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ON A TOPOLOGICAL PRESENTATION OF GRAPHS 

Abstract. In the paper a bitopological presentation of graphs has been described. 

1. Introduction 
Graphs are widely used as almost "standard" models of various dynamic 

systems, networks and many other devices. There exist a lot of presenta-
tions (definitions) of graphs. These presentations define graphs usually as 
two sorted relational systems i.e. sequences of the form G = (A, V, a) with 
A and V being sets (of edges and vertices resp.) and a structure a which 
can be a function (e.g. of the form A —• V x V), a relation (e.g. of the 
form a C V x A x V) or e.g. a pair of functions of the form A —> V. In the 
last, perhaps the most popular, case by a graph it is meant an algebra of the 
form Q = (Vs, E s w h e r e V s and Es are sets of vertices and edges 
of the graph and df( : A —> V are functions called incidence functions. 
A disadvantage of the mostly used two sorted presentations of graphs is the 
fact that their (homo)morphisms are defined in a not "typically algebraic" 
way (see e.g. [4] for a comment and an interesting other definitions). The 
problem is here the fact that such a homomorphism should respect the par-
tition of the set of elements (that means the set A UV) of a graph into edges 
and vertices. The presentation of graphs used in this paper defines graphs 
with disjoint sets of vertices and arrows as equationally definable algebras 
with one carrier-set only. By a graph we mean any triple A = ( X , s, t) with 
a set X and unary operations s, t : X —• X satisfying the conditions 

s(s(z)) = t(s(z)) = s(x) & s(t(x)) = t(t(®)) = t(x) 
for each x G X. The passage from this definition to the last of two-sorted pre-
sentations mentioned above and in the opposite direction is via the equations 

VQ = {x e X : s(x) = x},Eg = X\VG,d$ = s , E g,d f = t]Eo 

(from triples A = ( X , s, t) to quadruples Q = (Vs, Eg, 4,4)) and 
X(g) = V s U EP, S = <4 U idvg, t = U idvQ 
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(backwards). So the vertices of such (one sorted presentation of) graphs are 
the comon fix-point of the operations s and t . The class of homomorphisms of 
such graphs is richer than the class of "classical" homomorphisms of graphs. 
If one wants to use graph homomorphisms as a model of "aggregation of 
arrows into vertices" then one has to choose between the simple two-sorted 
definition of graphs and complicated definition of their homomorphisms, or 
a "non-typical" definition of graphs (in this case of the above one-sorted pre-
sentation) and typical algebraic definition of their homomorphisms. In this 
paper the second possibility has been chosen. It seems that in this case, 
in contrast e.g. to programming, it is easier to work with one-sorted than 
with two-sorted algebras.We show that the one-sorted presentation of graphs 
leads to a kind of "topological" presentation of them. 

In the paper the standard mathematical notation and terminology (see 
e.g. [3]) is used. Exemption is the notation for the composition of relations 
and functions ((R o S)(x) = S(R(x))) and the fact that total relations are 
written in the form R: X -+Y instead of more often used form RC X xY, 
that means if R C X x Y and for every x € X there exists y E Y with 
xRy then we write R : X —> Y instead of R C X x Y. For all unexplained 
concepts of category theory and notation used in the paper the reader is 
referred to [3]. 

2. Topologies induced by functions 
Let X be a set and g : X —> X be a function satisfying the condition 

92 = 9 0 9 = 9, i-e. g is (considered as a relation) transitive and dense. Let 
us note that in this case we have g(X) = g/ix = {x E X : g(x) = x}, that 
means the set of all fix-points of g is the image of g. For any A C X we 
define C(A) = A U g(A). 

FACT 2.1. The operation C : Pow(X) —> Pow(X) is a topological closure 
operation in the set X. 

The topology and the closure operation determined in a set X by a 
transitive and dense function g : X —> X will be called induced by g and 
denoted by rg and C s respectively. We will drop the index g if it does not 
cause any confusion. Let X be a set, g : X —> X be a transitive and dense 
function, C be the closure operation induced by g and gjlx be the set of all 
fix points of g. 

FACT 2.2. For every element x of X the one element set {x} is closed in the 
topology induced by g iff x E g/ix-

Proof . Let x E X and C({x}) = {x}. So we have C({x}) = {a;}U5({a:}) = 
{x} which implies p({x}) = {x}. The converse is straightforward. • 
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FACT 2.3. For any set X, transitive and dense function g : X —> X and 

x € X the set { x } is open iff x € X\gfix. 

