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THE NATURAL AFFINORS ON THE r-JET
PROLONGATIONS OF A VECTOR BUNDLE

Abstract. It is known that for integers m > 2, n > 1 and r > 3 there are only three
r-jet prolongations of a vector bundle E with m-dimensional bases and n-dimensional
fibers. The first one is the usual r-jet prolongation J™ E, the second one is the vertical
r-jet prolongation Jj, E and the third one is the [r]-jet prolongation J [1E. In this paper
for integers m > 2, n > 1 and r > 1 we classify all natural affinors on F™E, where F'E
denotes J™E or JJE or JI'E. As corollaries we obtain similar results for FTE*, (FTE)*
and (F"E*)* instead of F"E.

Introduction

One can prove (a paper in preparation) that for integers r > 3 and
m > 2 there are only three r-jet prolongations of a vector bundle E with
m-dimensional basis. Namely, we have the usual r-jet prolongation J"FE of
E, the vertical r-jet prolongation JJE of E and the [r]-jet prolongation
JIE of E.

In [15] for integers m > 2, n > 1 and r > 1 we classified all natural
linear operators A lifting a linear vector field X from a vector bundle E
with m-dimensional basis and n-dimensional fibers into a vector field A(X)
on F"E, where F"E denotes J"E or JJE or JI'IE. In the case F'E = J'E
we proved that A(X) is a constant multiple of the flow operator J™X. In
the case F'E = JJE we proved that A(X) is a linear combination of the
flow operator J, X and some explicitely constructed linear natural operator
V<I>(X). In the case F"E = JU'IE we proved that A(X) is a linear com-
bination of the flow operator 771X and some explicitely constructed linear
natural operator U(V)(X).

An affinor B on a manifold M is a tensor field of type (1,1) on M.

Key words and phrases: vector gauge bundle functors, natural operators, natural affi-
nors, jets.
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A natural affinor B on F"E is a system of invariant (with respect to vec-
tor bundle isomorphisms onto open vector subbundles) affinors B : TF"E —
TFTE on FTE for any vector bundle E with m-dimensdional basis and n-
dimensional fibers.

In the present paper for integers m > 2, n > 1 and r > 1 we classify
all natural affinors B on F"E, where F"E denotes J'E or J'E or JI'E.
In the case F'E = J"E we prove that B is a constant multiple of the
identity affinor Id on J"E. In the case F"E = JJE we proved that B is a
linear combination of the identity affinor Id on JJE and some explicitely
constructed natural affinor U on J7E. In the case F'E = JI''E we prove
that B is a linear combination of the identity affinor Id on JI''E and some
explicitely constructed natural affinor V an JI"IE. As corollaries we obtain
similar results for F"E*, (F"E)* and (F"E*)* instead of F"E.

Natural affinors can be used to study torsions of connections, see [5].
That is why they have been classified in many papers, [1}-[4], [6]-[14], [17).
e.t.c.

The category of vector bundles with m-dimensional bases and vector
bundle maps with local diffeomorphisms as base maps will be denoted
by VB,,.

The category of vector bundles with m-dimensional bases and n-dimen-
sional fibers and vector bundle isomorphisms onto open vector subbundles
will be denoted by VB, ».

The trivial vector bundle R™ x R™ over R™ with standard fiber R™ will
be denoted by R™".

The coordinates on R™ will be denoted by z!, ..., z™. The fiber coordi-
nates on R™" will be denoted by ¢, ..., y™.

All manifolds are assumed to be finite dimensional and smooth. Maps
are assumed to be smooth, i.e. of class C*.

1. The r-jet prolongations of a vector bundle

The r-jet prolongation functor

Given a VB,,-object p : E — M the r-jet prolongation J"E of E is a
vector bundle

J'E = {jro | 0 is a local section of E , = € M}

over M. Every VB,,-map f : E; — Ej covering f : M, — M, induces a
vector bundle map J"f : J"E; — J"Ej covering f such that

I f(520) = jjm)(f o0 of ™), jloelJE.

The functor J" : VB,, — VB,, is a fiber product preserving vector gauge
bundle functor.
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The vertical r-jet prolongation functor
Given a VB,,-object p : E — M the vertical r-jet prolongation JJE of
E is a vector bundle

JJE={jto|o:M—> E;, z€ M}

over M. Every VB,,-map f : E; — E covering f : M1 — M; induces a
vector bundle map J7 f : JyE; — Jj Eg covering f such that

Jo f(iz0) =j2(z)(f°f7°i_l), Jz0 € JUE1 .

