

Zbigniew Grande, Ewa Strońska*

ON UNIVERSAL ELEMENTS FOR SOME FAMILIES
OF FUNCTIONS

Abstract. A point $x \in X$ is called universal element for a family Φ of functions from X to Y if the set $\{f(x); f \in \Phi\}$ is dense in Y . In this article we show that every residual G_δ -set in a completely regular space X (every residual set in \mathbb{R}^k) is the set of all universal elements for some family of continuous functions from X to \mathbb{R} (for some family of quasicontinuous functions from \mathbb{R}^k to \mathbb{R}). Moreover we investigate the sets of all universal elements for some families of monotone functions and for some families of functions having the property of Denjoy-Clarkson.

Let (X, T_X) and (Y, T_Y) be topological spaces with topologies T_X and T_Y respectively. Let

$\mathcal{A} = \{T_j : X \rightarrow Y; j \in J\}$, where J is an index set,

be a family of mappings from X to Y .

A point $x \in X$ is called a universal element for the family \mathcal{A} if the set $\{T_j(x); j \in J\}$ is dense in Y . Let U denote the set of all universal elements for \mathcal{A} .

REMARK. If (X, T_X) is a topological space, if (Y, T_Y) is second countable topological space and if $T_j(j \in J)$ is continuous then U is G_δ -set.

Proof. Let $W_k(k \geq 1)$ be the nonempty members of a countable base of the topology of Y . Then $U = \bigcap_{k=1}^{\infty} \bigcup_{j \in J} T_j^{-1}(W_k)$ is G_δ -set.

In [6, 7, 9] the following theorem is proved:

THEOREM 1. *Let X be a Baire space, let Y be second countable and let T_j be continuous for each $j \in J$. Then the following assertions are equivalent:*

(1) *The set U is residual in X ;*

1991 *Mathematics Subject Classification:* 54H99, 26A15.

Key words and phrases: universal element, quasicontinuity, density topology, monotone function, residual set.

*Partially supported by Bydgoszcz Academy grant 2002

- (2) *The set U is a dense G_δ -subset of X ;*
- (3) *The set U is dense in X ;*
- (4) *For each pair of nonempty sets $V \in T_X$ and $W \in T_Y$ there is an index $j \in J$ such that*

$$T_j(V) \cap W \neq \emptyset.$$

In [8] G. Herzog and R. Lemmert extend this result for families of quasicontinuous functions. Remind that a function $f : X \rightarrow Y$ is called quasicontinuous ([11, 12]) at a point $x \in X$ if for all sets $V \in T_X$ and $W \in T_Y$ with $x \in V$ and $f(x) \in W$ there is a nonempty set $S \in T_X$ such that $S \subset V$ and $f(S) \subset W$.

In [8] the authors proved the following theorem:

THEOREM 2. *Let X be a Baire space, let Y be second countable, and let T_j be quasicontinuous for each $j \in J$. Then the following assertions are equivalent:*

- (1) *The set U is residual;*
- (2) *The set U is dense in X ;*
- (3) *For each pair of nonempty sets $V \in T_X$ and $W \in T_Y$ there is an index $j \in J$ such that*

$$T_j(V) \cap W \neq \emptyset.$$

Moreover it is obvious that if the family \mathcal{A} contains only one function having the graph dense in the product space $X \times Y$ and if there exists no singleton dense in Y then \mathcal{A} satisfies the condition (3) from Theorem 2 and the set U for this family is empty. The functions with dense graphs may have some important properties, for example in the case $X = Y = \mathbb{R}$, where \mathbb{R} denotes the set of all reals, such functions may have the Darboux property or may be additive ([10]).

In connection with Theorem 1 observe that if the space X contains an isolated point $x \in X$ then for each family \mathcal{A} of functions from X to Y satisfying the condition (4) from Theorem 1 the point x is a universal element for \mathcal{A} .

It is well now that there are regular topological spaces (X, T_X) such that each function $f : X \rightarrow \mathbb{R}$ is continuous ([4], p.55).

For each a family of continuous functions from X to \mathbb{R} satisfying condition (4) from Theorem 1 we have $U = X$. Therefore, if $A \subset X$ is a proper G_δ -set dense in X then $A \neq U$ for every family \mathcal{A} of continuous functions from X to \mathbb{R} satisfying condition (4) from Theorem 1.

