
DEMONSTRATIO MATHEMATICA 
Vol. XXXVII No 3 2004 

Joanna Piasecka 

PRICING OF EUROPEAN A N D AMERICAN CLAIMS IN 
THE CRR MODEL WITH FIXED PLUS - CONCAVE 

TRANSACTION COSTS 

Abstract. In the paper CRR model with fixed + concave transaction costs is studied. 
Pricing of European and American claims is considered. The paper is a generalization of 
[4], where only concave transaction cost were investigated. 

1. Introduction 
In. the paper we consider a discrete time financial market where two 

assets are given for trading, a riskless bond and a risky stock whose price is 
characterized by the so-called Cox-Ross-Rubinstein (CRR) model (see [3]). 
Transfers of wealth from one asset to another take place only at the discrete 
moments and the fixed + concave transaction costs for these transfers are 
incurred. A fixed costs are paid obligatory at each time moment even if 
there are no transactions. The case of nonobligatory costs i.e. the case 
when we pay fixed costs only after transaction is more complicated (due to 
discontinuity of the cost function) and will be studied independently. 

We show that under some mild assumptions a replicating strategy is 
optimal for a special class of European claims. Next, we prove that if the 
transaction costs are sufficiently small, a replicating strategy is optimal for 
any European claim. Moreover, for both European and American claims the 
sets of capitals which are sufficient, starting from a given moment to hedge 
contingent claims, are characterized. 

The paper extends [1], [2], [6], [7] where the CRR model with proportional 
transaction costs was studied and [4] where the model with only concave 
transaction costs was considered. 

The CRR model is convenient from calculation point of view. As is 
shown in [5], a number of discrete time models with random rate of return 

1991 Mathematics Subject Classification: Primary 90A60; Secondary 90A12. 
Key words and phrases: claim, hedging, transaction costs, binomial model. 



728 J. Piasecka 

can be reduced to certain CRR models. Fixed transactions costs together 
with proportional or concave appear on various financial market, however 
frequently in mathematical modeling are neglected. 

The paper is a proof of Ph.D. thesis written under guidance of Professor 
tukasz Stettner, to whom the author wishes to express his thanks. 

2. The model 
Let (ii, F, P) be a probability space with il = {a, b}T where — 1 < a < 0 

and b > 0. We consider a market with two assets, a risky stock and a 
riskless bond with the constant price assumed for simplicity to be equal to 
one. Throughout this paper (in)equalities or other statements depending on 
u e if not stated otherwise will be understood in the P almost sure sense. 

Let st be the price of the stock at time t = 0 , 1 , . . . , T. We assume that 
St satisfies the following formula: s i + i = (1 + rjt+l)st, t = 0 , 1 , . . . ,T — 1, 
so € R + \ { 0 } , where r)t, t = 1 , . . . , T is a sequence of i.i.d. random variables 
such that P(r]t = a) + P(f]t = b) = 1 and 0 < P(rjt = a) < 1 for each 
t — 1,... ,T. 

The above recursive formula for the price of the stock characterize so 
called Cox-Ross-Rubinstein model. 

For any w = (u>i,... ,u>t) £ ^ we put U>Q = (e,U2, • • • ,wr) and = 
(cji, . . . , ujt, e, u>t+2, • • •, wt ) for t = 1 , . . . , T - 1, and e = a,b. 

Let F = {Ft, t = 0 , 1 , . . . , T} be a family of increasing sub-cr-fields such 
that Ft = CT(SU, 0 < u < i), t = 0 , 1 , . . . , T. We assume that F = FT. 

In our model we consider fixed + concave transaction costs. We define 
two functions c : R + U {0} R + U {0} and d : R + U {0} R + U {0} which 
satisfy the following conditions: 

1. c(x)- is convex and increasing function, 
2. c(0) = 0 and (1 - ¡x)x < c(x) < x, 
3. lim c'(x) = 1, c'(x) < 1 and c'(0) = 1 - ¿x, x—>+oo 
4. d(x)- is concave and increasing function, 
5. d(0) = 0 and x < d(x) < (1 + \)x, 
6. lim d'[x) = 1, d'(x) > 1 and d'(0) = 1 + A, X—>+00 

with A being the proportional transaction cost rate for purchasing the 
asset and fi being the proportional transaction cost rate for selling the 
asset. 

Define the functions Ti : R —> R + U {0} and r 2 : R R + U {0}: 

(2.1) 
x > 0 
x < 0 

and 



Pricing of European and American claims 729 

(2.2) X Z ° 0 
10, x < 0 

where c > 0 is a fixed cost for purchasing and selling assets. Notice that we 
assume in this paper that fixed costs for purchasing and selling assets are 
equal. Let 

(2.3) r(x) = / Tl(x)' 
[ —T2(—X) X < 0 . 

The function T(X) can be interpreted as the cost of getting the stock position 
worth x (x negative means that we sell |a:| stocks). 

