

Andrzej Piątkowski

ON THE LEAVES OF A PREFOLIATION
OF A \mathbb{K} -DIFFERENTIAL SPACE

Abstract. The definition of a prefoliation (M, F) of a \mathbb{K} -differential space and the theorem about regularity of the inclusion of a leaf of a prefoliation are reminded. An example of a pair (M, F) of \mathbb{K} -differential spaces with the same set of points, which shows that even if the identity of M is an immersion $F \rightarrow M$ and $(\text{top } M, \text{top } F)$ is a topological foliation in the sense of Ehresmann then (M, F) has not to be a prefoliation, is given. In the end, we show that if L is a proper leaf of a prefoliation (M, F) then the both structures of a \mathbb{K} -differential spaces coincide on L .

1. Introduction

In [10] the notion of a \mathbb{K} -differential space was introduced. This notion is a generalization of the notion of the differential space in the sense of Sikorski ([6]). The definition of the \mathbb{K} -differential space seems to be specially interesting from the point of view of the theory of foliations. Namely, in [10] it was proved that if R is an arbitrary equivalence relation on the set M of points of a \mathbb{K} -differential space M then one can define a structure of a \mathbb{K} -differential space in the set of equivalence classes. Moreover, the topology determined by this structure is equal to the quotient topology of the topology determined by the \mathbb{K} -differential space M .

In [3] we have introduced the definition of a prefoliation of a \mathbb{K} -differential space. This definition is based on the definition of a topological foliation ([1],[2]). The notion of a prefoliation of a \mathbb{K} -differential space is a particular case of the notion of a topological foliation and, at the same time, it is a generalization of such notions as a prefoliation of a manifold ([4],[9]), a Stefan foliation ([7],[8]) and a regular foliation ([5]). In [3] we have shown that, for a prefoliation (M, F) , the identity mapping of the set of points of M is a smooth mapping of the \mathbb{K} -differential space F into M . Moreover, there is a proof of the regularity of this mapping. As a corollary, we have obtained the regularity of the natural inclusion of a leaf into M .

In the present paper, we construct an example which shows that for two \mathbb{K} -differential spaces F and M with the same set of points, even if the identity mapping is an immersion $F \rightarrow M$ and the pair $(\text{top } M, \text{top } F)$ is a topological foliation then (M, F) has not to be a prefoliation. We also prove that if L is a proper leaf of a prefoliation (M, F) , i.e. both topologies $\text{top } M$ and $\text{top } F$ coincide on L then the structures of \mathbb{K} -differential spaces M and F coincide on L . More precisely, the equality $M_L = F_L = F|L$ holds.

The paper consists of six sections. In section 2 we remind the notion of a \mathbb{K} -differential space and smooth mapping of \mathbb{K} -differential spaces. Section 3 contains the definition of a tangent space and a tangent mapping. Some elementary properties of a tangent mapping are proved. In section 4 we define a prefoliation of a \mathbb{K} -differential space and present some elementary properties of the prefoliation which are proved in [3]. Section 5 is devoted to the construction of the example mentioned above. In the end, in section 6 we prove the main theorem of the present paper. We show there that if topologies of M and F coincide on the leaf L then the structures of \mathbb{K} -differential spaces also coincide on L .

2. \mathbb{K} -differential space

Let \mathbb{K} be an arbitrary field with a non-trivial norm (we can think here about \mathbb{R} or \mathbb{C}). Let M be a family of functions with values in \mathbb{K} . Define the set

$$\mathcal{M} := \bigcup_{\alpha \in M} D_\alpha$$

which will be called *the set of points of M* . In the set of points of M define a topology $\text{top } M$ as the weakest topology containing the family

$$\{\alpha^{-1}(B) : B \text{ is open in } \mathbb{K} \text{ and } \alpha \in M\}.$$

Next set

$$\begin{aligned} \text{an } M &:= \{\varphi \circ (\alpha_1, \dots, \alpha_m) : m \in \mathbb{N} \text{ and } \alpha_1, \dots, \alpha_m \in M \\ &\quad \text{and } \varphi \text{ is an analytical function defined on an open} \\ &\quad \text{set in } \mathbb{K}^m \text{ with values in } \mathbb{K}\}. \end{aligned}$$

If $A \subset \mathcal{M}$ then

$$M|A := \{\alpha|A \cap D_\alpha : \alpha \in M\}$$

and

$$M_A := \{\beta : \forall_{p \in D_\beta} \exists_{U \in \text{top } M} \exists_{\alpha \in M} (p \in U \cap A \subset D_\beta \wedge U \subset D_\alpha \wedge \beta|U \cap A = \alpha|U \cap A)\}.$$

It is easy to see that

$$(2.1) \quad M|A \subset M_A.$$

The family M_A will be called *a localization of M to the set A* .