Proo f . Let x € X\g(X) and let us consider the interior of { x } . Let I : 
Pow(X) —• Pow(X) be the interior operation in the topological space 
(.X,TG). From the property 1(A) C Ait follows that I({x}) = 0 or /({a;}) = 
{ x } . If it was I({x}) — 0 then { x } would be a frontier set, i.e. it would be 
closed in rg, which is impossible because x € X\gf i x (c.f. fact 2.2 above). So 
it must be / ( { x } ) = { x } , i.e. { x } is an open set. The converse is evident. • 

The topological space (X, T9) may be very "irregular" and needn't satisfy 
even very weak separation conditions. On the other side, if rg is a T\ topol-
ogy, then g must be the identity relation in X and rg is the discrete topology. 
Some "between cases" are determined by the request that g has a noil empty 
set of fix-points. These fix-points are exactly one element closed sets. All 
other one element sets are open. This property characterizes topological 
spaces induced by transitive and dense functions. 

DEFINITION 2.1. A topological space (X,T) will be called Ti^-space iff any 

one element set is either open or closed. 

The frontier of a one element set in a topological space induced by a 
function is always a one element set. In general in a T^-space it needn't 
be the case. 

EXAMPLE 2.1. Let us consider the space (X,T) with X = {a, i>, c} and r = 

{0, { a } , {a, 6}, {a, c}, X}. This is evidently a T^^-space because the set {a} is 

open as an element of the topology r and sets (bj and {cj are closed because 

their complements {a, c} and {a, b} are open. Now we have closure({a})=X 

and frontier ({a})—{b,cj. This space can be seen as an (undirected) graph 

consisting of one edge a and vertices (the end-points of a) b and c. 

DEFINITION 2.2. For any Ti/2-space {X,T) and a point x € X we define 

gT(x) = y^ye C ( { x } ) & C{{y}) = { y } . 

Let us note that gT : X —• X is a well defined function because the fontier 
set of { x } is a one element set. If there were exist two elements y and y' 

satisfying the condition 

y E C ( { x } ) & C({y}) = {</} & y' € C ( { x } ) & C({y'}) = { y ' } , 

then the set {y,y'} would be included in the frontier of { x } . So this frontier 
would have more then one element. Let us also note that if the set { x } is 
closed then we have gT(x) = { x } that is x is a fix-point of gT. 

LEMMA 2.1. For any Ti^-space (X, r) and any point x 6 X there holds 

Fr({x}=gT(x). 
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FACT 2.4. T h e f u n c t i o n gT is t r a n s i t i v e and dense. 

P r o o f . Let x, y G X and let us assume that { 1 } is an open set. We have 
(x) = y g T ( x ) = z k g T ( z ) = y for some z £ X [def. of superposition] 
2 G C ( { x } ) k C { { z } ) = { z } b y G C ( { z } ) k C ( { y } ) = { y } fdef. of g T ] 

2 G C ( { x } ) k y = z k C { { z } ) = { z } \y G C ( { z } ) k 

C ( { z } ) = { z } ^ y = z ] 

= * y G C ( { x } ) & C ( { y } ) = { y } \y = z ] 

=> 9 r ( x ) = y . 

So we have shown that C g r . Now 
g T ( x ) = y & y e C ( { x } ) k C ( { y } ) = { y } [def. of g*\ 

= > y e C ( { x } ) k C ( { y } ) = { y } k y € C ( { y } ) k C ( { y } ) = {</} ¡ p A q ^ p A q A q ] 

=> g T ( x ) = y k g T ( y ) = y ["def. of g T ] 

=> 3 z x g r z k z g T y i-Pfao) => 3 x P ( x ) ] 
^ (flr 05r ) (®) = y 
which completes the proof of the first part of proposition in the case when 
{ x } is open. If { x } is closed then the proof is straigthforward. 

Let g and g ' be transitive and dense functions in the sets X and X ' 

respectively and / : X —> X ' be a function transforming g into g ' . m 

FACT 2.5. T h e t r i p l e f : ( X , r g ) —• ( X ' , r g > ) is a c o n t i n u o u s m a p p i n g f r o m 

the t o p o l o g i c a l space ( X , r g ) i n t o ( X ' , T g / ) . 