A trading strategy (x , y ) is a pair of processes {(xt,yt), i = 0, . . . , T } , 
where xt, yt are Ft measurable for each t = 0 , . . . , T, and xt is an amount 
of money located at time t on the banking account and yt is the number of 
assets in our portfolio at time t after possible transactions. In what follows 
we shall assume that at any time t we can make at almost one transaction 
and even when we don't change our portfolio (keep the same number of 
assets) we have to pay a constant transaction cost equal to c. A trading 
strategy (x , y) is said to be self-financial if 

(2.4) xt - xt-i + r ( (y t - y t _i )s t ) = 0, t = 0,...,T. 

We shall denote the set of all self-financing, trading strategies by A. 

3. European claims 
A European claim tp is a pair ip = (tpX) <p2) of FT measurable random vari-

ables. Here <px, ip2 denote number of units of bonds and stocks respectively, 
that are paid to the buyer of the option at time T. 

We say that a trading strategy (x , y) € A hedges a European claim ip if 

(3.1) y?! - xT-1 + r((y>2 ~ 2/r - l )«r) < 0. 

We say that a trading strategy (x, y) € A is replicating for a European claim 
ip if 

( 3 . 2 ) <px - x T - i + r(((p2 - V T - I ) S T ) = 0 . 

For any claim <p, if (x, y) 6 A hedges <p then we put XT = <PI(ST) and 
VT = V2 (ST)- For CRR model the replication means: 

(3.3) xT-1 - ¥>i(s r - i ( l + e)) = t ( ( ^ 2 ( s t _ i ( 1 + e)) - yT-i)sT-i(l + c)), 

for e = a,b. For e = a we have 

(3-4) XT-i - TF = r((v>5 - y r - i ) 4 - i ) . 

where := s r - i ( l + a), <p\ := ^ ( a r . ^ l + a)), tp% := (p2(sT-i(l + a)). 
For e = b we have 
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(3.5) z T _ i - <p\ = T((<pb2 - yr^s^i), 

where sbT_x := sT-i(l + b), <p\ := ipx(sT-i(l + b)), <pb2 := <p2{sT-i( 1 + b)). 

Define function <f> as follows 

(3.6) <t>t+i(z) •= xat-xbt+ i~((yt - z)sa) - r((yb - z)sb). 

Subtracting (3.4) from (3.5) we conclude that the replication condition is 
satisfied when 

(3.7) Mvt-I) = 0. 

Notice that t(x) and <f>t+i(z) are continuous functions. Furthermore taking 
into account that 

d(x) — d(y) < x — y for x < y 

we have 

lim <j>t+l{z) = lim [xat - xb + T((y? - z)sat) - r((yb - z)sb)] = 
z—*—oo z—*—oo 

= xat-xb+ lim [d((y? - z)s?) - d((yb - z)sb)] < 
z—•—oo 

<xat-xb+ lim [{yb - z)sb - (y? - z)s?} =-oo. 
z—*—oo 

Similarly using the fact that 

c(x) — c(y) > x — y for x < y 

we obtain 
1™ <f>t+i(z) = 2—++00 

Consequently the range of (f>t+1 (z) is equal to R. 
We have: 

THEOREM 3.1. If > - j ^ then for each European claim y and CRR 

model there exists a unique replicating strategy (xi,yi). Moreover, if 

(1) yfZ < rn^i < 
then for each 0 < t < T — 1 

(2) Vt <vt< yht-

Proo f . Notice that under > jz^ the mapping 4>t+\(z) strictly in-
creasing. Since its range equal to R there is the unique solution yr-i of the 
equation ^ r i v r - i ) — 0-

It remains to show inequality (2). We use backward induction. For 
t = T - 1 inequality (2) follows from (1). Assume (2) holds for t. Then: 

< ¿ T i < y £ 

and 

Vt-i < ybt-1 < yf-v 
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Since be the uniqueness of the solutions to <f>t(yt̂ 1) = 0 we have = 
and we obtain < 

We know, that for any t < T the system of equations is satisfied: 

( 3 g ) f xt - i? = T(Q - y t ) s f ) 

Therefore 

{ x U - x t ^ T d y ^ - y l ^ s t , ) . 

Subtracting equations and taking account that x\°il = i (which follows 
from the fact that y\°ii = Vt-i) w e obtain: 

C i - = ^ ( ( y S - ¿ T i K - i ) - -
Notice that 

r ( ( g ; - - ^ ( ( y f i - y t i K - i ) > - ^ ( (yT i - y t i K - i ) + * 
and 

r ( ( y £ - i) - - ¿ U K - i ) < r ( ( y t i - - c -
Therefore 

- r ( ( i g r i - E L K ^ I ) + C < - C i < ^ ( ¿ f i - - c. 
Next, we observe that 