From the above definition we have

PROPOSITION 1. *Let M be a family of functions with values in \mathbb{K} . If $B \subset A \subset .M$ then*

$$(M_A)_B = M_B.$$

Define now a \mathbb{K} -differential space.

DEFINITION 1. *The family M of functions with its values in \mathbb{K} is called a \mathbb{K} -differential space, if the condition*

$$\text{an } M = M = M_{.M}$$

is fulfilled.

Let M be an arbitrary family of functions with its values in \mathbb{K} . One can prove the following

PROPOSITION 2. *The family $(\text{an } M)_{.M}$ is the smallest \mathbb{K} -differential space with the set $.M$ as the set of points, containing M .*

DEFINITION 2. *The \mathbb{K} -differential space $(\text{an } M)_{.M}$ is called the \mathbb{K} -differential space generated by a family M .*

It was proved in [11] the following

PROPOSITION 3. *Let M be a \mathbb{K} -differential space and $A \subset .M$. Then $M_A \subset M$ if and only if $A \in \text{top } M$.*

The above proposition gives

COROLLARY 1. *Let M be a \mathbb{K} -differential space and $A \in \text{top } M$. Then $M|A = M_A$.*

Let M, N be \mathbb{K} -differential spaces.

DEFINITION 3. *The mapping $f : .M \rightarrow .N$ is said to be smooth if for each $\beta \in N$ we have $\beta \circ f \in M$.*

If the above condition holds then we write $f : M \rightarrow N$.

It is obvious that if $f : M \rightarrow N$ then $f : \text{top } M \rightarrow \text{top } N$ i.e. f is a continuous mapping respective to the topologies $\text{top } M$ and $\text{top } N$.

3. Tangent space, tangent mapping

Let M be a \mathbb{K} -differential space and $p \in .M$. Define $M(p) := \{\alpha \in M : p \in D_\alpha\}$.

DEFINITION 4. *Any \mathbb{K} -linear mapping $v : M(p) \rightarrow \mathbb{K}$ such that*

$$v(\alpha \cdot \beta) = v(\alpha) \cdot \beta(p) + \alpha(p) \cdot v(\beta)$$

for $\alpha, \beta \in M(p)$ is called a vector tangent to M at p . The family of all vectors tangent to M at p forms a vector space. This vector space is said to be tangent to M at p . It is denoted by $T_p M$.

It is easy to see that if $v \in T_p M$, $U \in \text{top } M$ and $\alpha \in M$ then

$$(3.1) \quad v(\alpha) = v(\alpha|U).$$

Let M, N be \mathbb{K} -differential spaces and $f : M \rightarrow N$. For each $p \in M$, the mapping f determines a linear mapping $(f_*)_p : T_p M \rightarrow T_{f(p)} N$ called a *tangent mapping*. Namely, for $v \in T_p M$ and $\beta \in N(f(p))$ we have

$$((f_*)_p v)(\beta) = v(\beta \circ f).$$

DEFINITION 5. *The mapping $f : M \rightarrow N$ is called an *immersion*, if for each $p \in M$ the tangent mapping $(f_*)_p$ is a monomorphism.*

Let $A \subset M$ and $\iota : A \hookrightarrow M$. We have the following

LEMMA 1. *The mapping ι is smooth $M_A \rightarrow M$ and ι is an immersion. Moreover, if $A \in \text{top } M$ then for any $p \in A$ the mapping $(\iota_*)_p$ is an isomorphism.*

Proof. Let $\beta \in M$, then $\beta \circ \iota = \beta|A \in M|A \subset M_A$ by (2.1). Thus $\iota : M_A \rightarrow M$.

Let $p \in A$ and $v \in T_p M_A$. Assume that $(\iota_*)_p v = 0$, so for any $\beta \in M$

$$(3.2) \quad v(\beta|A) = ((\iota_*)_p v)(\beta) = 0.$$

Let $\alpha \in M_A(p)$. Then there exist $U \in \text{top } M$ and $\beta \in M$ such that $p \in U \cap A \subset D_\alpha$ and $U \subset D_\beta$ and $\alpha|U \cap A = \beta|U \cap A$. Remark that $U \cap A \in \text{top } M_A$ ([11],[3]). Therefore, by (3.1) and (3.2) we get

$$v(\alpha) = v(\alpha|U \cap A) = v(\beta|U \cap A) = v((\beta|A)|U \cap A) = v(\beta|A) = 0.$$

Thus $v = 0$.

