
DEMONSTRATIO MATHEMATICA 
Vol. XXXVII No 3 2004 

Ernest Scheiber, Mircea Lupu 

ON THE SOLUTION OF SOME MAXIMIZATION 
PROBLEMS BASED ON A JENSEN INEQUALITY 

Abstract . Models of fluid mechanics phenomena like the deflector of maximal drag 
or maximal lifting lead to maximization problems whose solutions are obtained using a 
method based on. a Jensen inequality. The purpose of this paper is to point out the united 
character of the given solutions. A scheme is derived for an unconstrained and for a 
constrained maximization problem, which is applied to four examples. 

1. Introduction 
Models of fluid mechanics phenomena like the deflector of maximal drag 

[3}— [6] or maximal lifting [9], lead to maximization problems whose solu-
tions are obtained using a method based on a Jensen inequality. The un-
known of these optimization problems is a function, which in our examples 
represents the velocity distribution. The involved object functional is non-
linear. 

The purpose of this paper is to point out the united character of the 
given solutions. 

The main idea to maximize a functional I{u) is based on the use of the 
Jensen inequality, to majorate I{u) to a functional J(u), whose maximal 
point may be easily computed and which is a constant function u*. If the 
Jensen inequality is applied to a constant function then there is the equality 
case. From the relations 

I(u) < J(u) < J(ut) = /(«,), 

we deduce that uf maximizes the functional I(u), too. 
Maklakov D.V. is among the first who used this method [5], [6]. 

Key words and phrases: nonlinear maximization problems, Jensen's inequality, deflec-
tor of maximal drag, maximal lifting. 
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2. The Jensen inequality 
We recall the used Jensen's inequality [2]. It may be obtained from 

the general Jensen inequality [1]. The presented proof of this theorem is 
from [8]. 

THEOREM 2.1. Let S be a nonempty set, V a linear space of real functions 
defined over S. Assume that the constant function 1 belongs to V and let 
L be a linear and positive functional such that L{ 1) = 1. If ip € V and 
F € C[a, /?] is a convex function such that F o ip e V then: 

(1) (0 L(<p)e[a,0\, 
(2) (it) F(L(<p))<L(Fo<p). 

P r o o f , (i) The condition F o ip e V implies that a < <p(x) < (3 for any 
x 6 S. Using the properties of L we obtain a < L(<p) < (3. 

(ii) For any e > 0, separating the convex sets {(i, y) :y > F(t),t € [a, /?]} 
and {(L(ip), F(L(ip)) — e)} (or from the existence of lateral derivatives in the 
point L(ip) of the convex function F), there exists a first degree polynomial 
p(t) = u + vt such that 

(3) p(t) < F(t), Vi 6 [a, /?], 

and 

(4) p{L{y)) > F{L{v)) - e. 

From (3) it results that p o ip < F o ip and then 
L(F o <p)> L{p o (p) = L(u + v<p) = u + vL(<p) = p{L(<p)) > F(L(<p)) - e. 

Because e > 0 is arbitrary, we have (ii). • 
As a consequence we have: 

THEOREM 2.2. If f(x) > 0 , g ( x ) are continuous functions in [a, b], then 

J / (x) exp(5(x))dx > J f(x) exp f l l ^ M ^ d x ) dx, 
V \ a f ( x ) d x J 

where the equality case holds if g(x) is a constant function. 

P r o o f . Let 5 - [a,b},V = C[a,b),L(u) = ffiff**,y = 9 and [a,/3] = 
p([a, 6]). From (2) we obtain 

if(x)g(x)dx < jF(g(x))f(x)dx 
¿fix) dx t f ( x ) 6 x 

For F — exp, it results the desired inequality. • 
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3. An unconstrained maximization problem 
Let us consider the maximization problem of the functional 

_ F ( j f ( x ) u ( x ) d x ) 

& f(x) exp(u(x))dx 

where / and F are given functions. We suppose that f(x) > 0 in (a, b). The 
unknown function u(x) is searched in the set of functions which assure the 
existence of the integrals. We shall use the notations: 

b b 
(6 ) f = \ f(x)dx\ y(u) = \ f(x)u(x)dx. 

a a 

Applying Jensen's inequality to the denominator, we find 

/ ( „ , < r t f / w - m » ) _ J W ) . J ( u ) . 