M i f i - i ) = ¿ T i - ¿ T i + r i C g T i ^ i ^ i K - 1 ) - r((yTi - O t i ) = 
= + c - r((yt

b_i " y t
a_i)sgi) < ^ 

< r d y l , - y U ^ ) - c + c - r((yt
b_i - = 0 

and 

M v l i ) > ~T{{yf—i - v l i ) s? - i ) + c + r « ^ - - c = o. 
By monotonicity and continuity of the function 4>t(z) there exists yt-i such 
that <f>t(yt^i) = 0 and should lie between and which by induction 
completes the proof. • 

Now, for any (p, q) 6 R 2 we define the sets: 

(3 .9) C ^ ) = { ( « , v ) € R 2 : p - u + r{{q - v ) s ) < 0 } 

and 

(3.10) C g ^ = { ( u , v ) € R 2 : p - u + r'((q - v)s) < 0}, 
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where 

(3.11) T>(X) = i d { x ) > 
K J \ - c ( - x ) x < 0 . 

Given an option (<pi, </?2), we say that a hedging strategy (x, y) e A is optimal 
if for any other hedging strategy (x, y) G A we have 
C(xï,yïst) Q C(xt,ytst)-

The following theorem describes a relation between replicating strategies 
for concave and fixed + concave transaction costs. 

THEOREM 3.2. Let > and (ft , yt) be a replicating strategy for 
any European claim (</?i,¥>2) fixed + concave transaction costs, and 
(xt, yt) be a replicating strategy for any European claim (tpi, </?2) with concave 
transaction costs. Then 

iyt=Vt 

| xt = (T - t)c + xi, 

where c denotes a fixed transaction costs. 

P r o o f . We use backward induction. 
The strategy (x t , y i ) replicates the claim (v^ii ¥>2) with fixed + concave 

transaction costs when 

<PÎ-<Pi + - 1) - - = 0 
and the strategy (xl ,y i ) replicates the claim tp2) with concave transac-
tion costs when 

~ y>i + - W-î)sT-i) ~ t ' ( (V2 - P r = T ) 4 - i ) . = 

Since t(x) = t'(x) + c by uniqueness of the solution to (3.7) we have that 

VT-i = VT—1 • 

Next 

and 

xfZi = <p$ + r'((y>2 - Vf^l)sT-i)-

Subtracting xt- 1 from x r ^ l we obtain 

xrl1 - xf^i = r((<P2 - y r ^ i ) ^ : ) - T'((<^ - yf^i)sT~i)-

Since t(x) = r'(:r) + c we have xt- 1 = xt- 1 + c. 

Assume that in the moment t + 1 conditions hold 
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(3.12) i y m = y m 
[ xt+i = ( T - 1 - l ) c + xt+1. 

By definition of replication and by inductively assuming we have 

i ? - 4 + T((yf - yt)sa
t) - r ( ( j J - yt)st

b) = 0 

for the strategy (xt,yi) and for the strategy (xt, yl): 

i f - ^ + - - - = 0. 

Therefore by uniqueness of the solution to <j>t+i(yt) — 0 and using again the 
fact that r (x) = r ' ( x ) + c we obtain that 

yi - Vi-

We observe that 
xt = xa

t + - &)«?) 

and 

For e = 6 by analogy we obtain 

x-t = 4 + r'(^t-yl)sb
t). 

Subtracting xi from xt and by f t + i = (T — t — l)c 4- xt+i we have: 

xt — xi=(T — t)c, 

which completes the proof. • 

Now, for each t = 1 , . . . , T we define the sets A't, At consisting of a 
special type of pairs of random variables. 

Let A 't,t = 1, . . . , T denote a set of all pairs of random variables 
(pi(s t),p2{st)) such that p2 is a nondecreasing real function and there exists 
a random variable q(st-1) such that 

^ P2(sU)<Q(st-i)<P2(sl1), 

and A t , t = 1 , . . . , T denote a set of all pairs of random variables 
(Pi(st)iP2(sf)) such that p2 is a nondecreasing real function and there exists 
a random variable q(st~i) such that 

a l l d P2(St-l) < q(st-l) < P2(St-l). 
The class A't and A t is quite natural and contains the following claims: 

1) put option with pi(s) = M1S<M and P2(s) = — 1 3<m-
2) call option with pi(s) = —M1s>m and P2{s) = 1 3>m-
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Using [4] we have the following fact: 

THEOREM 3.3. If the strategy (xi,yi) is replicating strategy for European 
claim (fi,<P2) ^ Aji with only concave transaction costs, then for any strat-
egy (:it,yt) € A we have: if (xt+l,yt+i) G C(°IT+LIYT+LST+1) then (xt,yt) G 

We want to prove the optimality of the strategy (xt,Vt) with fixed + 
concave transaction costs, the existence of which we proved in Theorem 3.1. 

THEOREM 3.4. Under > i±A for a n y European claim y G A t the 
replicating strategy (x t ,yl ) € A is optimal. 