The functor J] : VB,, — VB, is a fiber product preserving vector gauge
bundle functor.

The [r]-jet prolongation functor

Let p: E — M be a VB,,-object. For any x € M we have an unital
associative algebra homomorphism ¢ JI(M,R) — gl(JI(M,R)) given
by

1 (GIv)(Fsn) = 3 (m) = 55 (n(@)7) + Fz(n(=)¥(2))
i, jiy € JL(M,R), n(z),v(z) : M — R are constant maps. We have a
vector bundle
JVE = | ) Hom g (J7C7Y(E), J(M, R))
€M

over M. Here Hom i (J rce Y E), JT (M, R)) is the vector space of all mod-

ule homomorphisms over ¢l JI(M,R) — gl(JZ(M,R)) from the (free)
JI(M,R)-module J7(CZF!(E)) of r-jets at = of germs at z of fiber linear
maps E — R into the gl(J7(M,R))-module JZ (M, R). We call JUIE the [r]-
jet prolongation of E. Every VBp,-map f : Ey — E covering f : M} — M,
induces a vector bundle map JU' f : JUE, — JIE, covering f such that

JFLF(®) (15 2)8) = I (£, idw) 0 B(j5(€ 0 1))

for any & € Hom in(J7C/H(E), J7(M,R)), z € M; and any fiber linear

map ¢ : E3 — R. The correspondence JI' : VB,, — VB,, is a fiber product
preserving gauge bundle functor of order r, [16].

REMARK 1. One can show that J"E and JJE can be constructed simi-
larly as JINE using some other algebra homomorphisms t, : JI(M,R) —
gl(JZ(M,R)) instead of ¢l This justifies the name [r]-jet prolongation. If
r>3and m > 2 thenonly J"F, JJF and J ["l E admit such reconstruction
(a paper in preparation).

From now on FTE denotes J"E or JJE or JIE.
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2. The natural linear operators lifting linear vector fields to F"E

In this section we will cite some results of [15].

Let p: E — M be a VB, ,-object. A projectable vector field X on F is
called linear if X : E — TE is a vector bundle map from p : E — M into
Tp:TE — TM. Equivalently, the flow FI of X is formed by VB, ,-maps.
The space of linear vector fields on E will be denoted by Xjin(E).

A natural linear operator A : Tj;,vg,, . ~ TF" is an VB, ,-invariant
family of R-linear operators A : &j;,(F) — X(FTE) for any VB, ,-object
E. The VB, ,-invariance means that for any VB, ,-map f : E; — E; and
any f-conjugate linear vector fields X and Y on E; and E» the vector fields
A(X) and A(Y) are F" f-conjugate.

EXAMPLE 1. (The flow operator) Let X be a linear vector field on a VB, -
object p : E — M. The flow FI¥ of X is formed by VB, n-maps on E.
Applying functor F™ we obtain a flow F"(Fl) on F"E. The vector field
F'X on F"E corresponding to the flow F"(FIX) is called the flow prolon-
gation of X. The correspondence 7" : Tj;nvg,, , ~ TF", X — F7X, is a
natural linear operator.

EXAMPLE 2. Given a linear vector field X on a VB, n-object E covering a
vector field X on M we define a vertical vector field V<!>(X) on JIFE as
follows. Let y = jroe JJE, 0 : M — E,, x € M. We put
V(X)) = (v, 5:(Xo(2)) € {y} x () E=V, JJEC T, JJE,
where Xo(z) : M — E, is the constant map. The correspondence V<!> :
Tiin|vB,, , ~ TJ, is a natural operator.
EXAMPLE 3. Given a linear vector field X on a VB, ,-object E covering
a vector field X on M and a module homomorphism & : J'CF(E) —
Jr(M,R) over tI! : JT(M,R) — gl(JI(M,R)) (ie. ® € JIE, z € M) we
have a linear map ®x : J"CS>/*(E) — JI(M,R) given by
®x(0) = j(Xv(2)) ,
o€ JCIYE), vy : M — R, jIy = ®(0), Xy(z) : M — R is the
constant map. The linear map &x : J'C/(E) — JI(M,R) is module
homomorphisms over ¢ JI(M,R) — gl(JZ(M,R)) as easily to verify.
Consequently, we have vertical vector field U!)(X) on JI'IE by
UMD (X) = (B, 8x) € {®} x JIE = VaJIE

® e JL’IE, z € M. The correspondence U : Tiin|VB,, . ~ TJ is a
natural linear operator.