Let y* be a point which maximizes the function y —> Then, for the 
function tt*(x) = e [a, 6] we have 

Tf„ \ - m, \ - _ F(\b
af(x)u.(x)dx) _ llU*) = J(u* ) = -. r— = 7— r- = 

£ e x p ( f ) y £ e x p ( | ) 

hence u, is the solution of the maximization problem (5). 

EXAMPLE 3 . 1 . In [9] it is studied the maximal lifting for the optimal profile 
on sprayless planning surface and the following maximization problem is 
obtained: 

2 i 1 , u(x)dx 
(7) I ( u ) = ! - m a x . 

By our scheme, we have £ = 2 , F(y) = 2y and = whose 
maximum point is y* = 2. The function which maximizes the functional 
I(u) is then u»(x) = ^ = 1. 

EXAMPLE 3 . 2 . In [3] the deflector of maximal drag is modeled for the plane 
potential flow of an inviscid, incompressible and unlimited fluid jet which 
encounters a symmetrical, curvilinear obstacle. The derived maximization 



722 E. Scheiber, M. Lupu 

problem is 

(oj - j - > max. 
S_! exp(t(x))dx 

If we put t(x) = u(x) — In the above problem becomes 

(9) I(u) = * max. 

Thus * = 2V2 , F(y) = and ^ = which has the 

maximum point at y* • 2\/2- Hence u*(a:) = ^ = 1 maximizes the func-

tional (8) and consequently the solution of (9) is i*(x) = 1 — In 

4. A constrained maximization problem 
Given a non-decreasing function F, a non-negative function / and a 

positive real number k, find the function u(x) which maximize the functional 
6 

(10) I(u) = F{\ f(x)u(x)dx) 
a 

subject to the constraint 
b 

(11) j f{x) exp(tt(a;))da; = k. 
a 

Using the notations (6), if we apply Jensen's inequality to the constraint 
(11), then we obtain 

k = j / ( x ) e x p ( « ( x ) ) d x > \ f ( x ) e x p ( ^ f ^ x ) d x ) d x = £ e x p ( ^ 
£f(x)dx J r V i 

Consequently 

y ( u ) < e i n | and F(y(u)) < F (t I n ^ j . 

If u,(x) = In Vrr e [a,b] then y(u*) = \b
af(x)u*(x)dx = f l n | . Thus 

the constrain (11) is fullfield and it* maximizes the functional (10). The 
maximum value of the functional (10) is F(£ In | ) . 

In the next two examples the deflector of maximal drag is modeled for 
the potential flow of an inviscid, incompressible and limited fluid jet, which 
encounters a symmetrical, curvilinear obstacle. As the canonical domain, in 
[5] the Levi-Civita circle is used , while in [4] the half plane is used. 
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E x a m p l e 4 . 1 . In [4] it is considered the optimization problem 

y/a> + 1 r t(x) dx / (12) v \ / ' • max (a > 1) v ' 7r J j V x + T a-x v ' 

subject to the constraint 

(13) - J 6 x p ( t ( x ) ) d x = jfc. 7r J a — x 

If we put t(x) = u(x) + In y^r^y, the objective functional becomes (see the 
next section) 

(14) I(u) = T ( , p l ) + ^ 1 - j ^ — d x 

where 
9 °° „2)1+1 i 

T ( a ) = * £ = ~ Lfc(-a)]. 0 < a < 1, 
n=0 ^ ' 

and Li2(a) = Euler's dilogarithm series [7], [5], [6]. The con-
straint (14) becomes 

