Cy, o C,)({b}) = Cr,({a,b}) = {a, b} that means Cy, 0 Cy, # Cr, 0 Cy,
which implies that the azioms defining graphs are not satisfied.
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The topological counterpart of the equations

t(s(z)) = s(z) & s(t(z)) = t(z)
is the condition that both topologies have the same families of one element
open sets (i.e. the restrictons of both topologies to one element sets equals)
and the same families of one element closed sets. More precisely the counter-
part of the equation t(s(z)) = s(z) is the condition that every one element
closed set in 71 is closed in 5. The conterpart of the second equation is
analogous.

DEFINITION 2.3. Topologies 71 and 1o in a set X will be called open com-
patible on a family F C Pow(X) iff forany set A€ F A€ < A€ m,
closed compatible on F iff any for any set A€ F A is closed in 11 <= A is
closed inTe and compatible iff they are open and closed compatible on F.

Graphs are determined by d-spaces of the form T = (X, 7, ) with
topologies compatible on the family of all one-element subsets of X. The
bicontinous mappings correspond to graph homomorphisms.

PROPOSITION 2.3. The category of graphs seeing as one sorted algebras
A = (X,s,t) with a set X and unary operations s,t : X — X satisfying
the conditions

5(s(2)) = t(s(c)) = s(z) & s(t()) = t(t(s)) = t(a)
s equivalent to the category of d-spaces and bicontinous mappings.

Proof. Straigthforward. =

2.1.1. Modal logic

In the paper [5] a new approach to the modal operators of necessity and
possibility has been introduced. It bases on some “negation - operations”
in the so called bi-Heyting lattices. The main examples of these operators
are given by means of graphs. We show how these “negations” can be easily
defined by means of topologies introduced in the paper. Let us recall some
notions from [5).

DEFINITION 2.4. A Heyting algebra is a bounded distributive lattice L with
an “implication” operation —: L x L — L with the following property

z<y—ziffzAy<z

for all z,y,z € L. A co-Heyting algebra is a bounded distributive lattice L
with a “subtraction” operation \ : L x L — L with the following property

r\y<ziffz<yvz
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for all z,y,z € L. Notice that L is a co-Heyting algebra iff the dual lattice
LY, obtained by reversing the order relation of L, is a Heyting algebra. The
operation \ in L is simply — in L°. A bi-Heyting algebra is a bounded
distributive lattice that is both a Heyting and a co-Heyting algebra.

In Gentzen’s formalism the defining properties for — and \ may be writ-

ten in the form
z<y—z z\y <z

zAy<z r<yVz

Having these operations one can define two “negation”™ -z = z — 0 (the
usual intuitionistic negation) and ~ = = 1\ z, called in [5] the supplement,
where 0 and 1 are the bottom and top elements of the lattice, respectively.
They have the following defining properties

<y ~z<ly

zAy=0 1=zVy
So —z is the largest element disjoint from z and ~ z is the smallest element
whose join with z gives the top element 1.

PROPOSITION 2.4. (see [5]) In a Heyting algebra the negation operation
= is order reversing and satisfies x < ——x. In a co-Heyting algebra the
supplementary operation ~ is also order reversing and ~~ z < .

EXAMPLES. (see [5]) (1) A Boolean algebra is a bi-Heyting algebra. Define
z — y =c(z) Vyand z\y = z A ¢(y), where ¢( ) is the operation of
Boolean complement. Notice that in this case ~z =~ z = ¢(z). Conversely,
a bi-Heyting algebra such that —z =~ z for all x is automatically a Boolean
algebra.

(2) Let X be a topological space. It is well-known that the lattice of
open sets of X constitutes a Heyting algebra. We define U — V (for U and
V open sets of X) to be the interior of ¢(U) UV, where ¢( ) is the usual
Boolean complement.

Dually, the closed sets of X constitutes a co-Heyting algebra by defining
F\G (for F and G closed sets of X) to be the closure of F N ¢(G).

The third example considered by the authors comes from the theory of
graphs. It is written in a form based on two sorted presentation of graphs!.
We present it in a little different form based on one sorted graphs.

(3) Let G = (X, s,t) be a graph. Then the lattice P(G) of subgraphs of
G is a bi-Heyting algebra®. The following text is a citation from [5] (p. 29).

“Take, for example, the following graph:

YThe authors used the name “irreflexive multigraph” instead of “graph”.
2It is exactly the set of all closed sets of the topology (closure operation) determined
by the corresponding graph.
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We write G = {a,b,c,d, e, f, g, h} keeping in mind the relations do(b) =
a,d,1(b) = a,d0(c) = a,01(c) = d, etc. In this notation, a subgraph of a graph
G is simply a subset of G closed under the operations of taking source and
target of its arrows.

We can clearly take unions and intersections of a subgraphs but what
about complements? Taking the set-theoretical complement c(X) of X will
not do, since it is not a graph in general. We may get “problematic” edges,
i.e. edges whose sources or targets are missing in ¢(X). To make a graph we
have two options: either disregard problematic edges or, alternatively, keep
them and add their sources and targets. The first option leads to the Heyting
negation ~X, whereas the second leads to the co-Heyting supplement ~ X.

Take, for example, that subgraph X = {a,b,c,d,g} of the graph above.
The set-theoretical complement is {e, f, h} which is not a subgraph, the prob-
lematic arrows being e and h. If we disregard them, we obtain -X =
{f}, the largest subgraph disjoint from X. On the other hand, if we keep
them and add the missing sources and targets, namely d and g we obtain

~ X = {d,e, f,g,h}, the smallest subgraph whose union with X gives the
whole graph G.”
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The problem with the construction of the Heyting negation is to find
the greatest subgraph of a graph disjoint to another subgraph of this graph.
In the “topological” presentation of graphs it can be solved by Proposition
2.2. Other considerations from [5] can be translated into the topological
formalism proposed in part 2. So instead about some very special operations
on graphs one can apply simply the standard constructions to the topological
spaces corresponding to graphs. Of course the reasoning can be immediately
extended to hypergraphs. '
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3. Concluding remarks

There exists a lot of various “translations” of the language of relations
(functions) into that of (families of) sets. Perhaps the most well known
examples are the principle of abstraction or the relationships between toler-
ance relations and covering families of a set3. There are also known some
connections between relational systems and topology, e.g. topological spaces
generated by semi- or partial orders. The result presented in the paper is
of the same kind. The only essential difference here is the type of consid-
ered spaces; they are not “similar” to the “classical” topological spaces with
a very “geometrical” origin. On the another side the origin of graphs is of
a geometric character. In this sense the result of the paper can be seen as
an illustration of the fact that various generalizations of some geometrical
ideas may leads to “non-geometric” notions. It may also be interesting how
the properties of n-topologies (or at least bitopologies) are related to the
properties of n-graphs and vice versa, e.g. how one can characterize the
convergence in the language of graphs.

The origins of the one-sorted definition of graphs come probably from
the “French school of category theory” (cf [3] or [1] where some references
can be found).
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3This relationship play an important role in various theories of concurency, e.g. in

the theory of Petri nets. The sets of concurent (independent) actions are exactly classes
of a special tolerancy relation (the relation of mutual independence).



