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PRICING OF EUROPEAN AND AMERICAN CLAIMS IN
THE CRR MODEL WITH FIXED PLUS - CONCAVE
TRANSACTION COSTS

Abstract. In the paper CRR model with fixed + concave transaction costs is studied.
Pricing of European and American claims is considered. The paper is a generalization of
[4], where only concave transaction cost were investigated.

1. Introduction

In. the paper we consider a discrete time financial market where two
assets are given for trading, a riskless bond and a risky stock whose price is
characterized by the so-called Cox-Ross-Rubinstein (CRR) model (see [3]).
Transfers of wealth from one asset to another take place only at the discrete
moments and the fixed + concave transaction costs for these transfers are
incurred. A fixed costs are paid obligatory at each time moment even if
there are no transactions. The case of nonobligatory costs i.e. the case
when we pay fixed costs only after transaction is more complicated (due to
discontinuity of the cost function) and will be studied independently.

We show that under some mild assumptions a replicating strategy is
optimal for a special class of European claims. Next, we prove that if the
transaction costs are sufficiently small, a replicating strategy is optimal for
any European claim. Moreover, for both European and American claims the
sets of capitals which are sufficient, starting from a given moment to hedge
contingent claims, are characterized.

The paper extends [1], [2], [6], [7] where the CRR model with proportional
transaction costs was studied and [4] where the model with only concave
transaction costs was considered.

The CRR model is convenient from calculation point of view. As is
shown in [5], a number of discrete time models with random rate of return
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can be reduced to certain CRR models. Fixed transactions costs together
with proportional or concave appear on various financial market, however
frequently in mathematical modeling are neglected.

The paper is a proof of Ph.D. thesis written under guidance of Professor
Lukasz Stettner, to whom the author wishes to express his thanks.

2. The model

Let (2, F, P) be a probability space with Q = {a,b}” where =1 <a <0
and b > 0. We consider a market with two assets, a risky stock and a
riskless bond with the constant price assumed for simplicity to be equal to
one. Throughout this paper (in)equalities or other statements depending on
w € 1 if not stated otherwise will be understood in the P almost sure sense.

Let s; be the price of the stock at time t = 0,1,...,T. We assume that
s; satisfies the following formula: s;4y = (14 nmyy)st, t =0,1,...,T -1,
so € RT\{0}, where n,,t = 1,...,T is a sequence of i.i.d. random variables
such that P(n, = a) + P(n, = b) = 1and 0 < P(n, = a) < 1 for each
t=1,...,T.

The above recursive formula for the price of the stock characterize so
called Cox-Ross-Rubinstein model.

For any w = (wy,...,wr) € , we put wf§ = (e,ws,...,wr) and w§ =
(Wiy...,wt, €,Wet2,...,wr) fort=1,...,T -1, and e = q,b.

Let F = {F,t =0,1,...,T} be a family of increasing sub-o-fields such
that F; = 0(s,,0 <u<t),t=0,1,...,T. We assume that F' = Fr.

In our model we consider fixed + concave transaction costs. We define
two functions ¢ : R*U{0} — RtU {0} and d: Rt U{0} - R+ U {0} which
satisfy the following conditions:

1. ¢(z)- is convex and increasing function,

c(0) =0 and (1 — p)z < ¢(z) < =,

lim d(z)=1,cd(z)<land (0)=1—p,
T—+00
d(z)- is concave and increasing function,
d(0) =0and z < d(z) < (1 + Nz,
zli&l@d’(:c) =1,d(z)>1and d'(0) =1+ A,
with A being the proportional transaction cost rate for purchasing the
asset and p being the proportional transaction cost rate for selling the
asset.
Define the functions 7; : R —» R* U {0} and 72 : R — R* U {0}:
d(z)+¢, 20
0, <0

S e Wi

(2.1) T1(z) =

and
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(2:2) To(r) = {(c)(a:) —6 z i g

where ¢ > 0 is a fixed cost for purchasing and selling assets. Notice that we
assume in this paper that fixed costs for purchasing and selling assets are
equal. Let

(2.3) (z) = {“(x)’ =20

—7o(~z) =<O0.

The function 7(z) can be interpreted as the cost of getting the stock position
worth = (z negative means that we sell |z| stocks).

A trading strategy (z,y) is a pair of processes {(zt,yt),t = 0,...,T},
where x;,y; are F; measurable for each t = 0,...,T, and z; is an amount
of money located at time t on the banking account and y; is the number of
assets in our portfolio at time t after possible transactions. In what follows
we shall assume that at any time ¢ we can make at almost one transaction
and even when we don’t change our portfolio (keep the same number of
assets) we have to pay a constant transaction cost equal to c¢. A trading
strategy (z,y) is said to be self-financial if

(24) xy— o1 + 7((Ye — y1-1)8¢) =0, t=0,...,T.
We shall denote the set of all self-financing, trading strategies by A.