Proof . Let ip be a European claim. By Theorem 3.1 there exists a unique 
strategy (xt,yt) € A and ip € A t and inequalities y? <yt<ybt,t = o,..., 
T - 1 hold. 

Let <fi = xt and ip2 = VT-
Let (xt,yt) be a hedging strategy for the claim tp, i.e. 

1°) x Q - XT-i + r ( ( y g - 2 / r - i ) 4 - i ) < 0 

26) x ^ - XT-i + r{(yb
Trl - y r - i ) 4 - i ) < 

Since the strategy (xt, yt) is replicating we have: 
3a) x g - xÎTî + r ( ( y g - = 0 
3b) - + - = 0. 
We want to show that 

(3.13) xr^i - xt-i + T'((yr^ï - y r - i ) s r - i ) ^ °> 

i.e. (x r - i >2/T-l) G We know that %t-i ~ V7i(st—i) an<^ 

VT-i = V2( sr-i) f o r e = a,b. 
There are two cases: 

1. y r - i < yf^i-
Prom 2b) and 36) we have: 

xiTî - XT-i + r((y§._! - !/r-i)«r-i) - T(0/r-i ~ 2/?^î)sr-i) ^ 

Because yj^Tî < we obtain: 

- y r - i ) 4 - i ) - r((2/r-i ~ ^ 
> d ( ( y ^ l - y T - i ) s r - i ) ^ ( w ^ î _ W - i ) « r - i 

and 
r((y?Tï - y r - i ) s r - i ) = d((yr^î - y r - i ) s r - i ) + c < 
(1 + A)(y?Tî - y T - i ) s T - i + C= ^ ( y r w - y r - i ) 4 - i + c-



Pricing of European and American claims 

Therefore 

(yr^i - 2/t—i)4—1 > ( i + ^ { r { { y r ^ i - y r - i ) s r - i ) - c) 

and 

T({Vt-\ ~ ! / t - i ) 4 - i ) ~ r ( ( 4 - i ~ y r ^ ) 4 - i ) ^ (VT-i- ~ 2/T-I)4-I 

> {l+!y(T((2/T^i - y r - i ) sT - i ) - c) > - y r - i ) sT- i ) - c. 

Consequently, 

i r ^ i - ^T-I + - y r - i ) sT- i ) < 0, 

which means that ( x T - i , y T - i ) € ^ S T _ l ) -

2. yr - i > yr^i-
Prom 1°) and 3°) we have 

f r ^ i - XT-1 + T((?/j._1 - y r - i ) 4 - i ) - T((2/T_I - y r ^ i ) 4 - i ) < 0. 

Moreover 

- y r ^ i ) 4 - i ) - T ( ( y ih i - 2/t- I )4- I ) ^ 

< c((yT-1 - ^ (w-i ~ y?^i)4-i 

and 

-r{(yT-1 - = c( (yr- i - 2/r^i)sr-i) - c > 

> (1 - v){yT-i - - c = - y r ^ i ) 4 - i ~ c-

Therefore 

( y T - i - j/r^Osx-i < - r ( (y T -1 - 2/t^i)st-i))-
i /x 

Finally 

- i/T- I )4_ i ) - - j/r^ i )4 - i ) ^ 

> - yr-ljST-i) - c) > - yT_i)sT-i) - c. 

Summarizing 

X - XT-i + ^ ( ( y i ^ i - 2/T-i)sr-i) < 0 

so that (3.13) is satisfied. 
Assume inductively now that (xt+i,yt+i) 6 li2/—1Sl+l) i-e. 

£t+1 - ^t+i + 1 - y t + i ) s t + i ) < 0. 

We want to show that in the moment t (xt,yt) E C ^ ^tSty i.e. 

x t - x t + r'({yt - yt)st) < 0. 

Since (xt+i,yt+i) e l S t + l ) and by Theorem 3.2 we have 
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(3.14) 
( xt+i = (T - t - l)c + xt+1, 

(3.15) (w£+I = Wh-I 

where (£t+i>2/t+i) ^ a hedging strategy for the claim (<pi, <p2) without fixed 
transaction costs. Prom this we obtain 

Wt+1 + (T - t - l)c, 2/i+l) € (̂(T—t—l)c+ït+Lyt+Tst+i)" 
Therefore 

(œi+i,yi+i) G c,(°Ct+1,yt+1St+1)-
By Theorem 3.3 we get 

M t ) e c ^ 3 t ) . 

Again, by Theorem 3.2 we obtain 

{xt - (T - t)c, yt) E C°{£t-{T-t)CiÇtSt), 

which means that 
(xt,yt) € C°{£t ytSt). 

By backward induction the proof is therefore complete. • 

3.1. Small transaction costs. In this subsection we consider small trans-
action costs, i.e. costs which satisfy the following inequality: 

(3.16) m i n { i + 6 ; 1 l _ } > i±A. 

Under (3.16) clearly > so that by Theorem 3.1 for any European 
claim tp there exists unique optimal, self-financing, trading strategy (xt, yi) 
which replicates the portfolio (v>i>¥>2) time T. 

