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ON UNIVERSAL ELEMENTS FOR SOME FAMILIES
OF FUNCTIONS

Abstract. A point z € X is called universal element for a family & of functions
from X to Y if the set {f(z);f € ®} is dense in Y. In this article we show that every
residual Gg-set in a completely regular space X (every residual set in ]Rk) is the set of
all universal elements for some family of continuous functions from X to R (for some
family of quasicontinuous functions from R* to R). Moreover we investigate the sets of
all universal elements for some families of monotone functions and for some families of
functions having the property of Denjoy-Clarkson.

Let (X,Tx) and (Y,Ty) be topological spaces with topologies Tx and
Ty respectively. Let

A={T;: X - Y;j € J}, where J isan index set,
be a family of mappings from X to Y.
A point £ € X is called a universal element for the family A if the set

{Tj(z);j € J} is dense in Y. Let U denote the set of all universal elements
for A.

REMARK. If (X,Tx) is a topological space, if (Y,Ty) is second countable
topological space and if T;(j € J) is continuous then U is Gs-set.

Proof. Let Wi(k > 1) be the nonempty members of a countable base of
the topology of Y. Then U = N2, Ujes T; H(Wi) is Gs-set.
In [6, 7, 9] the following theorem is proved:

THEOREM 1. Let X be a Baire space, let Y be second countable and let T;
be continuous for each j € J. Then the following assertions are equivalent:

(1) The set U is residual in X;
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(2) The set U is a dense Gs-subset of X ;

(3) The set U is dense in X;

(4) For each pair of nonempty sets V € Tx and W € Ty there is an index
Jj € J such that

T;(V)NW # 0.

In [8] G. Herzog and R. Lemmert extend this result for families of qua-
sicontinuous functions. Remind that a function f : X — Y is called quasi-
continuous ([11, 12]) at a point z € X if for all sets V € Tx and W € Ty
with z € V and f(z) € W there is a nonempty set S € Tx such that S C V
and f(S) Cc W.

In (8] the authors proved the following theorem:

THEOREM 2. Let X be a Baire space, let Y be second countable, and let
T; be quasicontinuous for each j € J. Then the following assertions are
equivalent:

(1) The set U is residual;

(2) The set U is dense in X;

(3) For each pair of nonempty sets V € Tx and W € Ty there is an index
j € J such that

T;(V)NW # 0.

Moreover it is obvious that if the family .4 contains only one function
having the graph dense in the product space X x Y and if there exists no
singleton dense in Y then A satisfies the condition (3) from Theorem 2 and
the set U for this family is empty. The functions with dense graphs may
have some important properties, for example in the case X =Y = R, where
R denotes the set of all reals, such functions may have the Darboux property
or may be additive ([10]).

In connection with Theorem 1 observe that if the space X contains an
isolated point x € X then for each family A of functions from X to Y
satisfying the condition (4) from Theorem 1 the point z is a universal element
for A.

It is well now that there are regular topological spaces (X, T'x) such that
each function f : X — R is continuous ([4], p.55).

For each a family of continuous functions from X to R satisfying condi-
tion (4) from Theorem 1 we have U = X. Therefore, if A C X is a proper
Gs-set dense in X then A # U for every family A of continuous fonctions
from X to R satisfying condition (4) from Theorem 1.

But the following theorem is true:
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THEOREM 3. Let X be a completely reqular topological space. Then for each
Gs-set B C X there is a family A of continuous functions from X to R for
which U = B.
Proof. The set A= X \ B is an F,-set. So there are closed sets Ap, n > 1,
such that
A= U A, and A, C Apyy for n> 1.
n>1

Let (wn) be a sequence of all rationals such that wy, # wp, for n # m. Since
X is a completely regular space, it satisfies the axioms of separation T; and
Tz. So for each point t € B the set {t} is closed and there are continuous

fuznctions
fnt 1 X — [min(0, w, ), max(0, wy,)] such that fr, +(t) =wy and f,(An)={0}.
Let
A={fas;t € B and n>1}.
If a point z € B then

{f(z);f € A} D Q= {wn;n 21},
and consequently z € U.