3. European claims

A European claim ¢ is a pair ¢ = (¢4, ps) of Fr measurable random vari-
ables. Here ¢,, ¢, denote number of units of bonds and stocks respectively,
that are paid to the buyer of the option at time 7.

We say that a trading strategy (z,y) € A hedges a European claim ¢ if
(3.1) @1 — or-1 + 7((p2 — yr-1)s7) < 0.
We say that a trading strategy (z,y) € A is replicating for a European claim
p if
(3.2) ¢y — 271+ 7((p2 — yr-1)5T) = 0.

For any claim ¢, if (z,y) € A hedges ¢ then we put zr = ¢,(s7) and
y1 = po(st). For CRR model the replication means:
(3.3) zr-1—pi(sr—1(1+e€)) = T((p2(sT-1(1 + €)) — yr—1)s7—1(1 + €)),
for e =a,b. For e = a we have

(3.4) zr-1 — 91 = 7((¥5 — yr-1)s7_1),

where s%_; 1= st_1(1+ a), ¢} := ¢ (s7—1(1 + a)), ¥5 := a(sT-1(1 + a)).
For e = b we have
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(3.5) zr-1 — ¢} = 7((¥3 — yr-1)s%_1),

where sb._, = s7_1(1+0), ¢} == 01 (s7—1(1 + b)), @b := @o(s7_1(1 + b)).
Define function ¢ as follows

(3.6) $e41(2) = xf — 2t + 7((vF ~ 2)s8) — T((} — 2)s}).-

Subtracting (3.4) from (3.5) we conclude that the replication condition is

satisfied when

(3.7) ¢r(yr-1) = 0.

Notice that 7(z) and ¢,,,(2) are continuous functions. Furthermore taking
into account that

diz)—dly)<z—y for z<y
we have
Jmgua() = tim [af — b+ r((6f - 2)sf) — 7((0} - 2)sb)] =
=of ol + lim [d((sf - 2)sf) — d((4} - D) <
Saf—af+ lm (57 - 2)s] — (4 — 2)sf] = —oo.
Similarly using the fact that v
cz)—cy)y>z—y for z<y
we obtain

11m ¢t+1(z) +o00.

22—

Consequently the range of ¢, +1(z) is equal to R.

We have:
THEOREM 3.1. If }j_‘g > i"‘: then for each European claim ¢ and CRR
model there exists a umque replicating strategy (Z%,5t). Moreover, if
(1) yT <yra<vh,
then for each0 <t <T — 1
(2) ¥ <h <y
Proof. Notice that under 2 T +a > ifz the mapping ¢,,,(z) is strictly in-

creasing. Since its range equal to R there is the unique solution §7_] of the
equation ¢p(y7—_1) = 0.

It remains to show inequality (2). We use backward induction. For
t =T — 1 inequality (2) follows from (1). Assume (2) holds for t. Then:

¥ < vig <y

and —
5 ) )

Yio1 S Y1 S Y



Pricing of European and American claims 731

Since be the uniqueness of the solutions to ¢,(7;—1) = 0 we have yt )= yt 1

and we obtain gZ‘_\l <yb ..
We know, that for any £ < T the system of equations is satisfied:

. { 7= = 7(F ~ )
£y ~ 2 = T((yf — G2)s})-
Therefore o o
{QE - I?a1 = T((yfal - @)4’5)
ay ~at) = T((y ~ Yy 1)3?b1)-

Subtracting equatlons and taklng account that xt 1= :Et 1 (which follows
from the fact that y2° ab ) we obtain:
— — ——— ———— b
zf -2 = T((yfh - y?—l)st-l) = 7((YE21 = yp-1)s821)-
Notice that
T((ye2; — yg—l)slt)il) - T((Z/?L - yf—1)3?21) > —7((yfq — yf—1)s?f1) t+c
and
T((yiba—l - 95—1)5?—1) - "'((ygfl - yf—l)sﬁl) < T((yf—l - yf—1)sltm—1) —c
Therefore
— ———— b — —— —— e—
—T((yf-q — yf—l)sg—l) +e<a —zb < T((yg—l - 3/?—1)320—1) - ¢C.
Next, we observe that
¢t(yt )= -'Bt 1™ -Tt L1 + T((yt 1 yt 1)3t - T((yt 1 yt—l)sg—l) =
=27, 17 —xy_ 1+C_T((?/t 1~ Y- 1)3t 1) <
< T((yt 1 Y 1)St 1)—ctc— T((?/t 1 yt—l)sgf-l) =0
and
Ge(v-1) = —7((yy — vb_1)stly) + e+ 7((vf ) — v y)s2y) —c=0.
By monotonicity and continuity of the functlon qbt(z) there exists §;—; such
that ¢,(%—1) = O and should lie between $2_, and y?_; which by induction

completes the proof. O
Now, for any (p,q) € R? we define the sets:

(3.9) Copawy = {(uyv) € B2 : p—u+7((g - v)s) < 0}

and

(3.10) C’& o) = {(,v) € R2:p—u+7((g-v)s) <0},
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where

Hp) = d(z), z>0
(311 (@) = {—c(—m) z<0.