Assume now that $A \in \text{top } M$. Let $w \in T_p M$. Define $v : M_A(p) \rightarrow \mathbb{K}$ by the formula

$$v(\beta) = w(\beta).$$

The definition is correct since $\beta \in M_A \subset M$ by Proposition 3. It is obvious that v is an element of $T_p M_A$. Moreover, by (3.1)

$$((\iota_*)_p v)(\alpha) = v(\alpha|A) = v(\alpha) = w(\alpha)$$

which means that $(\iota_*)_p v = w$. Thus ι_* is an epimorphism. ■

It is easy to prove

LEMMA 2. *Let M, N, P be \mathbb{K} -differential spaces. If $f : M \rightarrow N$ and $g : N \rightarrow P$ then $g \circ f : M \rightarrow P$ and for any $p \in M$ the equality*

$$((g \circ f)_*)_p = (g_*)_{f(p)} \circ (f_*)_p$$

holds. Moreover, if f, g are immersions then $g \circ f$ is an immersion.

We have

PROPOSITION 4. *Let M, N be \mathbb{K} -differential spaces and $A \subset M$. If $f: M \rightarrow N$ is an immersion then $f|A: M_A \rightarrow N$ and this mapping is an immersion.*

Proof. Remark that $f|A = f \circ \iota$ with $\iota: A \hookrightarrow M$. Obviously, by Lemma 1 and Lemma 2 we have the assertions. ■

4. Prefoliation of a \mathbb{K} -differential space

Let M be a \mathbb{K} -differential space.

DEFINITION 6. *A pair (M, F) of \mathbb{K} -differential spaces is called a prefoliation of M iff*

- 1) $.F = M$,
- 2) $\text{top } F$ is locally connected,
- 3) $\forall p \in M \exists U \in \text{top } F (p \in U \wedge F_U = M_U)$.

Connected components of $\text{top } F$ are called leaves of (M, F) .

It is easy to see that the notion of a prefoliation is a generalization of the notion of the regular foliation, and of the Stefan foliation. Moreover, if (M, F) is a prefoliation of a \mathbb{K} -differential space M then $(\text{top } M, \text{top } F)$ is a topological foliation in the sense of Ehresmann ([1], [2]).

It is not difficult to prove the following

THEOREM 1. *If (M, F) is a prefoliation of a \mathbb{K} -differential space M then for the mapping $f = \text{id}_M$ we have $f: F \rightarrow M$.*

Proof. If $\beta \in M$ then for each $p \in M$ denote by U_p such a neighbourhood of p in $\text{top } F$ for which

$$F_{U_p} = M_{U_p}.$$

Thus we get an open covering $\{U_p\}_{p \in M}$ of the set M respective to $\text{top } F$ with

$$\beta|U_p \in M|U_p \subset M_{U_p} = F_{U_p}.$$

Therefore $\beta \in F$ since F is a \mathbb{K} -differential space. ■

From the theorem we get

COROLLARY 2. *Let (M, F) be a prefoliation of a \mathbb{K} -differential space M . Then $\text{top } M \subset \text{top } F$ and $M \subset F$.*

We also have

THEOREM 2. *If (M, F) is a prefoliation of a \mathbb{K} -differential space M then the mapping $f = \text{id}_M$ is an immersion $F \rightarrow M$.*

Proof. Suppose that $(f_*)_p(v) = 0$ for some $v \in T_p F$. Then for each $\beta \in M(p)$ we have $v(\beta \circ f) = 0$, i.e. for each $G \in \text{top } F$ with $p \in G$ by (3.1)

we have

$$(4.1) \quad v((\beta \circ f)|G) = 0$$

Let $\alpha \in F(p)$. There exists $U \in \text{top } F$ such that $p \in U$ and $F_U = M_U$ by the definition of a prefoliation. Therefore, $\alpha|D_\alpha \cap U \in F|U = F_U = M_U$ by Corollary 1. Thus there exist $V \in \text{top } M$ and $\gamma \in M$ such that $p \in V \cap U \subset D_\alpha$ and $V \subset D_\gamma$ and $\gamma|V \cap U = \alpha|V \cap U$. Obviously $\gamma \in M(p)$ and because of Corollary 2, $V \cap U \in \text{top } F$. Consequently,

$$v(\alpha) = v(\alpha|V \cap U) = v(\gamma|V \cap U) = v(\gamma \circ f|V \cap U) = 0$$

by (4.1). Thus $v = 0$. ■

Using Proposition 4 we simply get

COROLLARY 3. *If L is a leaf of a prefoliation (M, F) then $\text{id}_L : F_L \rightarrow M$ is an immersion.*