In the contrary case, if z € A = X \ B there is an index k such that
T € A, for n > k. Then

fot(z) =0 for t€ B and n >k,

and
fa(x) C [— max|wy,|, max |wy,|] for t € B and n < k.
n<k n<k

So the set
{f(z); f € A}
is not dense in R and consequently z € X \ U. This completes the proof.
Let (Z, p) be a metric space. Remind that the functions f : X — Z of

a family ® are equicontinuous at a point z € X if for every positive real r
there is a set V' € T'x containing = such that

f(V)c K(f(z),r) ={u € Z;p(u, f(z)) <r} for each f e d.

THEOREM 4. Let Y be a metric space. f A= {T; : X - Y;j€ J}isa
family of functions equicontinuous at each point x € X satisfying condition
(4) from Theorem I then U = X.

Proof. Assume, by a contradiction, that there is a point € X \ U. Then
there is a ball K(y,r) with center y and radius r > 0 such that

(*) {f(z);f e AANK(y,r) = 0.
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Since the functions f € A are equicontinuous at the point z, there is a set
V € Tx containing z and such that

(%) F(V) c K( f(a:),-;-) for each f € A.

But the family A satisfies condition (4) from Theorem 1, so there is an index
j € J such that

r
Ty(V) N K(y, 5) # 0.
Let v € V be a point such that T;(v) € K(y, §). By (*x) we obtain
r

p(T;(z),y) < p(Tj(2), Tj(v)) + p(Tj(v)sy) < _;. +

which contradicts with (x). This contradiction finishes the proof.

In connection with Theorem 2 observe that there is a topological space
(X,Tx) such that all quasicontinuous functions f : X — R are constant.
For example, such is each uncountable space X with the topology

T.={0}u{AC X;X\ A is countable}.

If A is a family of quasicontinuous functions from a such space X to R
satisfying condition (3) from Theorem 2 then U = X. Such spaces may
contain some dense residual subsets A # X. So, for such A we have A £ U
for each family of quasicontinuous functions from X to R satisfying condition
(3) from Theorem 2.

However the following theorem is true:

THEOREM 5. Let X = RF and let Tx be the Euclidean topology T, in R*. If
B C X is a residual set then there is a family A of quasicontinuous functions
from X to R such that U = B.

Proof. Since the set A = X \ B is of the first category, there is an Fj-set
E > A of the first category. Let

E = U E,, where E,+1 D E, for n>1,
n>1

=7‘,

and FE, are closed and nowhere dense.
As in the proof of Theorem 3 we define a family .A; of continuous func-
tions from X to R such that all sets

{f(z); f € A1} aredensefor z € X\ E,
and all sets
{f(z); f € A1} arebounded for z € E,, n > 1.

For n > 1 put H, = E,NB. Moreover let (w,,) be a sequence of all rationals
such that w, # w,, for n # m. Without loss of the generality we can suppose
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that H, # 0 for n > 1. For each index n > 1 there is a family K, ;, 1 > 1,
of pairwise disjoint closed balls such that

-~ KpniNE, =0 for i > 1;

- Vieg, ViVe > 03;5; : Ky j C B(z,e) = {t;]z - t| < e}

Now for indices n,: > 1 define a continuous function fr; : Kn; — [~1, 1]
such that f, ;(Kn;) = [-%,7] and fn i(z) = 0 on the boundary S, ; of K ;.
Let

Inm(2) = fai(z) for z € Ky, 121,
gn,m(x) = wy for z € Hy,
and
gnm(z) = 0 otherwise on RF.
Every function g, m, n, m > 1, is quasicontinuous at each point. Let
A= A1 U{gnm;n,m>1}.