P r o o f . If (/ x f ) ( g ) C g l , i.e. if g o f C / o g ' than we have 
f ( C ( A ) ) = f ( A U g ( A ) ) [def. of the closure operation] 
= f ( A ) U f ( g ( A ) ) \ f ( A U B ) = f ( A ) U f ( B ) ] 

= f ( A ) U ( g o f ) ( A ) \ f ( g ( A ) ) = ( g o f ) ( A ) ] 

C / (A ) U (/ o < / ) ( A ) [ f f o f C f c ( g ' U i d x , ) ] 

= C ' ( f ( A ) ) . [def. of the closure operation] 
• 

LEMMA 2.2. F o r any T i / 2 - s p a c e {X,t) and any p o i n t s x, y G X there holds 

X ^ 2 / & { X } G R & Y G C( {X} ) =• C ( { y } ) = { y } . 

P roo f . Let us assume x j - y k { x } e r k y G C ( { x } ) . From the property 
C ( { x } ) = { x } U F r ( { x } ) we infer that y € F r ( { x } ) that means for any 
A € T with y € A w e have A fl { x } / 0. If the set { y } would not be closed 
then it had to be open and from the fact that (X, r ) is of the type Ti/2 and 
x ^ y we obtain y G { y } £ r & { y } fl { x } = 0 which contradicts the property 
y G F r ( { x } ) . • 

LEMMA 2.3. F o r any T i ^ - s p a c e T = ( X , r ) and p o i n t s x , y G X there holds 

x ^ y k y G C ( x ) { x } G r. 
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P r o o f . If it was x ^ y ¿¿y € C(x) k, {1} ^ r then it would be C"({a;}) = {x} 
because T is Tj/2-space. Now it would be 

y € {x} = C({x}) & y ± x 

which is impossible. • 

COROLLARY 2.1. For any Tx/2-space (X, r) and any points x, y 6 X there 

holds 

x + yk,yz C({x}) C({y}) = {y}. 

P r o o f . Straightforward. • 

F A C T 2 .6 . For any T^j^-spaces T = ( X , R) and T' — (X', r ' ) and any con-

tinuous mapping f :T —• T ' we have 

gT(x) = y=* gT'(f(x)) = / ( y ) 

for all x, y € X. 

P r o o f . Let x, y 6 X and let gT{x) = y. So we have 

y € C({*}) & C({y}) = {y}. 

From the continuity of / we obtain 

/(y) € f(C({x})) C <?'(/({*})) & /(C({y})) = {/(y)}. 

Let us consider the set {/(y)}. If it is closed then C'({/(y)}) = {/(y)} 
and gTi(f(x)) = f(y). If it is open then f(x) = /(y) by Corollary 2.3 
above (if it was f(x) ^ /(y) then it would be C"({/(y)}) = {/(?/)} because 
/(y) G C(/({*}))) . • 

For any T ^ -space T = (X, r) let T(T) = (X, gT) and for any continous 
mapping / : T —• T ' let T(f) : T(T) —> T(T') be given by the assignment 
R(/)(®) = f(x) for any x G X. Then T : T o p — • T D f u n is a functor from 
the category Topi/2 of T ^ -spaces into the category T D f u n of transitive 
and dense functions. Analogously assigning to any pair 7 = (X,g) with 
X being a set and g a transitive and dense function from X into X the 
topological space (X, rg) and to any triple / : (X, g) —> (X'g') with g and 
g' being transitive and dense funtions g : X —> X and g' : X' —> X' and 
/ : X —• X' being a fuction transforming g into g' the triple / : (X, rg) —• 
(X\ Tgi) we obtain a functor A : T D f u n — » T o p ^ from the category T D f u n 
into the category T o p ^ -

COROLLARY 2 .2 . Categories TDfun and Topi¡^ are equivalent. 

P r o o f . It is an immediate consequence of the fact 2.6 and 2.7 above. • 

The above corrollary allows to consider unary algebras of the form (A,UJ) 

with the operation U> : A—>A satisfying the condition w o w = w as T1/2 
topological spaces and vice versa. As we have seen in the introduction graphs 
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can be treated as unary algebras of the form A = (X, s, t) with a set X and 
unary operations s, t : X —• X satisfying the conditions 

s(s(x)) = t(s(®)) = s(x) k s(t(®)) = t(t(x)) = t(x) 
that means a kind of "merging" of two algebras of the form (X,U>) with 
(seeing as relations) transitive and dense operations s and t. The topological 
counterparts of such structures are triples of the form (X, Ti,T2) with T ^ 
topoplogies ti,T2 C POW(X). Such triples are known as bitopological spaces 
They will be considered in the next section. 