COROLLARY 4. *If L is a leaf of a prefoliation (M, F) then $M_L \subset F|L$.*

P r o o f. The assertion follows directly from Corollary 2 and the simple fact: if $M \subset F$, $.M = .F$ and $A \subset .M$ then $M_A \subset F_A$. ■

5. Example

In the present section we construct a pair (M, F) of \mathbb{K} -differential spaces such that

- 1° $.M = .F$;
- 2° $\text{top } F$ is locally connected;
- 3° $\text{id}_{.M} : F \rightarrow M$ is an immersion;
- 4° $(\text{top } M, \text{top } F)$ is a topological foliation;
- 5° (M, F) is not a prefoliation of a \mathbb{K} -differential space.

To this end, we introduce a new definition of the tangent space $T_p M$. Let M be an arbitrary \mathbb{K} -differential space and $p \in .M$. In the set $M(p)$ define an equivalence relation in the following way:

$$\alpha \equiv \beta \iff \exists_{U \in \text{top } M} (p \in U \wedge \alpha|U = \beta|U),$$

for $\alpha, \beta \in M(p)$. The equivalence class of a function $\alpha \in M(p)$ will be called a *germ of α at p* and will be denoted by $\xi = [\alpha]_p$. Obviously, the value of a germ ξ at the point p is well defined. The set of all germs at p with naturally defined addition and multiplication forms a ring. It follows from the equality $.M = M$ and from the fact that M contains all constant functions on open sets in $\text{top } M$ ([11]). Denote this ring by R_p . It is easy to check that the set

$$\mathbf{m}_p = \{\xi \in R_p : \xi(p) = 0\}$$

is an ideal in R_p . One can prove the following

PROPOSITION 5. *The \mathbb{K} -vector spaces $T_p M$ and $(m_p/m_p^2)^*$ are isomorphic.*

Let F be the \mathbb{R} -differential space generated by the family of all continuous functions defined in \mathbb{R} . For each $p \in \mathbb{R}$ the vector space $T_p F$ is zero-dimensional.

Let M be the \mathbb{R} -differential space generated by the family of all C^∞ functions defined in \mathbb{R} . Analogously as in [6] for differential spaces in the sense of Sikorski, one can prove that for each $p \in \mathbb{R}$ the tangent space $T_p M$ is one-dimensional.

Remark that $\text{top } M$ also is the natural topology in \mathbb{R} .

For the pair (M, F) we have:

- 1) $M = F = \mathbb{R}$;
- 2) $\text{top } F$ is locally connected as the natural topology in \mathbb{R} ;
- 3) $\text{id}_{\mathbb{R}} : F \rightarrow M$ since $M \subset F$ and this mapping is an immersion since $\dim T_p F = 0$ for each $p \in \mathbb{R}$;
- 4) $(\text{top } M, \text{top } F)$ is the trivial topological foliation since $\text{top } M = \text{top } F$ is the natural topology in \mathbb{R} ;
- 5) (M, F) is not a prefoliation since for each $U \in \text{top } F = \text{top } M$ we have $M_U = M|U \not\subset F|U = F_U$ by Corollary 1.

6. Proper leaves

Using the definition of a prefoliation one can prove

LEMMA 3. *If (M, F) is a prefoliation of a \mathbb{K} -differential space then for each $\beta \in F$ and for each $p \in D_\beta$, there exist $G \in \text{top } F$ and $\alpha \in M$ such that $p \in G \subset D_\beta$ and $\beta|G = \alpha|G$.*