In [15] we proved the following classification theorem.
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THEOREM 1. ([15]) Letr > 1, m > 2 and n > 1 be integers.

(a) Any natural linear operator A : Ty,ys,,,, ~ TJ7 is a constant
multiple of the flow operator J™.

(b) Any natural linear operator A : Tyinvg,, , ~» TJy is a linear combi-
nation with real coefficients of the flow operator JT and V<!>,

(c) Any natural linear operator A : Tyinvas,, . ~> TJ [l is a linear combi-
nation with real coefficients of the flow operator J " and the operator UV,

3. Examples of natural affinors on F'F

A VB, ,-natural affinor B on F"E is a family of VB, ,-invariant affinors
B :TF'E — TF"E for any VB,, ,-object E. The invariance means that
BoTF f =TF"f o B for any VB, ,-map f.

EXAMPLE 4. (The identity affinor) For any VB, ,-object E we have the
identity map Id : TF"E — TFTE. The family Id is a VB, n-natural affinor
on F'E.
EXAMPLE 5. Let p: E — M be a VB, ,-object. Define U : TJJE — VJJE
by

U(v) = (3,5z(Tp(v)0)) € {y} x (J))E=V, T E ,
veTT,JJE, y=jlo € (J])E, £ € M. Here Tp(v)o : M — E, is the
constant map, the differential of o : M — E; at Tp(v). The family U is a
VB, »-natural affinor on Jj E.

EXAMPLE 6. Let p : E — M be a VB, n-object. Define V : TJIE S
VJUIE by
V(v) = (&, Prp()) € {®} x JNE=VeJIE

v € TsJE, & € JI'E, 2 € M. More precisely, ® : J'C®/{(E) —
Jr(M,R) is a module homomorphism over tI : J7(M,R) — gl(J7(M, R)).
Brp) : JTCTHE) = JZ(M,R), 1y (4536) = 55(Tp(v)7), 5y = ®(526),
jré € JrC>FYE), is also a module homomorphism over tLT], ie. <I>Tp(,;) €
Jg[f]E, see Example 3. The family V is a VB, ,-natural affinor on JI'E.

4. The main result
The main result of the present paper is the following classification theo-
rem.

THEOREM 2. Let r > 1, m > 2 and n > 1 be integers.

(a) Any VB, n-natural affinor B on J'E is a constant multiple of the
identity affinor Id.

(b) Any VB, ,-natural affinor B on JJE is a linear combination with
real coefficients of Id and U.
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(c) Any VB,, ,-natural affinor B on JI'VE is a linear combination with
real coefficients of Id and V.

To prove Theorem 2 we need the following lemma.

LEMMA 1. Let r,m,n be as in Theorem 1. Let B be a VB,, ,-natural affinor
on F"E such that BoF™ X = 0 for any linear vector field on E. Then B = 0.

Proof of Lemma 1. It is sufficient to show that B = 0 over 0 € R™.
We fix a basis in the vector space FfR™".

Step 1. B is of vertical type. Consider
TmoB:(TF'R™™)o=R™ x FfR™" x FfR™™ —» ToR™ .

Using the invariance of B with respect to the fiber homotheties we deduce
that T'r o B(a,u,v) = Tw o B{a,tu,tv) for any u,v € FfJR™™, a € R™,
t # 0. Then Tw o B(a,u,v) = T o B(a,u,0) for u,v,a as above. But
(a,4,0) = F"(a' 52 )w. Then T'w o B(a,u,0) = 0 because of the assumption
of the lemma. Then B is of vertical type.