Given an option (¢, ,), we say that a hedging strategy (z,y) € A is optimal

if for any other hedging strategy (Z,7) € A we have

C(z—,.yzs,) c C(It,ytSt)'
The following theorem describes a relation between replicating strategies
for concave and fixed -+ concave transaction costs.

THEOREM 3.2. Let %_g > %’f% and (Zy,9:) be a replicating strategy for

any European claim (pq,py) with fited + concave transaction costs, and
(Zi, 7i) be a replicating strategy for any European claim (p;, ¢5) with concave
transaction costs. Then

h="1
1’:} = (T - t)C + ‘x_ty
where ¢ denotes a fized transaction costs.

Proof. We use backward induction.
The strategy (Z:,¥:) replicates the claim (g, ,) with fixed + concave
transaction costs when
o} — 0] + (5 — I721)sh_1) — (¥} — J7-1)s7_1) = 0
and the strategy (T, ;) replicates the claim (p;, ¢,) with concave transac-
tion costs when

o} — 0§+ 7'((#5 = Fr=1)sto1) — 7' (98 — F=1)sh_y). = 0.
Since 7(z) = 7/(z) + ¢ by uniqueness of the solution to (3.7) we have that

gr-1 = JT-1.
Next
rr-1 = ¢} + (95 — 97-1)5F-1)
and

T7-1 = @1 + 7 (% — TT-1)s7_1)-
Subtracting T7_7 from T7_] we obtain
Fr1 ~ 271 = 1((8 — I7-1)5F-1) — 7'((§ ~ TT—1)sF_1)-
Since 7(z) = 7'(z) + ¢ we have
Ir-i=ZIr-i+c

Assume that in the moment ¢ + 1 conditions hold
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(3.12) Y1 = Vet
T4l = (T —-t— 1)C+ Tt4-1-
By definition of replication and by inductively assuming we have
of — 2+ 7((vf — B)st) — (% — B)st) = 0
for the strategy (Z:, #:) and for the strategy (Zz, 7):
of — b+ 7' ((F - J)st) — (9 ~T)st) = 0.
Therefore by uniqueness of the solution to ¢, () = 0 and using again the
fact that 7(z) = 7'(z) + ¢ we obtain that
h=7
We observe that . R
zy = ot + 7((yf — Be)st)
and
| T = 2f + 7' (9 — To)st)-
For e = b by analogy we obtain
zi = ot +7'((yf — T)sy).
Subtracting 77 from Z; and by £:11 = (T —t — 1)c + T1 we have:

T =Ty = (T = t)e,

which completes the proof. O
Now, for each t = 1,...,T we define the sets A}, A; consisting of a
special type of pairs of random variables.
Let Aj,t = 1,...,T denote a set of all pairs of random variables

(p1(st), p2(st)) such that ps is a nondecreasing real function and there exists
a random variable ¢{s;—1) such that

7' ((p2(st-1)—g(st-1))sp_1) =" ((P2(s8-1)—q(5:-1))58_1) = P1(sE_1)—Pr(s}-1)
and
P2(si_1) < qse-1) < pa(si_y),

and A;,t = 1,...,T denote a set of all pairs of random variables
(p1(st), p2(st)) such that p; is a nondecreasing real function and there exists
a random variable g(s;—1) such that

T((p2(st-1) —q(56-1))sp—1) = T((Pa(s8_1) —q(s:-1))sE_1) = Pa(st_1) —Pr(st_1)
and e
pa(st1) < g(se-1) < pa(si-y)-
The class A} and A is quite natural and contains the following claims:
1) put option with p1(s) = M1,<p and pa(s) = —1s<m-
2) call option with p;(s) = —M1,5p and pa(s) = 1>m.
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Using [4] we have the following fact:

THEOREM 3.3. If the strategy (Ti,Uz) is replicating strategy for European
claim (py, po) € AT with only concave transaction costs, then for any strat-
egy (zt,y:) € A we have: if (T141,y141) € CQ ) then (z1,1y1) €

o (TFT TeF15e11
(Te,gese)”
We want to prove the optimality of the strategy (i, ¥;) with fixed +
concave transaction costs, the existence of which we proved in Theorem 3.1.