By [4] we have the following fact: 

T H E O R E M 3 . 5 . Under ( 3 . 1 6 ) if the strategy (xi,yt) is a replicating, then for 
any strategy (xt,yt) € A we have: if (xt+i, yt+i) € C (

c L _ L _ s t + i ) then 
(xt,yt) € C°--st). 

Now, we want to prove the optimality of the strategy (ft , yt). 

T H E O R E M 3 . 6 . If the condition ( 3 . 1 6 ) is satisfied, then for any European 
claim ip a unique replicating strategy (it, yi) € A is optimal. 

Proof . Let tp be a given European claim. 
Let <pl = XT and <p2 = yr- Let (x t , y t ) be any strategy hedges claim 

<p, i.e. 
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1°) ^ " XT-1 + - I / T - l ) 4 - l ) < 0 

2 6 ) - XT-i + tCCI^..! - w-i)4-i) < 0. 
Since the strategy (f t , yt) is replicating then: 
3°) a g - + r ( ( y g - = 0 

36) - £?Ti + T ( ( 4 _ i - y r ^ ) 4 - i ) = 

We want to show that 

xr^i - xT-1 + r'((y?!ri - yT—i)sT—i) < 0, 

1.e. (xt-i,vt-i) € C ? 

There are six cases^ 
1- VT-i < 2/T̂L < 4-1-
This case is analogous to the proof of case 1. in Theorem 3.3. 

2. 4 - 1 ^ VT-i ^ VT^i-
From 2b) and 3b) we have 

x^l - xT-1 + r((4_i - I/r-i)4-i) ~ r((4-i _ yi^i)4-i) < 0-
Prom the properties of the functions c and d we obtain 

t((4-i - w-i)4-i) ~ ̂ "((4—I - yrw)4-i) ^ 
> (1 - - yr-i)4-i 

and 

^ ( ( y f ^ i - y r - i ) s T - i ) = n ^ j / T ^ i - y r - i ) s r - i ) = 

= d((yr^i - VT-I)ST-I) + c< (2/7^1 - 2 / T - I ) 4 - i + c-

Prom this 

(l/T-l - 2/T—1)4—1 > ~ V T - i ) s t - i ) - c). 

Finally we have 

t((4- 1 - yr-i)4-i) - r((4-i ~ ^ 
^ i 1 ~ / * ) i i x ( r ( ( » T ^ i ~ W - i ) « r - i ) - c) = T'((ufZI - y r - i ) s r - i ) -

And 

XT—1 - XT- 1 + T ' ( ( y ? ! r i - 2 / T - I ) S T - I ) < 0, 

which means that ( x t - i , O T - i ) e ^ ¡ ^ ^ S T _ l } -

3. yr-i < 4-i ^ Vr^ 
Prom 26), 3b) and from (3.16) we have 

(b - A ) ( 4 ^ - 2/r-i) > 0 > ((1 + A) - (1 - M ) ( l + b ) ) ( v f n - 4 ^ ) . 
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Therefore 

(1 + - yr_x) - (1 - + - yfTi) > (1 + X)(y^l - yT_{). 

Prom the properties of the function c and d we obtain 

T((?/r-i - W - i ) 4 - i ) ^ i 1 + B)(VT-I ~ VT-I)ST-I + c, 
2 ) r « ^ - y ? ^ ) ^ ) < (1 - /x)(l + 6)(y§,_1 - y ^ ) s T - i + c, 

3) - y T _ i ) s r _ i ) < (1 + - y T - i ) + c. 
From the last three inequalities we obtain: 

r ( ( y T - i - y r - l ) « T _ i ) - c - r i ^ - i - 2/T^l)4- l ) + c ^ 
> - yr-i)sT-i) - c = - yr-i)sr-i)-

Since 
- xT-1 + t((j4_! - yr-i)sr_i) - - ^ 0 

we therefore have 

ATF^I - XT-I + - yr-i)sT-\) < 0. 

4. 2/7.-1 ^ VT-i ^ y r - i -
This case is analogous to the proof of case 2. in Theorem 3.3. 

5. yr^i < yr-I < UT-V 
From 1°) and 3 a ) we have 

XJ^i - xT_i + r ( ( y f T i - VT-I)ST-I) ~ - i / i r ^ i ) s r - i ) < 0 . 

From the properties of the functions c and d we get 

y r - i ) 4 - i ) - y r ^ i ) 4 - i ) = 
= 1 - y r - i ) 4 - i ) - D((YT-I - ^ 
(1 + - y r - i ) 4 - i 

and 

r ( (y?Ti - 2/r - i ) s r - i ) = - c ( ( y r - i - v t^I )ST- I ) + c < 

< - ( 1 - y){yr-i - yr-i)sT-i + c = { ^ ( y r ^ i - ttr-i)*r-i + c-

Therefore 

(yr^i - y r - i ) 4 - i ^ 7 3 — r ' ( ( y r ^ i - y r - i ) s r - i ) -1 ¡J, 

Finally 
frTi - xt-i + T'((yf^i - yr-i)sr-i) < 0. 