Proof. Let $\beta \in F$ and $p \in D_\beta$. By the definition of a prefoliation there exists $U \in \text{top } F$ such that $p \in U$ and $M_U = F_U$. Remark that, since $D_\beta \in \text{top } F$, the set $V := U \cap D_\beta$ is an open (respective to $\text{top } F$) neighbourhood of p contained in U . By Proposition 1 and Corollary 1 we have $M_V = (M_U)_V = (F_U)_V = F_V = F|V$. Therefore, $\beta|V \in M_V$ which means that there exist $W \in \text{top } M$ and $\alpha \in M$ such that $p \in W \cap V \subset D_{\beta|V} = V$ and $W \subset D_\alpha$ and $\alpha|W \cap V = \beta|W \cap V$. By Corollary 2, $\text{top } M \subset \text{top } F$, so if we set $G := W \cap V$ then $p \in G \in \text{top } F$ and $G \subset D_\beta$ and $\beta|G = \alpha|G$. ■

Let (M, F) be a prefoliation of a \mathbb{K} -differential space M and let L be a leaf of (M, F) .

DEFINITION 7. *The leaf L is said to be proper if $(\text{top } F)|L = (\text{top } M)|L$.*

We have the following

THEOREM 3. *Let (M, F) be a prefoliation of a \mathbb{K} -differential space M and L be a proper leaf of (M, F) then*

$$M_L = F|L.$$

Proof. The inclusion $M_L \subset F|L$ holds for each L by Corollary 4.

We show that $F|L \subset M_L$. Let $\gamma \in F|L$. By a local connectedness of $\text{top } F$ we have $L \in \text{top } F$ and consequently $\gamma \in F|L \subset F$ by Proposition 3. By Lemma 3, for each $p \in D_\gamma$ there exist $V \in \text{top } F$ and $\beta \in M$ such that $p \in V \subset D_\gamma \subset L$ and $\gamma|V = \beta|V$. Since L is proper, there exists $W \in \text{top } M$ such that $V = W \cap L$. Let $p \in D_\gamma$ and define $U := W \cap D_\beta \in \text{top } M$ and $\alpha := \beta|U \in M$ by Proposition 3. Then we have

- 1) $p \in U \cap L \subset D_\gamma$ since $U \cap L \subset W \cap L = V \subset D_\gamma$;
- 2) $U \subset D_\alpha$ (in fact the equality holds);
- 3) $\alpha|U \cap L = \beta|U \cap L = \beta|W \cap L \cap D_\alpha = \gamma|W \cap L \cap D_\alpha = \gamma|U \cap L$ since $W \cap L \cap D_\alpha \subset V$.

By 1)-3) and the definition of the localization we have $\gamma \in M_L$. ■

References

- [1] C. Ehresmann, *Structures feuilletées*, Proc. 5th Can. Math. Cong., Montreal (1961), 109–172.
- [2] C. Ehresmann, S. Weishu, *Sur les espaces feuilletés: théorème de stabilité*, C.R. Acad. Sci. Paris 243 (1956), 344–346.
- [3] A. Piątkowski, *On the prefoliation of a \mathbb{K} -differential space*, Bull. Soc. Sci. Lettr. de Łódź, 50 (2000), 11–22.
- [4] J. Pradines, *How to define the differential graph of a singular foliation*, Cahiers Top. Geom. Diff. XXVI, 4 (1985), 339–380.
- [5] R. Reeb, *Sur certaines propriétés topologiques des variétés feuilletées*, Act. Sci. et Indust. No 1183, Hermann Paris, 1952.
- [6] R. Sikorski, *Introduction to Differential Geometry* (in Polish), PWN Warszawa, 1972.
- [7] P. Stefan, *Accessible sets, orbits and foliations with singularities*, Proc. London Math. Soc. 29 (1974), 699–713.
- [8] H. J. Sussmann, *Orbits of families of vector fields and integrability of distributions*, Trans. Amer. Math. Soc. 79 (1973), 171–188.
- [9] P. Ver Eecke, *Le groupoïde fondamental d'un feuilletage de Stefan*, Publicationes de Seminario Matematico Garcia de Galdeano, Serie II, Sec. 3, No 6, Universidad de Zaragoza, 1986.
- [10] W. Waliszewski, *Inducing and coinducing in general differential spaces*, Demonstratio Math. 24 No 3–4 (1991), 657–664.
- [11] W. Waliszewski, *Lecture notes*, (unpublished).

INSTITUTE OF MATHEMATICS
 TECHNICAL UNIVERSITY OF ŁÓDŹ
 Al. Politechniki 11
 PL-90-924 ŁÓDŹ
 E-mail: andpiat@p.lodz.pl

Received June 2, 2003.