Let us note some simply properties of T^-spaces. 

COROLLARY 2.3. For any Ti/2-space T = (X , r ) and, x, y G X it holds 
xRTy x = y k C{x) = {1} or x ^ y k y G C(x). 

Proof . If xRTy then 
xRry & (x = y or x ^ y) k (y G C(x) k C(y) = {y}) 
O i = l / & j / E C{x) k C(y) = {y} or 
x¿yky€ C(x) k C(y) = {y}. 

Now 
x = y k y G C{x) k C(y) = {y} x = y k C(x) = {x} [evident] 

and 
x ^ y k y e C(x) k C(y) = C(x). [Corollary 2.1] • 

LEMMA 2.4. For any set A C X it holds 
C(A)\A = Rr(A)\A. 

Proof , a) C(A)\A C Rr(A)\A. 
Let y G If it was ~{xRry) that means y £ C(x) for every x € A 
(see Corollary 2.3) then we would have 

X6A xeA 

which contradicts the assumption x G C(A). So it must exist x 6 A with 
y G C(x). Now let us assume that {y} ^ C(y), i.e. that {y} is an open set 
and let XQ G A satisfy the condition y G C(x0) (see the reasoning above). 
So XQ y {y £ A) and we obtain xoRry by Corollary 2.2. We have proved 
that 

y G C{A)\A =• 3 i e A xRry k y i A & y G (RR(A)\A) 
which completes the proof. 

b) RR(A)\A C C(A)\A. 
If y G (RT(A)\A) then there exists XQ A such that xRTy k y £ A. 
So we have 

y G C(x0) k C(y) = {y} k x ± y 
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(because XQ e A & y ^ A). Now 

y € C(xo) Ç C{A) ky<£A 

(because {y} Ç A) and consequently 

y € C(A)\A. 

PROPOSITION 2 . 1 . F o r any set A c X we have 

C(A) = CR(A). 

P r o o f , lî A Ç X then we have: 
C{A) = (C(A)\,4) U A 
= (Rr(A)\A) U A [C(j4)V1 = Rr(A)\A by Lemma 2.4.1 
= AuRr(A) 

= CR(A). [ d e f . of CR] M 

PROPOSITION 2 . 2 . In any Ti/^-space Y = (X,T) there holds 

c ( [ j A t ) = [JC(At) 

teT teT 

for any family (At)teT of subsets of X. 

P r o o f . For any y Ç. X and any family ( A t ) t e T it holds 
y e C( U At) & y 6 CR( ( J At) [Proposition 2.1.] 

teT teT 

** y e U At o r 3 i e (J AtxRry [def . of CR\ 
teT ter 

ye (J At or 3 i e x 3 teT x e At k xRry. 
teT 

If V S U At then y £ to for some to 6 T and consequently 
teT 

y e U c(At) 
teT 

because At Ç C(At) for any teT. 
Let xo and AQ e T satisfy the condition 

y U A t & 2 0 ̂ y & x ° 6 

teT 

Now 
y$Atoh x0Rry & x0 6 Ato 

that means y e Rr(Ato), i.e. y e CR(Ato) which implies y € C(Ato) by 
Proposition 2.2. So, there exists teT such that y € C(At), i.e. 

y e U C(A*) 
teT 

which completes the proof. 
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If y ^ IJ At then y £ At for every t e T. So we have proved 
teT 

C\jAtc[jC(A). 
teT teT 

The converse inclusion holds for any family of sets in any topology. • 

COROLLARY 2.4. In any T\ji-space T = (X, r) and any family of subsets 
(At)teT of X there holds 

VteTAt G T =» ( p | At) e T. 
teT 

P r o o f . Evident by De Morgan's laws. • 

2.1. Bitopological spaces. By a bitopological space we mean a set en-
dowed in two topologies, i.e. a triple of the form (X, 71,72), ((X, Ci, C^or 
(X,I\ , l2) resp.) with ri,T2 being families of open sets (Ci,C2 being topo-
logical closure operations and I i , l2 being topological interior operations 
resp.). Of course topologies in X may be defined in many other ways 
(e.g. by bases, subbases etc.). A triple / : (X, n , 72) —> (X1, T[,T'2) with 
(X, ri , 72), (X', r{, 7-5) being bitopological spaces and / : X —> X' being a 
function will be called bicontinuous mapping iff both / : (X, ri) —• (X', t{) 
and / : (X, 7-2) —> (X', T'2) are continuous mappings. For more detailed 
description of bitopological spaces the reader is referred to [2]. 