(15) I Hx = 4 = fc-
v ' y/x + 1 (a - x ) y/2 

Thus 

t = 1 X i 

J j y/x + 1 (a - x) + 1 y/a + 1 - y/2 

r J dx 1 y/a + 1 + \/2 def , v 

and 

y a + 1 7r 

The solution of the problem (14)-(15) is then 

u* (x) = In ^ = In • 

while the maximum value of the objective functional is 

Finally, in [4], the parameter a is determined to maximize the function $(a). 
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EXAMPLE 4 . 2 . In [5] (p .38) t h e maximizat ion problem is 
7T 

4 a ( a 2 + 1) ? sin x 
(16 ) — - - \ —.—/ ' — dx m a x (0 < a < 1) , 
v ' 7r J a 4 + l - 2 a 2 c o s 2 x v h 

subject t o 

(17 ) — I R ^ H ^ ' N = 
v 7 7T ¡> a 4 + 1 - 2 a 2 c o s 2 x 

(18 ) u(x) = v{x) + In cos x. 

Eliminating u(x) the maximizat ion functional will be 

(19) / ( „ ) = T ( + 1 ! 4 U } x ) * ì n 2 x 0 d x 
v ' w W + l J 7r J a 4 + 1 - 2 a 2 cos 2x 

with the restriction rewrit ten as 
7T _ 

[ exp(u(x))smx _ Trfc def , 

l 2 U j I a 4 + 1 — 2 a 2 cos 2x " ~ 

In this case 
7T 

_ ? s i n s A _ 1 . 1 - a def , , . 

« - 3 a 4 + ! _ 2 a 2 cos 2x ~ 2 a ( a 2 + 1) 1 + a " W 

and 

Then, the solution of the problem ( 1 9 ) - ( 2 0 ) is 

u * ( x ) = In T-^-T = In ^ 
h(a) 8a2h(a)' 

and the m a x i m u m value of the objective functional is 

T. . / 2a \ 2 , 1 — a. nk def T , x 
/ ( « * ) = T — = — - ) + - In In „ 0 , . , = 

v ' V a 2 + 1 / 7T 1 + a 8 a 2 / i ( a ) v ' 

Next , in [5], t h e p a r a m e t e r a is computed t o maximize the function 

5. Used integrals 
1. I\ = j i j ( a > 1). Changing successively the variables 

x = cos t and cos | = s w e obtain 

r - l sin £ , /-I ds 1 y/a + 1 + \ /2 . . 
h = V2\ 2— di = - V 2 \ — — - ¡ T = . In v . — - = - g(a). 

J a - c o s i J s 2 - y / a + 1 w 
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2. I2 = h f l + J ,dx (a > 1). If we put x = cosi, then we obtain /x+l(a—x) 

\/21n2 7 sin* , 7 sin£ ln(cos , ln2 , , _ 
h = + y/2 2 ^ ,2;dt = —g(a + I2i. 2 j a — cost J a - cost 2 

For the second term, changing cos | = s, we have 

- ̂ S rinsds - • 
where a 2 = Thus 

2 ' V a T l I V a + 1 

7T 
3 " J 3 = Jo a<'+l-2a^cos2xd :C ( ° < ° < 1 ) ' F o r c o s x = t w e h a v e 

7" 1 1 d t 1 l + O 

7 3 = = 2a(a2 + 1) ]~—~a = fc(o)-

4- J* = i ! a ^ l - ^ c o l ^ < ° < !)• I f C 0 S * = * a n d « 2 = ^ t h e n 

7 4 = " J = 4 ? fc| ^ J ^ l n t d Ì = 

= ! L _ t ( T ) = L — T 
8 a2a [a J 4a(a2 + 1) \ a 2 + l / ' 

Using a Computer Algebra System, 7i is computed by Derive 5.0 while 
Mathematica 4-0, Maple 6.0, Mathcad 2000 gives atanh\J^i- h is 
computed by Mathematica 4-0, Maple 6.0 and Mathcad 2000. For I2 Maple 
6.0 gives an improper result. I4 isn't computed by any of the above CAS. 
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