THEOREM 3.4. Under 11T+2 > % for any European claim ¢ € Ar the

replicating strategy (Zi, 4:) € A is optimal.
Proof. Let ¢ be a European claim. By Theorem 3.1 there exists a unique
strategy (i, 7t) € A and ¢ € Ar and inequalities gft“ <H<yt=0,...,
T — 1 hold.
Let ¢, = 1 and ¢y = 7.
Let (z:,y:) be a hedging strategy for the claim o, i.e.
1%) zf_y —2zr-1+ 7((¥7_, — yr-1)s7_;) <0
2b) xlq)'v_l —x7—1+ T((y!}_l — yT_l)s%_l) <0.
Since the strategy (Z:, #:) is replicating we have:
3) oy~ 710+ (g — F)shy) =0
) ah_ = Zr3 + (Yo, — Fr-1)s%-) = 0.
We want to show that
(3.13) Zr-1 — zr-1 + 7' ((Fr=1 — yr-1)57-1) < 0,
0/\ —————
0 (ErTdT-15T7-1)"
Y5_; = po(sF_y) for e = a,b.
There are two cases:
1. yr—1 < ¥r-1
From 2°) and 3%) we have:

ie (zr-1,yr-1) €C We know that :1:/3:_\1 = ¢y(s%_;) and

Ir1—zro1+ ”'((qu’“-l - yT—l)'s!.)T‘—l) - "'((qu’"—l - y/T-\l)sg"—l) <0

Because §7_; < y5_; we obtain:
(o ~ yr-1)s5_1) = T((Wh_y — I7-1)s7_1) 2
2 d((y/T—\l - yT—l)sl:;’—1) 2 (y/T—\l - yT—l)Sl:;‘-1
and
T((¥7-1 — yr-1)s7-1) = d((Fr-1 — yr-1)s7-1) + ¢ <
(14 N (@7r1 - yr-1)s7-1 + ¢ = TRETT —yr-1)sh_; + ¢
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Therefore
1+%

1+ X))

(J71 ~ yr-1)s5_1 > (r((§7=1 ~ yr—1)sT7-1) — ©)

and

T((y%_l - Z/T—l)sg"_l) - T((y%_l - y/T—\l)Sl’}q) > (y/T—\l - yT—l)Sg*_l >

> it (171 — yr-1)s7-1) — ©) 2 T((F7-1 ~ yr-1)87-1) — €.
Consequently,
Zr-i — zr-1+ 7' ((¥r-1 - yr-1)s7-1) <0,

which means that (zr_1,yr-1) € C?ﬁ—\l)?ﬁ—\lsT—l).
2. yr-1> ¥r-1.

From 1%) and 3%) we have
71 - or-1+ T((§5_y — yr-1)sto1) — (G — FT-1)sF_1) SO,
Moreover
(5 — FTo0)sh1) = (% ; — yr-1)s§_y) <
< e((yr-1 — ¥r-1)8%_1) < (yr-1 — ¥r-1)8%_,
and
—7((yr-1 — ¥r-1)s7-1) = c((yr-1 — ¥7-1)ST-1) — € >
> (1 - p)(yr—1 — J7-1)8T-1 —C = ﬁ%(yT—l - Jr1)sh_, —c.
Therefore

T2 (o= 7((yr-1 ~ FDor-1).

1= r-1)sF_1 <
(yr-1—9r I)ST‘l—l—p

Finally
T((y$_1 —yr-1)s%_;) — 7((¥§_1 — I7-1)s%_1) 2
> E(T((:‘//T—\l —yr-1)s7-1) — €) > T((J7=1 — y1—1)5T-1) — C.
Summarizing
Tr-1 — zr—1 + 7 ((¥7-1 — y1-1)$1-1) < 0

so that (3.13) is satisfied.

. . 0
Assume inductively now that (z¢41,yt41) € C(I,t:hﬁmﬂ)

Tir1 — Tep1 + 7 ((Tir1 — Yer1)se41) < 0.

We want to show that in the moment t (z:,y;) € C?fz Gise) 1€

i.e.

Ty — o + 7' (G — ye)se) < 0.

