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ON THE SOLUTION OF SOME MAXIMIZATION
PROBLEMS BASED ON A JENSEN INEQUALITY

Abstract. Models of fluid mechanics phenomena like the deflector of maximal drag
or maximal lifting lead to maximization problems whose solutions are obtained using a
method based on a Jensen inequality. The purpose of this paper is to point out the united
character of the given solutions. A scheme is derived for an unconstrained and for a
constrained maximization problem, which is applied to four examples.

1. Imtroduction

Models of fluid mechanics phenomena like the deflector of maximal drag
[3i-[6] or maximal lifting {9], lead to maximization problems whose solu-
tions are obtained using a method based on a Jensen inequality. The un-
known of these optimization problems is a function, which in our examples
represents the velocity distribution. The involved object functional is non-
linear.

The purpose of this paper is to point out the united character of the
given solutions.

The main idea to maximize a functional I(u) is based on the use of the
Jensen inequality, to majorate I(u) to a functional J(u), whose maximal
point may be easily computed and which is a constant function u,. If the

Jensen inequality is applied to a constant function then there is the equality
case. From the relations

I(u) < J(u) < J(we) = I(w),
we deduce that u, maximizes the functional I(u), too.

Maklakov D.V. is among the first who used this method [5], [6].

Key words and phrases: nonlinear maximization problems, Jensen’s inequality, deflec-
tor of maximal drag, maximal lifting.
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2. The Jensen inequality

We recall the used Jensen’s inequality [2]. It may be obtained from
the general Jensen inequality [1]. The presented proof of this theorem is
from [8].

THEOREM 2.1. Let S be a nonempty set, V a linear space of real functions
defined over S. Assume that the constant function 1 belongs to V and let
L be a linear and positive functional such that L(1) = 1. If p € V and
F € Clo, (] is a convez function such that F oy € V then:

1 @ L) €led,
(2) (@) F(L(y)) S L(Foy).

Proof. (i) The condition F o ¢ € V implies that a < ¢(z) < 3 for any
z € S. Using the properties of L we obtain a < L(p) < .

(ii) For any € > 0, separating the convex sets {(t,y) : y > F(t),t € [o, ]}
and {(L(p), F(L(p))—¢)} (or from the existence of lateral derivatives in the
point L(p) of the convex function F'), there exists a first degree polynomial
p(t) = u+ vt such that

(3) p(t) < F(t), Vte(o,p,
and
(4) p(L(p)) = F(L(p)) —¢.

From (3) it results that po ¢ < F o ¢ and then
L(Fog) 2 L(poy) = L(u+vp) = u+vL(p) = p(L(¢)) 2 F(L(y)) -

Because £ > 0 is arbitrary, we have (ii). m
As a consequence we have:

THEOREM 2.2. If f(z) > 0, g(z) are continuous functions in [a,b], then
(xz ,;@)g(w)dx> iz,
§, f(z)dz

where the equality case holds if g(x) is a constant function.

Sf z) exp( (w))dx>Sf( ) exp

a

Proof. Let S = [a,}],V = Cla,b], L(u) = ngf(;)(:g:)zdz o =g and [a,f] =
g([a, b]). From (2) we obtain
la f(2)g(@)dz,  So F(9(x))f(z)de

Pfz)yde *~ L flx)ds

For F = exp, it results the desired inequality. m

F(=
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3. An unconstrained maximization problem
Let us consider the maximization problem of the functional

b
(G fuwi)
§, f(z) exp(u(x))dz
where f and F are given functions. We suppose that f(z) > 0 in (a,b). The

unknown function u(z) is searched in the set of functions which assure the
existence of the integrals. We shall use the notations:

b b

(6) £={f(2)dz;  y(u) = | f(z)u(z)dz.

a a

(5) I(u) =

Applying Jensen'’s inequality to the denominator, we find
b
s — PGS PO _
% fa)exp (Lfei )4y Eoxp(*e)

Let y. be a point which maximizes the function y — z ::( py() 3 Then, for the
£

function u.(z) = %,Vz € [a,b] we have

) = o = F@@)) _ F(, f(z)us(z)dz)
) =7 g exp(d) 5exp(s:f(x)«g.(z)dz>

_ @) __FG)
§ exp(¥%) mf‘xfexp(%)?.[( %

hence u, is the solution of the maximization problem (5).

EXAMPLE 3.1. In [9] it is studied the maximal lifting for the optimal profile
on sprayless planning surface and the following maximization problem is
obtained:
211 u(z)dz
(7) I(u) = 7
§_1exp(u(z))dz

By our scheme, we have £ = 2, F(y) = 2y and £eF)‘(pLE y = ;py(—!—, whose

[3 2
maximum point is y, = 2. The function which maximizes the functional
I(u) is then u,(z) = % = 1.

— Inax.

ExXAMPLE 3.2. In (3] the deflector of maximal drag is modeled for the plane
potential flow of an inviscid, incompressible and unlimited fluid jet which
encounters a symmetrical, curvilinear obstacle. The derived maximization
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problem is

1 Uz) 4,32
®) (121 7A7zd2)

itz
i*, exp(t(z))de

If we put t(z) = u(z) — In /&, the above problem becomes

(e \’/‘%dw +2v2)?

1 u(z
V2§, %;de
_ _ (g+2v2)? F _ (g+r2v2)? .
Thus ¢ = 2v2 , F(y) = W22 and ﬁ?y = &% which has the
maximum point at y. = 2v/2. Hence u,(z) = % = 1 maximizes the func-

. . . _ r+1
tional (8) and consequently the solution of (9) is t,(z) = 1 — In /=52,

max.