6. yr^i < Vt~ 1 < 3/r-i-
From 1°), 3 a ) and from (3.16) we obtain 

(a + /i)(j/r_i - < 0 < ((1 - /i) - (1 + A)(l + - yr^i)-
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Prom this we get 
(1 + < ! ) ( # _ ! - yT-i) - (1 + A)(l + a){y$_x - yfn) > (1 - ^ ( y ^ - yT-1)-
From the properties of the functions c and d we have 
1) y r - i ) 4 - i ) = " ^ ( ( y r - i - j J ^ r - i ) ^ 

> (yr-i ~ y r - i ) 4 - i + c = (1 + a)(2/r-i ~ s / r - i W - i + c, 
2) - = d((y£^ ~ 1) + c ^ 

< (1 + a)(l + A)(t/j._1 - + c, 

3) T((y^l - yT-i)sT-i) = - c ( ( y r - i - yr^ i ) s r - i ) + c < 
< (1 - - yT-i)sT-i + c. 

The last three inequalities imply 

- y r - i ) 4 - i ) ~ c ~ T ( ( v i Z ~ + c ^ 
> - VT-I)ST-I) ~C = - yT-I)sT-I), 

which together with 
x f^ i - i T _ i + r((y^_1 - yr - i )«T- i ) - r((yf,_1 - y i ^ i ^ r ^ ) < 0 
lead us to the inequality 

- xT-1 + r'((y?Ti - yT-i)sT-i) < 0. 

Therefore (x r - i ,yT- i ) € C?—- v 
V 1 \XT— 1 >!/T— 1ST— 1) 

Assume inductively now that (x t +i ,y t + i ) € C ^ — 1 S t + 1 ) i-e. 

£t+1 ~ zt+i + T'((yt+i - y t+i)si+i) < 0. 
We want to show that in the moment t the strategy (xt, yt) G C ^ 

i.e. 
x t - x t + T'((yt - yt)st) < 0 . 

Since (xt+uyt+i) € C g - ^ ,yt+ist+i) by Theorem 3.2 we obtain 

{Vt+1 = y i + l 

x£i = ( T - t - l ) c + Wn 
and 

y't+i = yt+1 

Ix ' t+1 = xt+1 - ( T - t - l)c, 
where (x' t+1, y{+ 1) is the hedging strategy for the claim (</>i> <¿>2) without fixed 
transaction costs. Prom this we have 

(*i+1 + ( r - 1 - 1 )c,yi + 1) 6 ^((r-t-i)c+ïï+r,vï+Tst+i) • 
Therefore 

(x't+i.yi+i) e Cg ! t+1,y t+1. t+1)-
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By Theorem 3.3 we have 
{x't,y't) e C^t TtSt). 

Consequently by Theorem 3.2 we obtain 
(xt - (T — t)c, yt) € C°{£t_{T_t)c ~St), 

which means that 
(;xt,yt) G tf£tSat) 

and by backward induction the proof is completed. • 

4. American claims 
We define an American claim / as a pair {/(f) = (/i(i), h ( t ) ) , t G 

0 ,1 , . . . , T} of F adapted processes. Here, /i(f), /2(f) denote quantities 
of units of bonds and stocks respectively, that are paid to the option's buyer 
assuming he exercises the option at time t. 

We say that a strategy (x, y) G A hedges an American claim f if 
(4.1) f i W - X t ^ + T i i h W - y t ^ s J ^ O for each t = 0 ,1 , . . . ,T . 
Given an claim / , we say that a hedging strategy (x, y) € A is optimal if for 
any other hedging strategy (x,y) G A we have W s o ) C C(x0)2/QS0). 

In the moment T for replicating strategy (qi(T — 1), <72(̂  — 1)) in one 
step we have 

/ I ( T ) - q\(T - 1) + t ( ( / 2 ( T ) - q2(T - l ) ) S T ) = 0. 
Therefore under the assumptions of Theorem 3.3 or Theorem 3.5 any strat-
egy (r/i,r?2) which hedges (/i(T), /2(T)) should be in C(qi{T-i),q2(T~i)sT-i)-
Consequently a strategy (7/1 > ^2) which we chose at time T —2 after subtrac-
tion an obligatory cost c such be in On the other hand 
that strategy we choose at time T —2 should also hedge (/i(T— 1), /2(T— 1)) 
at time T — 1 i.e. we should have 

ACT - 1) - 7?; + T((/2(T - 1) - V2)ST-I) < 0. 
Therefore - c,t/2) G ̂ M T - I ) M T - I ) S T . I ) n Con-
sequently an optimal strategy would be the one which replicates the peak of 
C(0/i(T-1),/2(T-1)St_!) n (T-1),92(r-l)sT_ 1)• 

Notice that the intersection of sets C ^ x - i ) f2(T-i)sT~i) ^ 
(̂gi(T—1) q2{T-i)sT 1) un<^er concave + fixed transaction costs no longer of 

C° sets form. To describe its form we need more general class of function 
than only the function r or r ' . 