Then all functions of the family A are quasicontinuous at each point. If
z € X \ E then the set

{f(z); f € A} O {f(2); f € A1}
is dense.
If z € H, = E, 0 B for some index n then the set

{f(z); f € A} D {gnm(z);m > 1} = {wm;m > 1}
is also dense. So
B=(X\E)U(ENnB)=(X\E)U |JH.CU.
n>1
If
ze X\B=ACE=JE,

n>1
then there is an index n such that z € E,, \ B. So,
xeX\UKm,i for m > n,
i>1
and consequently the difference
{f(z); f € A}\{f(2); f € A1}

is finite. Since z € E,,, the set

{f(z); f € A1}

is bounded and z € X \ U. So U = B and the proof is completed.
The notion of quasicontinuity is a particular case of cliquishness.
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Remind that a function f : X — Y, where (Y, p) is a metric space, is
cliquish at a point z € X if for each positive real € and each set V € Tx
containing z there is a nonempty set W € Tx contained in V such that
osew f < € ([12)).

In the next example we show that there is a countable family of monotone
functions from R to R which are discontinuous only at one point (so they are
cliquish) satisfying condition (3) from Theorem 2 whose set of all universal
points is empty.

EXAMPLE 1. Let A = {(zn,yn);n > 1} C R? be a countable set dense in R?
and such that each vertical section

Az = {y e R;(z,y) € A}
is of the cardinality card(A4;) < 1.
Forn > 1 let
E(y,)—1forz < z,
gn(z) = Yn forz =z,
E(y,) + 1for z > z,,

where E(z) denotes the greatest integer which is < z.
Then the functions g, are monotone and continuous at all points z # x,.
Moreover the values of g, are integers for = # z,. So

if A={gn;n>1} then U=0.

We will show that the family A satisfies condition (3) of Theorem 2.
Let V,W € T, be nonempty sets. Since the set A is dense in R?, there is
an index k such that (zx,yx) € V x W. Consequently,

yk € ge(V)NW #£0.
So the family A satisfies condition (3) from Theorem 2.

THEOREM 6. Let X be a Baire space, let Y be second countable and let
A = {Tj;5 € J} be a family of functions from X to Y. If there is a set
A C X of the first category such that for each f € A the restricted functions
flix\a) are quasicontinuous (on X \ A) and for each pair of nonempty sets
V € Tx and W € Ty there is an indez j € J such that T;(V\ A)NW # §,
then the set U of all universal elements for A is residual in X.

Proof. This theorem is an immediate corollary from Theorem 2. Since the

space X \ A is a Baire space and for each f € A the restricted function

fl(x\4) is quasicontinuous, so the set U for the family A = {T}|(x\4);j € J}

is residual in (X \ A). So it is also residual in X. This finishes the proof.
In connection with Example 1 we have:



On universal elements 685

THEOREM 7. Let X =Y =R and Tx = Ty = T, be the FEuclidean topology
inR If A= {gn:X - Y;n > 1} is a countable family of monotone
functions satisfying the condition (3) from Theorem 2 such that for each
positive real € there is an index k such that oscgn(z) < € for each point
z € X and for each indexn > k, then the set U for the family A is residual.

Proof. For each index n > 1 let D(g,) denote the set of all discontinuity
points of the function g,. Since the functions g, are monotone, the sets
D(g,) are countable. So the set

A= U D(gn)
n>1

is also countable. As the countable set A is of the first category and the
restricted functions gn|(x\4), » > 1, are continuous. It suffices to prove that
the family A satisfies the remaining hypotheses of Theorem 6. For this, fix
bounded open intervals VW C R and denote by (z,y) the center of the
rectangle V x W. Find a positive real

_ min(lV], W)
4

where |V| denotes the length of the interval V. Let k be an index such that

oscgn(z) <€ forall z€ X and n>k
and let

S=(z—¢cz+e)x(y—¢c,y+e).
Since the graphs of monotone functions are nowhere dense in R?, the set
S1 =8\ | c(Gr(g.)),
n<k
where cl denotes the closure operation, is open and nonempty. There are
open intervals V; C (z — €,z + €) and W) C (y — €,y + €) such that
Vi x Wi C Sy
Since the family A satisfies the condition (3) from Theorem 2, there is an
index m > k such that
gm(Vi) N Wy # 0.