Tx/2 bitopological spaces in which the frontier of any one element set is 
a one element set as well correspond to graphs. More precisely a graph can 
be seen as a bitopological Tj/2-space (X, ri , 7-2) in which the frontier of any 
one element set is (in both topologies) a one element set. In what follows we 
will frequently use such spaces. They will be called d-spaces (directed graph 
spaces). Let % = (X, ri, T2) be such a d-space and C r i ,CT 2 : Pow(X) —• 
Pow(X) closure operations in T corresponding to the topologies T\ and 
72. If we will seen X as a graph, then the operations Cn and CT2 are our 
candidates for the source and target operation in the set X. Unfortunately 
in general they needn't have the common set of fix-poins. 

EXAMPLE 2.2. Let % = (X, 7-1,72) be the space with X = {a, £>, c} and 
topologies t\ = {0, {i>}, {6, c}, X } and t<i = {0, {6}, {a, 6}, X}. Now we have 
fix(Cn) = {a} and fix(CT2) = {c}. So if we would like to see the closure 
operations in the space as the source and target operations of a graph struc-
ture on the set X then the set {a} would be a vertex in the sense of CTl but not 
in the sense ofCT2. Consequently we have (Cn oCr2)({6}) = CT2({a, 6}) = X 
and (CTl o C r i )({&}) = CTl({a, b}) = {a, 6} that means CTl o CT2 / CTl o Cn 
which implies that the axioms defining graphs are not satisfied. 
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The topological counterpart of the equations 

t(s(x)) = s(x) & s(t(z)) = t(x) 

is the condition that both topologies have the same families of one element 
open sets (i.e. the restrictons of both topologies to one element sets equals) 
and the same families of one element closed sets. More precisely the counter-
part of the equation t(s(x)) = s(x) is the condition that every one element 
closed set in T\ is closed in 72. The conterpart of the second equation is 
analogous. 

DEFINITION 2.3. Topologies T\ and r2 in a set X will be called open com-
patible on a family F C Pow(X) iff for any set A G F A e t\ <==$• A € T2, 
closed compatible on F iff any for any set A € F A is closed in T\ A is 
closed in T2 and compatible iff they are open and closed compatible on F. 

Graphs are determined by d-spaces of the form T = (X, TI, with 
topologies compatible on the family of all one-element subsets of X The 
bicontinous mappings correspond to graph homomorphisms. 

PROPOSITION 2.3. The category of graphs seeing as one sorted algebras 
A = (X,s,t) with a set X and unary operations s,t : X —> X satisfying 
the conditions 

s(s(x)) = t(s(x)) = s(x) k s(t(x)) = t(t(x)) = t(x) 

is equivalent to the category of d-spaces and bicontinous mappings. 

Proof . Straigthforward. • 

2.1.1. Modal logic 

In the paper [5] a new approach to the modal operators of necessity and 
possibility has been introduced. It bases on some "negation - operations" 
in the so called bi-Heyting lattices. The main examples of these operators 
are given by means of graphs. We show how these "negations" can be easily 
defined by means of topologies introduced in the paper. Let us recall some 
notions from [5]. 

DEFINITION 2.4. A Heyting algebra is a bounded distributive lattice L with 
an "implication" operation —L x L —> L with the following property 

x <y —> z i f f x Ay < z 
for all x,y,z £ L. A co-Heyting algebra is a bounded distributive lattice L 
with a "subtraction" operation \: L x L —> L with the following property 

%\y < z i f f x <y\/ z 
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for all x,y,z 6 L. Notice that L is a co-Heyting algebra i f f the dual lattice 
obtained by reversing the order relation of L, is a Heyting algebra. The 

operation \ in L is simply —> in L°. A bi-Heyting algebra is a bounded 
distributive lattice that is both a Heyting and a co-Heyting algebra. 

In Gentzen's formalism the defining properties for —> and \ may be writ-
ten in the form 

x < y —* z x\y < z 
x Ay < z x <y\! z' 

Having these operations one can define two "negation": ->x = x —> 0 (the 
usual intuitionistic negation) and ~ x — 1\ x, called in [5] the supplement, 
where 0 and 1 are the bottom and top elements of the lattice, respectively. 
They have the following defining properties 

x < -i y ~ x < y 
x Ay = 0 1 = xW y' 

So -ix is the largest element disjoint from x and ~ x is the smallest element 
whose join with x gives the top element 1. 
PROPOSITION 2.4. (see [5]) In a Heyting algebra the negation operation 
-i is order reversing and satisfies x < -i-i®. In a co-Heyting algebra the 
supplementary operation ~ is also order reversing and ~~ x < x. 