Let T denote a set of all functions 7 which satisfy the following conditions: 
(CI) Vzi, Z2 > 0 and z\ < z2, z 2 - z i < ^{Z2)-^{ZI) < ( 1 + A ) ( Z 2 - . Z I ) , 
(C2) Vzi, z2< 0 and ¿1 < z2, z2-zi > J(Z2)-J(Z{) > ( l - /x)(z2-zi) , 
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(C3) Vz e R , 7 ( z ) < T ( z ) t 

(C4) 7 ( 0 ) = 0 . 
For any (pi,pi) G R 2 w e def ine sets 5 C ( P 1 P 2 ) and 5 C ( P 1 P 2 ) as follows: 

^C(°Pi,P2) = { ( " ' € R 2 : p i - u + r ' ( p 2 - v ) = 0 A v > p 2 } , 

^CiuP2) = e R 2 : Pi ~u + T'(P2 -V) = 0AV< p 2 } . 

For any p = ( p i , p 2 ) and q = (q\, q2) w e define a set V(p , g) as follows: 

V(p, q) = { ( c , d) G d(C° n C j ) : V(u, 1,) G 3(CP° n C j ) if 

w > d t h e n (u, v) € S C j U <9Cj, and if v < d then (u, v) G dC° U dC°j . 

Using [4] we have the fol lowing facts: 

L e m m a 4.1. For any ( c , d ) G V(p,q) there exists 7 G T such that 

c° n C j = { ( u , v) G R 2 : c - u + 7 ( d - v) < 0 } . 

L e m m a 4.2. Let ( p i ( s t ) , p 2 ( s t ) ) , (qi(st),q2(st)) € A T T i e r e exis i random 
variables c(st),d(st) suc/i i/iai / o r any a> G f i i/iere ¿5 a function 7 S t ( w ) € T, 
twi/i the equality 

C° DC0 
(pi,P2St)(w) (gi,92«t)(w) 

= { ( u , » ) 6 R 2 : c (5t ) (w) - u + 7 S t ( d ( s t ) s t - < 0} . 

Moreover, there exists a unique random variable w(st~ 1) such that 

((<£-1 - ^ - 1 ) ^ - 1 ) - 7 , » . , ((<*?-1 " w ( * - l ) K _ i ) = <&-i ~ 4 - 1 

and < w(st-1) < d\_^ 

Now, w e show auxil iary l emma. 

L e m m a 4.3. For each k G R i/ie following inclusions are equivalent: 

iC(x,ys) C C(x',y's)) (^i-fc.ys) C ^fx'-feys))" 

P r o o f . (= • ) A s s u m e tha t C( I i J / s) C C ( x - y , s y Let ( 2 1 , z 2 ) G i.e. 

x — fc - «i + r'{{y - z2)s) < 0. 

From this 

x — k — c — zi + r((y - z2)s) < 0, 

x - ( z i + (c + k)) + r ( ( y - z 2 ) s ) < 0. 

T h a t m e a n s tha t (z\ + (c + k), z2) G C(x y s y Since c C ^ y ^ w e have 
(21 + (c + k), z2) G C(x>,y>a), i.e. 

x' - (zi + (c + k)) + r((y' - z2)s) < 0, 

x' - k - z i + r ' ( ( y ' - z2)s) < 0. 

Therefore ( z 1 ; z 2 ) € C0
{x,_ky,s). 
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( H Assume that C°{x_kys) C C\xl_kyla). Let (zi,z2) E C(xys}, i.e. 

x- zi+ r((y - z2)s) < 0. 
From this 

x + c - zi + r'{{y - Z2)s) < 0, 
{x - k) - (zi - c - k) + r'{{y - z2)s) < 0. 

That means that (zx - c - k,z2) G C°{x_kys). Since C°x_kys) C <? (°x ,_ fcys ) 

we have (zx - c - k, z2) G C^x,_ky,s), i.e. 

x' - k - (zi - c - jfc) + r'((y' - z2)s) < 0, 
x'-zi + r((y' - z2)s) < 0. 

Finally, we obtain (zi, z2) G C^/y^, which completes the proof. • 

THEOREM 4.4. If (x't, y't) € A is a hedging strategy for an American claim 
(fl(t), f2(t)) with fixed + concave transaction costs then 

(x-t,M) = (xt-(T-t)c,y't)e A 

is a hedging strategy for an American claim (fi(t) — (T — t)c, f2{t)) without 
fixed transaction costs. 