Step 2. B=0. Consider
proo B (TFTR™™)y=R™ x FfR™" x FfR™" — FJR™" ,

where prq : (VFTR™™)o=FJR™" x FfR™" — FfJR™" is the projection
onto the second factor. Using the invariance of B with respect to the fiber
homotheties we deduce that pry o B(a, tu,tv) = tpreo B(a, u, v) for a,u,v as
in Step 1. Then prqo B(a, u, v) is a linear combination of the coefficients of u
and v (with respect to the obvious basis in the vector space FJR™™) with
coefficient being smooth maps in a because of the homogeneous function
theorem. On the other hand, since B is an affinor B(a,u,v) is a linear
combination of the coefficients of a and v with coefficient being smooth
functions in u. We see that pro o B(a,u,0) = 0 by the same reason as in
Step 1. We also see that (0,v,v) = F"L,, where L is the Liouville vector
field on R™", and consequently B(0, v, v) = 0 because of the assumption of
the lemma. Hence B(a,u,v) = 0 for all a,u, v as above. 0

Proof of Theorem 2. Lemma 1 says that a VB, »,-natural affinor B
on F"FE is uniquely determined by the vector fields BoF" X for linear vector
fields X on E. On the other hand BoF" X is a VB, »-natural linear operator
lifting linear vector fields on E into F"E. Using Theorem 1 (a) we know that
BoJ "X =aJ"X. Hence B = ald. This complete the proof of Theorem 2
for F"E = J"E. Using Theorem 1 (b) we complete the proof of Theorem 2
for F"E = JJE. Using Theorem 1 (c) we complete the proof of Theorem 2
for FTE = JIE. g
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5. Some versions on the main result
We say that an affinor B : TE — TF on a vector bundle E is linear if
B(X) is for any linear vector field X on E.

PROPOSITION 1. Let B be a VB, ,-natural affinor on F'E (resp. FTE*,
(FTE)*, (FTE*)*). Then B is linear.

Proof. Observe that a vector field X on a vector bundle F is linear iff
(bt) X = tX for t # 0, where b, is the fiber homothety on E.

Observe also that F"b, is the fiber homothety on FTR™™ if b, is the
fiber homothety on R™".

Let X be a linear vector field on F"R™". Then (F"b;).X = tX for any
t # 0. Then (F7b;).(B(X)) = tB(X) because of the invariance of B with
respect to b;. Then B(X) is a linear vector field on F"(R™™).

Similar method we use for F"E*, (F'E)* and (F"E*)* O

There is a natural involution (dualization) ()* : VBpn — VBmp, E —
E*, f — (f~1)*. Given a linear vector field on a vector bundle E we have
the dual linear vector field X* on E* such that if f; is the flow of X then
(f71)* is the flow of X*.

LEMMA 2. Let B: TE — TFE be a linear affinor on a vector bundle E. Then
there is one and only one linear affinor B* : TE* — TE* on the dual vector
bundle E* such that B*(X*) = (B(X))* for any linear vector field X on E.

Proof. We use local vector bundle cordinate argument. If

B = al(2)ds’ ® o= + by (a)y det ® = + ¢ (¢)dy* ®

OxJ oy ays
then
NN 8 3
*—al 1 — S kg.i s k
B* = al(z)dz* ® 57 + b5 (z)v"dz* ® P0s T ci(z)dv® ® ol

where (z*, y*) are vector bundle coordinates on E and (z*,v*) are the dual
vector bundle coordinates on E*. g

Using Proposition 1 and Lemma 2 one can easily deduce from Theorem
2 the following versions of Theorem 2.

THEOREM 3. Letr > 1, m > 2 and n > 1 be integers.

(a) Any VB, »-natural affinor B on J"E* is a constant multiple of the
identity affinor Id.

(b) Any VB,, ,-natural affinor B on J,E* is a linear combination with
real coefficients of Id and U.

(c) Any VB, ,-natural affinor B on J [ E* is a linear combination with
real coefficients of Id and V.



716 W. M. Mikulski

THEOREM 4. Let r > 1, m > 2 and n > 1 be integers.

(a) Any VB, »-natural affinor B on (J"E)* is a constant multiple of the
identity affinor Id.

(b) Any VB, n-natural affinor B on (JI E)* is a linear combination with
real coefficients of Id and U*.

(c) Any VB, »-natural affinor B on (JVE)* is a linear combination
with real coefficients of Id and V*.

THEOREM 5. Let r > 1, m > 2 and n > 1 be integers.

(a) Any VB,, »-natural affinor B on (J"E*)* is a constant multiple of
the identity affinor Id.

(b) Any VB, n-natural affinor B on (JJE*)* is a linear combination
with real coefficients of Id and U*.

(c) Any VB, n-natural affinor B on (JIE*)* is a linear combination
with real coefficients of Id and V*.
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