EXAMPLES, (see [5]) (1) A Boolean algebra is a bi-Heyting algebra. Define 
x —* y = c(x) V y and x\y = x A c(y), where c( ) is the operation of 
Boolean complement. Notice that in this case - n x = c(x). Conversely, 
a bi-Heyting algebra such that ->x =~ x for all x is automatically a Boolean 
algebra. 

(2) Let X be a topological space. It is well-known that the lattice of 
open sets of X constitutes a Heyting algebra. We define U V (for U and 
V open sets of X) to be the interior of c(U) U V, where c( ) is the usual 
Boolean complement. 

Dually, the closed sets of X constitutes a co-Heyting algebra by defining 
F\G (for F and G closed sets of X) to be the closure of F n c(G). 

The third example considered by the authors comes from the theory of 
graphs. It is written in a form based on two sorted presentation of graphs1. 
We present it in a little different form based on one sorted graphs. 

(3) Let G = (X, s, t) be a graph. Then the lattice P(G) of subgraphs of 
G is a bi-Heyting algebra2. The following text is a citation from [5] (p. 29). 

"Take, for example, the following graph: 
1The authors used the name "irreflexive multigraph" instead of "graph". 
2It is exactly the set of all closed sets of the topology (closure operation) determined 

by the corresponding graph. 
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We write G = {a, 6, c, d, e, /, /i} keeping in mind the relations 60(b) = 
a, ¿1(6) = a, <5o(c) = 0, ¿i(c) = d, etc. In this notation, a subgraph of a graph 
G is simply a subset of G closed under the operations of taking source and 
target of its arrows. 

We can clearly take unions and intersections of a subgraphs but what 
about complements? Taking the set-theoretical complement c{X) of X will 
not do, since it is not a graph in general. We may get "problematic" edges, 
i.e. edges whose sources or targets are missing in c(X). To make a graph we 
have two options: either disregard problematic edges or, alternatively, keep 
them and add their sources and targets. The first option leads to the Heyting 
negation -<X, whereas the second leads to the co-Heyting supplement ~ X. 

Take, for example, that subgraph X — {a, b, c, d, g} of the graph above. 
The set-theoretical complement is {e, /, /i} which is not a subgraph, the prob-
lematic arrows being e and h. If we disregard them, we obtain -<X = 
{/}, the largest subgraph disjoint from X. On the other hand, if we keep 
them and add the missing sources and targets, namely d and g we obtain 
~ X = {d,e, f,g,h}, the smallest subgraph whose union with X gives the 
whole graph G." 

The problem with the construction of the Heyting negation is to find 
the greatest subgraph of a graph disjoint to another subgraph of this graph. 
In the "topological" presentation of graphs it can be solved by Proposition 
2.2. Other considerations from [5] can be translated into the topological 
formalism proposed in part 2. So instead about some very special operations 
on graphs one can apply simply the standard constructions to the topological 
spaces corresponding to graphs. Of course the reasoning can be immediately 
extended to hypergraphs. 
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3. Concluding remarks 
There exists a lot of various "translations" of the language of relations 

(functions) into that of (families of) sets. Perhaps the most well known 
examples are the principle of abstraction or the relationships between toler-
ance relations and covering families of a set3. There are also known some 
connections between relational systems and topology, e.g. topological spaces 
generated by semi- or partial orders. The result presented in the paper is 
of the same kind. The only essential difference here is the type of consid-
ered spaces; they are not "similar" to the "classical" topological spaces with 
a very "geometrical" origin. On the another side the origin of graphs is of 
a geometric character. In this sense the result of the paper can be seen as 
an illustration of the fact that various generalizations of some geometrical 
ideas may leads to "non-geometric" notions. It may also be interesting how 
the properties of n-topologies (or at least bitopologies) are related to the 
properties of n-graphs and vice versa, e.g. how one can characterize the 
convergence in the language of graphs. 

The origins of the one-sorted definition of graphs come probably from 
the "French school of category theory" (cf [3] or [1] where some references 
can be found). 
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3This relationship play an important role in various theories of concurency, e.g. in 
the theory of Petri nets. The sets of conçurent (independent) actions axe exactly classes 
of a special tolerancy relation (the relation of mutual independence). 