Since (T¢41,Yer1) € C? and by Theorem 3.2 we have

(Te41,9e415t41)
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(3.14) Yer1 = Uit
Tt+1 = (T —t- I)C + Tt+1,

A -
Tip1 = Te41 — (T —t = 1)c,

where (z;,,,¥;,1) is a hedging strategy for the claim (¢, p;) without fixed
transaction costs. From this we obtain
0
(@41 + (T =t = 1), ¥141) € CUr—t-1)erzormmmisess)-
Therefore
0
(Ty41) Yis1) € Commgmmsis)
By Theorem 3.3 we get '
0
(.’1);, y;) € C(x_t,y}'st)'
Again, by Theorem 3.2 we obtain
0
(zt = (T = t)e, 1) € Cla—(T—t)e,ise)
which means that
0
(¢, ) € C(:a,g;s,)-
By backward induction the proof is therefore complete. O

3.1. Small transaction costs. In this subsection we consider small trans-
action costs, i.e. costs which satisfy the following inequality:

(3.16) min{1 + b, 1_}’a} > i”'_'l);

Under (3.16) clearly 7 1+b > —+— so that by Theorem 3.1 for any European

claim ¢ there exists umque optlmal self-financing, trading strategy (Z:, 7t)
which replicates the portfolio (¢y,¢,) at time T.
By [4] we have the following fact:

THEOREM 3.5. Under (3.16) if the strategy (T, Tz) is a replicating, then for
any strategy (z¢, yt) € A we have: if (Te41, Ye+1) €

(z¢,y)) € C (It Fise)'

Now, we want to prove the optimality of the strategy (Z:,3t).

0
Clemigmisen) then

THEOREM 3.6. If the condition (3.16) is satisfied, then for any European
claim ¢ a unique replicating strategy (Zi,:) € A is optimal.

Proof. Let ¢ be a given European claim.
Let ¢; = Tr and ¢, = 7. Let (z¢,y:) be any strategy hedges claim
P, i.e.
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1) 25— 211+ 7(#Fg — yr-1)shy) <O
2%) 2 — oo+ (W —yr-1)sh_;) <0.
Since the strategy (Z:, 9:) is replicating then:
3%) Z§ )~ F101 + (¥ — ITo1)sh ) =0
8% ah_| —&r1+ (v — FT-1)sh ) =0
We want to show that
Tr_1 — zr-1+ 7 ((Ir=1 — yr-1)s7-1) < 0,
ie. (zr—1,y7-1) € C?ﬂ:,y?:w—l)'
There are six cases:

L yr-1 < 9r-1 < vhy.
This case is analogous to the proof of case 1. in Theorem 3.3.

2. Yy S yr1 S YT
From 2°) and 3%) we have

Fr-1 —2r-1+ 7'((1/3"—1 - yT—l)Sg“—l) - T((yg"—l - y/T—\l)SbT—l) <0.
From the properties of the functions ¢ and d we obtain

T((yg‘—l - yT—-l)slI)‘—l) - T((yqb‘_l - y/T—\l)Sg"_ﬂ 2>
> (1 -pEri-yr-1)sh_,
and
7((¥r-1 — yr-1)s7-1) = T1((¥r 21 — y1-1)87-1) =
= d((F7-1 — yr-1)sr—1) + ¢ < B2 (G071 — yr-1)sh_; +c.
From this
1+
1+ A

(J7-1 — yr—1)85_1 > (r((FT=1 — yr-1)sT-1) — ).

Finally we have

T((Wo_y —yr—1)sh_y) — T((Wh_, — ¥720)s5 1) >
> (1 - pHB(r((I17 - yr-1)s7-1) — ©) = 7'((I7-1 — yr-1)s7-1)-
And
Zr21 —zr-1 + 7' ((I1-1 — yr-1)s7-1) <0,

. 0
which meanit\hat (zr-1,y7-1) € C(EF—T,y’T'SsT-l)'

3. yr-1 < ¥, <¥r_1-
From 2%), 3%) and from (3.16) we have

(b= Ny —yr-1) 20> ((1+ ) — (1 — u)(1 + b)) (T3 — ¥ y)-

737
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Therefore

(1+ 8y ~yr-1) = (1= W1+ 0)(h_; — 770) 2 (14 NFT —vr-1).
From the properties of the function ¢ and d we obtain

1) T((y/cbp_\l —yr-1)sh_) > (1+ b)(zsz_\l —yr-1)sST-1 +¢,

2) (g — FED)or) < (L= w1+ D)y — FTD)or1 + 6,

3) 7((Ir=1 — yr-1)s7-1) < 1+ N(@r-1 — yr-1) +c.
From the last three inequalities we obtain:

T((y%_l - yT—l)SbT_l) —Cc— T((y%_l - @)5%-1) t+c2
> 7((Fr-1 — yr-1)s7-1) — ¢ = 7'((J7-1 — y1-1)5T-1)-
Since o o
2721 — 271+ T((¥p_y — yr-1)85_1) — T((¥5_; — FT-1)8%_1) <O
we therefore have
721 — zr—1+ 7' ((F7-1 — yr-1)s7-1) < 0.
4. y%_l < y/TTI < yr-1-
This case is analogous to the proof of case 2. in Theorem 3.3.
5. y/T—\l <yr-1 < y7_g-
From 1%) and 3%) we have
I —zro1+ T((y%q —yr-1)87_1) — T((y‘f‘q - ?//1"—\1)351"-1) <o0.