Let (z1, gm(z1)) be a point belonging to V; x W;. If z; € R\ A, then

0#gm(Vi\A)NW1 Cgn(V\A)NW.
So suppose that z; € A. Since oscgm(z1) < €, there is an open interval

V2 C V1 containing z; and such that oscy,gm < €. Fix a point 9 € Vo \ A.
Then

|gm(m2) - gm(ml)l < ¢ and gm(:cg) e W.



686 Z. Grande, E. Stronska

Consequently, (z2, gm(z2)) € V x W and
gm(V\ A) W £ 0.

So the family A satisfies all hypotheses of Theorem 6 and the set U for the
family A is residual in R. This finishes the proof.

Finishing we will consider the families of functions f : R — R connected
with the density topology.
Remember that z is a density point of a set A C R if there is a Lebesgue-
measurable set B C A such that
o MBO(@=hz+h)
h—0+ 2h
where u denotes the Lebesgue measure in R, and that the family

Ty = {A C R;Vzear is a density point of A}

is a topology called the density topology ([1, 14]). It is well now that all set
belonging to the density topology are measurable (Bruckner [1] p.19 (the
proof of Theorem 5.2), Tall [13], Wilczyniski [12], pp. 675-685).

From the Lebesgue density theorem it follows that a set A C R is of the
first category with respect to Ty if and only if u(A4) = 0.

If T, denotes the Euclidean topology in R then the continuity of functions
from (R, Ty) to (R, T) is called the approximate continuity.

All Lebesgue-measurable functions f : R — R are almost everywhere
approximately continuous ([1]).

The quasicontinuity of mappings f : (R, Ty) — (R, T,) is called approxi-
mate quasicontinuity ([5]).

From Theorem 2 it follows that if X =Y =R, Tx =Ty, Ty = T,
and A is a family of approximately quasicontinuous functions from X to Y
satisfying the condition (3) of Theorem 2 then p(R\ U) =0, i.e. almost all
points z € R are universal elements for the family .A.

Observe that if for a function f : R — R and a point z there is a
measurable set A 5 z such that the restricted function f|4 is continuous at
z and

=1,

(?) lim sup MAN[z—hy2+h)) >0,
h—0+ 2h
then f is approximately quasicontinuous at z.

We will say that a function f : R — R has the property (p;) if f has at
each point a path satisfying the condition () (i.e. for each point « there is
a measurable set A > z satisfying the condition (¢) such that the restricted
function f|4 is continuous at z.

A natural generalization of the property (p;) is the property of Denjoy-
Clarkson ({2, 3]).
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Remind that a nonempty measurable set A C R has the property of
Denjoy-Clarkson if for every open interval I such that ANI # () the measure
u(ANI) > 0. Moreover we suppose that () has the property of Denjoy-
Clarkson.

We say that a function f : R — R has the property of Denjoy-Clarkson if
for each open set U € T, the preimage f~!(U) has the property of Denjoy-
Clarkson.

EXAMPLE 2. Let C C [0,1] be a Cantor set of positive measure such that
0,1 € C. Enumerate in a sequence ([,) all components of the complement
[0,1]\ C and in each open interval I, find a closed interval K, = [ay,, by] C
I,. For n > 1 define a continuous function f, : K, — [-n,n] such that

fa(@n) = fu(ba) = 0 and fu(K) = [, n]. Let
f(z) = fa(z) for z € K, and f(z)=0 otherwiseon R.
There are nonmeasurable sets B, E such that
C=BUE, BNE=10

and for each measurable set G C C of positive measure the intersections
GNB and GNE are nonempty. Let (w,) be an enumeration of all rationals.
For each pair (z,n) € B x N, where N denotes the set of positive integers,
define

gzn(u) = f(z) for u#z and gyn(u) =w, for u==zx.
Forn>1let
hn(z) = f(z) + w, for z € R\ C and h,(z)= f(z)=0 for z € C.
Let
A={hp;n>1}U{gzn;z € B and n € N}.
Evidently all functions from the family A have the property of Denjoy-

Clarkson. Moreover the family A satisfies condition (3) from Theorem 2 for
X=Y=R,Tx =T3and Ty =T, but U = R\ F is not residual in (R, Ty).
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