(9) I(u) =

— Imax.

4. A constrained maximization problem
Given a non-decreasing function F, a non-negative function f and a
positive real number £, find the function u(z) which maximize the functional

b
(10) I(u) = F(| f(z)u(z)de)
subject to the constraint
b
(11) Sf(:r) exp(u(z))dz = k.

a

Using the notations (6), if we apply Jensen’s inequality to the constraint
(11), then we obtain

i 0 ﬁﬂmwmm) -0
k= §1f(a:)exp(u(x))d:v > §f(:c)exp (W dz = {exp( ¢ )

Consequently
k
y(u) < §ln§ and F(y(u)) <F (f In Z) .

If u(z) = lng, Vz € [a,b] then y(u.) = SZ f(z)ux(z)dz = flnlg-. Thus
the constrain (11) is fullfield and u, maximizes the functional (10). The
maximum value of the functional (10) is F(¢In %)

In the next two examples the deflector of maximal drag is modeled for
the potential flow of an inviscid, incompressible and limited fluid jet, which
encounters a symmetrical, curvilinear obstacle. As the canonical domain, in
[5] the Levi-Civita circle is used , while in [4] the half plane is used.
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EXAMPLE 4.1. In [4] it is considered the optimization problem
1

t(z) dz
(12) - S \/x__*__a_mﬂmax (a>1)
subject to the constraint
11 exp t(a:))
— = k.
(13) ™ _S a—z

If we put ¢t(z) = u(z) + In ,/xi“, the objective functional becomes (see the
next section)

1
2 )+\/ms u(z)

(14) I(u) = T( P - \/ﬂ—f(a—x)dx
-1

where
2n+1

T(a) = Z . @n T 1)2 [Liz(a) ~ Liz(—a)], 0<axl,

and Liz(a) = Y720 Z nq— is Euler’s dilogarithm series [7], [5], [6]. The con-
straint (14) becomes

! exp(u(z)) _exp(u(z)) o _ Tk gef

) VoS rEr L
Thus

f=§ dz _ 1 ln\/a+1+\/§d__e_f (@)
JVetia-2) Va+l Vari-+2 °

F(y) = T( =) + YLy

The solution of the problem (14)-(15) is then

ﬁ =In -—ch
£ V2(a)’

while the maximum value of the objective functional is

I(u)) =T(‘/ail)+ v":lg(a) In \é;’“(a) = &(a).

Finally, in [4], the parameter a is determined to maximize the function ®(a).

and

us(z) =In
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EXAMPLE 4.2. In [5] (p.38) the maximization problem is

4a(a%+1) H v(z)sinz

16

(16) §a4+1_2a2c052xdz—>max 0<a<l),
subject to

8a2 2 exp(u(z))sinz -

17 8a” _

(17) m §a4+1—2a2cos2z &

(18) u(z) = v(z) + Incosz.

Eliminating v(z) the maximization functional will be

2a ) + 4a(a® +1) ? u(z)sinz

a2 +1 T 0a4+1—2a2cos2:r

(19) um=T(

with the restriction rewritten as

H exp(u(z))sinz 7k det
20 dz=— <=
(20) §a4+1—2a2cos2z T = 8
In this case
b sinx 1 1 —a gef
&= (SJ at + 1—2a20032:cdz_ 2a(a? + 1) "T+a ~ ha)
and @+ 1)
2a da(a*+1
Fly)=T .
(v) ( o 1) —Y
Then, the solution of the problem (19)-(20) is
k Tk
u(z) =lngrs =gy
and the maximum value of the objective functional is
2a 2 1-a wk def
[(w,) =T <a2_+1) + 701 +a In 8a2h(a) ¥(a).

Next, in [5], the parameter a is computed to maximize the function ¥(a).

5. Used integrals '
L. I = S}_I J_E_T‘i:(ET—T) (a > 1). Changing successively the variables
£ = cost and cos 5 = s we obtain

st 1
sin 3 dt=—\/2_§ d
— cost 08—

s

I = V3| 1 YatT+v2_
0

S
= n
Sl Va+1 Vat1-v2

g9(a).

a
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L=t V%dz (a > 1). If we put = = cost, then we obtain

T gind T sin £ L 1
\/§ln2g sin 5 dt_*_\/58s1n2 n(cos2)dt_n_g(a)+121
2 ja-—cost o @—cost

I =

For the second term, changing cos% = s, we have

1 0o 1
_ Ins 1 ok . (1)
121— \/issz——cﬁ—\/ikioazk”gs Insds = a\/iT ps ,

where a? = %1 Thus

In2 T 2
=m2 __ T o, /]2
2= —59(0) — 7= a+1

Ii=§3 T2 es2:d2 (0 <a < 1). For cosz =t we have

1! dt 1 1+a
__ = = h(a).
402§t2—(%)2 %@+ "T—a

L= F%g%dx (0<a<1).Ifcosz=tand a2=“—22'aﬂthen

1! Int 1 & 1 (o
=gl gt =g 2 o | Intdt =

™ 1 m 2a
- _8a2aT (-&) " 4a(a?+ l)T <a2 + 1) ’

Using a Computer Algebra System, I is computed by Derive 5 0 while
Mathematica 4.0, Maple 6.0, Mathcad 2000 gives ﬁatamh = +1 I3 is

computed by Mathematica 4.0, Maple 6.0 and Mathcad 2000. For Iy Maple
6.0 gives an improper result. I4 isn’t computed by any of the above CAS.
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