From the properties of the functions ¢ and d we get

(g — yr-1)55) = 7By — FT)shy) =
= d((¥§_; — yr-1)8%_1) — d((¥3_; — ¥T-1)5%_1) 2
(1+N@Fr-1 —yr-1)5% 4
and
((J721 — yr-1)s7-1) = —c((yr—-1 — ¥7-1)87-1) + € <
< ~(1~ p)(yr—1 — J1-1)57-1 + ¢ = FE(Ir—1 — yr-1)sh_; +¢.

Therefore

— a 1+a ,,, ~
(I1-1 — yr-1)ST_1 = ' ((I7=1 — yr—1)s7-1)-
1—p

Finally
Tp_1 — or—1+ 7' ((§r-1 — yr-1)s7-1) < 0.

6. 71 < ¥4, < yr-1.
From 1%), 3%) and from (3.16) we obtain

(a+ m)(yr_1 — #8_) <0< (1 — 1) — (1+ N1 +a)) (@B, - F7-0)-
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From this we get

(L+a) (@5 ~ vr-1) = (L+ N+ a)(§_y — F71) 2 (1= p) (4 — yr-1)
From the properties of the functions ¢ and d we have
1) (@ —yr-1)spy) = ~Ta((yr—1 = H_)sh)) 2
> (5 1 —yr-1)sh o= (L+a)FF_ —yr-1)sr-1 + ¢
2) (¥ — Fro1)shoy) = d((¥5_, — Fr-D)sh_)) +c <
< (1+a)(1+ M@, - Fr-D)sr-1+ 6,
3) 7((#r-1 — yr-1)s7-1) = —c((yr—1 — §T-1)s7-1) + ¢ <
< (1 - p)(Fra —yr-1)sr-1+c
The last three inequalities imply
(¥ 1~ yr-1)shy) = e = (1 — Froi)shy) + o2
> 7((r-1 — yr-1)s7-1) — ¢ = T'((§T=1 — yr-1)$7-1),
which together with
£ = or-1 + 745y — yr-1)shy) = (@ ~ Froi)shy) < O
lead us to the inequality
Zr-1 — zr-1 + 7'((Fr-1 — yr-1)s7-1) < 0.
Therefore (z7-1,y7-1) € C?E?_T,ﬁ-\lsr-x)'
Assume inductively now that (2441, Ye41) € C?:,:T;1 Fisesr) €
Ter1 — Ter1 + 7' ((Fe41 — Ye41)8e41) < 0.

We want to show that in the moment ¢ the strategy (z:,y:) € C'?ft Fise)
ie.

£ — zo + 7' (e — ye)se) < 0.

0 ) then by Theorem 3.2 we obtain

—
(FeF1,9631 5641

Vet1 = Tirl
=T —-t-De+Teg1

Since (z¢41,yt+1) € C

and

y£+1 = Yt+1
zhyy =z — (T =t = 1)c,

where (z},1,%,,1) is the hedging strategy for the claim (;, o) without fixed
transaction costs. From this we have
0
(@tg1 + (T =t = 1)¢,¥441) € CUr_t—t)crzmrgmmmon)”
Therefore
(1'2+1’ y£+1) € C?r“,yms,“)-
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By Theorem 3.3 we have
(2%, 9;) € Cf

(Tt-y'y—tst ) :

Consequently by Theorem 3.2 we obtain

(2t = (T = ), %) € Cloy— (T—t)ec.gise):
which means that
(22,9) € Cli, g
and by backward induction the proof is completed. 0

4. American claims

We define an American claim f as a pair {f(t) = (fi(¢), f2(¢)),t €
0,1,...,T} of F adapted processes. Here, fi(t), f2(t) denote quantities
of units of bonds and stocks respectively, that are paid to the option’s buyer
assuming he exercises the option at time ¢.

We say that a strategy (z,y) € A hedges an American claim f if

(4.1) fit) =z + 7((f2(t) — yt-1)s1) <0 foreacht=0,1,...,T.