Proof. Let {x't, y't) G A be a hedging strategy with fixed transaction costs. 
In the moment t = T the following conditions are satisfied: 

(4-2) h(T) - x'T_x + T ( (/ 2 (T ) - y'r^sr) < 0 

and 

(4.3) - x'T_2 + - y'T_2)sT-1) = 0. 

Therefore 

h(T) - (x'^ -C) + T ' ( (/ 2 (T) - y'R^sr) < 0, 

X'T- 1 - c - (x'T_2 - 2c) + T'DYR-I ~ yr -2 ) s r - i ) = 0. 

Let ( X f , y r ) = (x'T,y'T), (xf^I,Vf^I) = (a^-i ~ c>VT-I) AND 

(xr-2) VT-2) = (X'T-2 ~ 2c, j/y_2)- We obtain 

/i(T) - xr=T + r'((/2(T) - yrr i )sr) < 0, 
z r - i - XT~2 + r ' ( (yr- i - yr-2)sr-i ) = 0. 

We assume that in the moment i + 1 the strategy (it+i,2/i+i) G A hedges 
an American claim (/i(t + 1), f2(t +1)) with fixed transaction costs and the 
strategy (xt+i,yi+i) = {x't+l — (T — t — l)c, y't+i) G A hedges an American 
claim (f\(t +1) — (T — t — l)c, f2(t +1)) without fixed transaction costs and 
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(Xi, yi) = (x't - ( T - i )c, y't), ( x^T , y ^ T ) = ( * i _ i - ( T - i - l )c , y't_x). Then 

h(t + 1) - x't+l + r((f2(t + 1) - yi+1)5t+i) < 0, 

x't - xj . ! + r((y't - 2/i_i)st) = 0. 
Moreover 

h(t + 1) - ( T - t - l ) c - xi+T + r ' ( ( / 2 ( i + 1) - y m ) s i + i ) < 0, 

^t - + T'((yi - yiTT)st) = 0. 

In the moment t the strategy (x' t ,y' t ) 6 A hedges an American claim 
(h{t), fo{t)) with fixed transaction costs, i.e. 

f l ( t ) - x ' t + r ( ( h ( t ) - y ' t ) s t ) < 0 , 

x't_1 - x't_2 + T((y't_1 - y't_2)st-1) = 0. 

Prom this we get 

( A (t) ~ (T — t)c) — ( x j - ( T - t)c - C ) + r ' ( ( / 2 ( t ) - y't)st) < 0, 

( x / t _ 1 - ( r - t - i ) c ) - ( x , t _ 2 - ( T - t - i ) c - c ) + r W t - i - y , t - 2 > t - i ) = o. 

By inductively assuming we obtain 

(h(t) - ( T - t )c ) - (x? - c) + r'((f2(t) - yi)st) < 0, 

" 2 ~ { T - t - 2 )c) + r'((yi=r - y't^)st-i) = 0. 
Finally, we have (xt-2,yt^2) = ( ^ - 2 — (T — t — 2)c,y't_2). By backward 
induction we obtain that the strategy (xt, yt) hedges an American claim 
(hit) — (T — t)c, h(t)) without fixed transaction costs. The proof is com-
pleted. • 

Using [4] we have the following fact: 

THEOREM 4.5. Let f be an American claim such that f £ A t , for each 

t = 1,... ,T and > or f be any claim but condition (3.16) is 

satisfied. Then there exists a strategy (x t , y t ) £ A which is optimal with 

concave transaction costs, i.e. for any strategy (Xt,yt ) € A hedges claim 

(/l) h) we have 

(xt,yt) e C(°£( i ( ) 

for each t = 0,1,..., T - 1. 
THEOREM 4.6. Let f be an American claim such that f 6 A t , for each 

t = 1,... ,T and > or f be any claim but condition (3.16) is satis-

fied. Let (xt> Vt) be an optimal strategy for American claim ( f i ( t ) — ( T — t)c, 

fo(t)) with concave transaction costs. Then the strategy (x t + (T — t)c,yi) 

is optimal for American claim (fi(t),f2(t)) with fixed + concave transaction 

costs. 
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P r o o f . Notice that if ( / i ( t ) , / 2 ( i ) ) e A t then ( / i ( t ) - ( T - t )c , / 2 ( t ) ) e A t . 

Let (xi,yi) = (x't — (T — t)c, y't) G A be any hedging strategy for an Amer-
ican claim ( / i ( i ) — ( T — i)c, / 2 ( t ) ) without fixed transaction costs. B y The-
orem 4.5. we obtain that C ° _ _ t ) C C ( ° £ t i 5 i s t ) . From this C 

C(°(f- t +(r-t)c)-(T-t)c,y ts t)- B y L e m m a 4.3 for k = (T - t)c we get that the 
condition C ( ° x , _ ( T _ t ) c 3 / , s t ) C C ^ ^ is equivalent to the condition C { x W t S t ) 

C C(£t+(T-t)c,ytst)> which completes the proof of optimality of the strategy 
{xt + {T-t)c,yt). • 
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