Given an claim f, we say that a hedging strategy (z,y) € A is optimal if for
any other hedging strategy (%,7) € A we have Czg5550) € Clzo,y0s0)-

In the moment T for replicating strategy (¢1(T — 1),¢2(T — 1)) in one
step we have

fT) = q(T = 1) + 7((f2(T) — g2(T - 1))s7) = 0.
Therefore under the assumptions of Theorem 3.3 or Theorem 3.5 any strat-
egy (n1,7m9) which hedges (fi(T), f2(T)) should be in C?ql (T—1),q2(T~1)s7_1)"
Consequently a strategy (n},75) which we chose at time T — 2 after subtrac-
tion an obligatory cost ¢ such be in C?ql (T=1),2(T—1)s7-1)" On the other hand

that strategy we choose at time T'—2 should also hedge (f1(T'—1), fo(T—1))
at time T — 1 i.e. we should have

fiu(T = 1) =1y + 7((fo(T — 1) = m3)s7—1) < 0.

0
Therefore (1 — ¢,73) € Clp (r-1), o r-1)sr_1) 7 Cln(@-1).02(T-1ysg ) OB
sequently an optimal strategy would be the one which replicates the peak of

0 0
Clh@-1), 2 -1)sr—1) N Clgr (T-1) q2(T-1)sr_1)"

Notice that the intersection of sets C?fl(T_l), faT—1ysp_y) 0

C?qx (T—1),02(T—1)s7_1) is under concave + fixed transaction costs no longer of
CY sets form. To describe its form we need more general class of function
than only the function 7 or 7/.
Let I" denote a set of all functions y which satisfy the following conditions:
(Cl) Vz1,20>0and 27 < 29, 2z2—21 < v(22)—7(z1) £ (14+X)(22—21),
(C2) V21,20 <0andz <29, 22—21 27(22)—7(21) > (1—p)(22~21),
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(C3) VzeR, 7(z)<7(2),

(C4) ~(0)=0. _

For any (p1,p2) € R? we define sets 8Cy, ,,) and 8C(,, 1,) as follows:
9CY,, oy ={(w,v) €eR?:p1 —u+7(p2 —v) =0Av > pa},
chn,pz) ={(u,v) ERZ:py ~u+7(pa —v) =0Av < po}.

For any p = (p1,p2) and ¢ = (g1, g2) we define a set V(p, q) as follows:
V(p,q) = {(c,d) € (Cy N CT) : ¥(u,v) € B(CyNCY) if

v > d then (u,v) € 3CJUBCY, and if v < d then (u,v) € dCyUACY} .

Using [4] we have the following facts:
LEMMA 4.1. For any (c,d) € V(p,q) there exists v € T such that

CINCY ={(u,v) ER*: c—u+7(d—v) <0}
LEMMA 4.2. Let (p1(st),p2(st)), (q1(st),q2(st)) € A¢. There exist random
variables c(st), d(st) such that for any w € § there is a function v, € T,
with the equality
C((;?hpz-?t)(w) n C?q1,qzst)(w)
= {(u,v) € R%: ¢(s)(w) — u + 7,,(d(s¢) st — v)(w) < O}.

Moreover, there exists a unique random variable w(s,—1) such that
’733_1((d€—1 —w(se-1))s_1) - Vs, ((df_g — w(se-1))si-q) = cf_y — ¢y
and d?_; < w(si—1) < d°_;.

Now, we show auxiliary lemma.

LEMMA 4.3. For each k € R the following inclusions are equivalent:
(Claiys) C Clarars)) €= (Clo_iys) C Clar—iyrs))-
Proof. (=) Assume that C; ) C Coryrs). Let (21,22) € C?:c—k,ys)’ ie.
z—k—z1+7((y— 2)s) <0.
From this
z—k—c—z1+7((y — 22)s) <0,
z—(z1+(c+k))+7((y — 22)s) L0.

That means that (21 +(c+k), 22) € Cz ys)- Since Cig 5y C Cpr yrs) We have
(21 + (C + k), Z2) € C(z’,y’s)’ i.e.

z' = (214 (c+ k) + 7((y/ — 22)5) <0,
T —k—z1+7((y — 22)s) <0.
Therefore (21, 22) € Clys_ 414
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(<) Assume that C’?z_k,ys) C C(Oz:’—k,y's

) Let (21,22) S C(z,ys), i.e.
z—2z1+7((y — 22)s) <0.
From this
T+c—21+7((y— 22)8) <0,
(z-k)—(21—c—k)+7((y — z2)s) < 0.
That means that (21 —c—k, 22) € C?I_k’ys). Since C’?x_k,ys) - C?I,_k’y,s)
we have (21 —c—k,29) € C?I,_k ys)r 1€
T —k—(z1—c—k)+7((y — 22)s) <0,
' — 2z +7(( — 22)s) <0.

Finally, we obtain (21, 29) € Clor which completes the proof. O

y's)
THEOREM 4.4. If (z},vy;) € A is a hedging strategy for an American claim
(f1(2), fa(t)) with fized + concave transaction costs then

(@, Tr) = (zp — (T —t)e,yp) €A

is a hedging strategy for an American claim (fi(t) — (T — t)c, f2(t)) without
fized transaction costs.

Proof. Let (z},y;) € A be a hedging strategy with fixed transaction costs.
In the moment ¢t = T the following conditions are satisfied:

(4.2) H(T) — xip_y + 7((f2(T) — yp_y)sT) <0
and

(4.3) o1y — Tp_g + T((¥r_1 — ¥r_g)sT-1) = 0.
Therefore

fi(T) = (271 — &) + T'((fo(T) — ypr_1)sT) <0,
o7y — ¢ — (27_g — 2¢) + 7'((y7—1 — y7-2)87-1) = 0.

Let (1, y7) = (o1, 97), (FT-1,91-1) = (¥7_; — &, yr—,) and
(ZTT=2,77=2) = (27_o — 2¢,y7_,). We obtain

f(T) =373 + 7'((f2(T) — 97=1)s7) <O,
Tr_1 — ZTr—3 + 7 (¥r—1 — ¥r=2)s7-1) = 0.

We assume that in the moment t + 1 the strategy (z;,,%.,1) € A hedges
an American claim (fi(t+1), fo(t + 1)) with fixed transaction costs and the
strategy (Te41, Bes1) = (24 — (T —t — 1)c,¥;,;) € A hedges an American
claim (fi(t +1) — (T —t — 1)c, fa(t + 1)) without fixed transaction costs and
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(@0, T) = (2 — (T - t)e,u1), (Tim1, To=1) = (2} — (T =t —1)c,4;_1). Then
it +1) =z +7((f2(E +1) — yipr)se+1) <0,
zy — 2y + T((¥} — ¥i-1)st) = 0.
Moreover
HE+1) - (T -t —1Dec—Ter + 7' ((f2(t + 1) — Teg1)se41) <0,
Ty — Te—1 + 7' (% — Te=1)st) = 0.

In the moment t the strategy (z},y;) € A hedges an American claim
(f1(2), f2(t)) with fixed transaction costs, i.e.

fi(t) — =i + 7((fo(t) — yp)se) <0,
Ty — Ty + T((Y1 — Yt_2)5t-1) = 0.

From this we get

(A®) = (T=t)e) = (zi — (T = t)e—c) +7'((fa(t) —wt)s:) <O,
(z31—(T—t=1)¢) = (zt_y— (T—t—1)c—c) + 7' ((y4_1 — Yi—2)st-1) = 0.
By inductively assuming we obtain

(f1it) = (T = t)e) = (Tt ~ o) + 7' ((f2(t) = T)s:) <0,
T — (Thg — (T — t = 2)0) + 7'((T=1 — ¥i-2)51-1) = 0.

Finally, we have (T:=2,%—2) = (z}_o — (T — t — 2)¢,y;_5). By backward
induction we obtain that the strategy (77, 7;) hedges an American claim

(f1(t) = (T — t)c, f2(t)) without fixed transaction costs. The proof is com-
pleted. O

Using [4] we have the following fact:

THEOREM 4.5. Let f be an American claim such that f € Ay, for each
t=1,...,T and }—}2 > % or f be any claim but condition (3.16) is
satisfied. Then there erists a strategy (Zi,y:) € A which is optimal with

concave transaction costs, i.e. for any strategy (zi,y:) € A hedges claim

(f1, f2) we have
(22 92) € Cli, g
for eacht=0,1,...,T —1.

THEOREM 4.6. Let f be an American claim such that f € A, for each

t=1,...,T and ﬁ'—g > %‘_F—z or f be any claim but condition (3.16) is satis-
fied. Let (Z3,9:) be an optimal strategy for American claim (f1(t) — (T —t)c,
fa(t)) with concave transaction costs. Then the strategy (Z: + (T — t)c, §t)
is optimal for American claim (f1(t), f2(t)) with fired + concave transaction

costs.
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Proof. Notice that if (fi(t), f2(¢)) € A; then (f1(t) — (T —t)c, f2(t)) € A..

Let (T3, 7z) = (z; — (T —t)c, y;) € A be any hedging strategy for an Amer-
ican claim (f1(t) — (T — t)c, f2(t)) without fixed transaction costs. By The-

; 0 0 i« 00
orem 4.5. we obtain that Ciz ooy C Cp, ). From this C(z;—(T—t)c,y;s,) -

C?(a’:}-}-(T—t)c)—(T—t)c,ﬁs:)‘ By Lemma 4.3 for k = (T — t)c we get that the

condition C?I; —(T=t)eylsr) C C?a,ﬁ&) is equivalent to the condition C(g )

C C(g,+(T-t)c,Gis:)» Which completes the proof of optimality of the strategy
(a?t + (T—t)c’?jt)' O
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