But the following theorem is true:

THEOREM 3. *Let X be a completely regular topological space. Then for each G_δ -set $B \subset X$ there is a family \mathcal{A} of continuous functions from X to \mathbb{R} for which $U = B$.*

P r o o f. The set $A = X \setminus B$ is an F_σ -set. So there are closed sets A_n , $n \geq 1$, such that

$$A = \bigcup_{n \geq 1} A_n \text{ and } A_n \subset A_{n+1} \text{ for } n \geq 1.$$

Let (w_n) be a sequence of all rationals such that $w_n \neq w_m$ for $n \neq m$. Since X is a completely regular space, it satisfies the axioms of separation T_1 and $T_{\frac{3}{2}}$. So for each point $t \in B$ the set $\{t\}$ is closed and there are continuous functions

$f_{n,t} : X \rightarrow [\min(0, w_n), \max(0, w_n)]$ such that $f_{n,t}(t) = w_n$ and $f_{n,t}(A_n) = \{0\}$.

Let

$$\mathcal{A} = \{f_{n,t}; t \in B \text{ and } n \geq 1\}.$$

If a point $x \in B$ then

$$\{f(x); f \in \mathcal{A}\} \supset Q = \{w_n; n \geq 1\},$$

and consequently $x \in U$.

In the contrary case, if $x \in A = X \setminus B$ there is an index k such that $x \in A_n$ for $n \geq k$. Then

$$f_{n,t}(x) = 0 \text{ for } t \in B \text{ and } n \geq k,$$

and

$$f_{n,t}(x) \subset [-\max_{n < k} |w_n|, \max_{n < k} |w_n|] \text{ for } t \in B \text{ and } n < k.$$

So the set

$$\{f(x); f \in \mathcal{A}\}$$

is not dense in \mathbb{R} and consequently $x \in X \setminus U$. This completes the proof.

Let (Z, ρ) be a metric space. Remind that the functions $f : X \rightarrow Z$ of a family Φ are equicontinuous at a point $x \in X$ if for every positive real r there is a set $V \in T_X$ containing x such that

$$f(V) \subset K(f(x), r) = \{u \in Z; \rho(u, f(x)) < r\} \text{ for each } f \in \Phi.$$

THEOREM 4. *Let Y be a metric space. If $\mathcal{A} = \{T_j : X \rightarrow Y; j \in J\}$ is a family of functions equicontinuous at each point $x \in X$ satisfying condition (4) from Theorem 1 then $U = X$.*

P r o o f. Assume, by a contradiction, that there is a point $x \in X \setminus U$. Then there is a ball $K(y, r)$ with center y and radius $r > 0$ such that

$$(*) \quad \{f(x); f \in \mathcal{A}\} \cap K(y, r) = \emptyset.$$

Since the functions $f \in \mathcal{A}$ are equicontinuous at the point x , there is a set $V \in T_X$ containing x and such that

$$(**) \quad f(V) \subset K(f(x), \frac{r}{2}) \text{ for each } f \in \mathcal{A}.$$

But the family \mathcal{A} satisfies condition (4) from Theorem 1, so there is an index $j \in J$ such that

$$T_j(V) \cap K(y, \frac{r}{2}) \neq \emptyset.$$

Let $v \in V$ be a point such that $T_j(v) \in K(y, \frac{r}{2})$. By $(**)$ we obtain

$$\rho(T_j(x), y) \leq \rho(T_j(x), T_j(v)) + \rho(T_j(v), y) < \frac{r}{2} + \frac{r}{2} = r,$$

which contradicts with $(*)$. This contradiction finishes the proof.

In connection with Theorem 2 observe that there is a topological space (X, T_X) such that all quasicontinuous functions $f : X \rightarrow \mathbb{R}$ are constant. For example, such is each uncountable space X with the topology

$$T_* = \{\emptyset\} \cup \{A \subset X; X \setminus A \text{ is countable}\}.$$

If \mathcal{A} is a family of quasicontinuous functions from a such space X to \mathbb{R} satisfying condition (3) from Theorem 2 then $U = X$. Such spaces may contain some dense residual subsets $A \neq X$. So, for such A we have $A \neq U$ for each family of quasicontinuous functions from X to \mathbb{R} satisfying condition (3) from Theorem 2.

However the following theorem is true:

THEOREM 5. *Let $X = \mathbb{R}^k$ and let T_X be the Euclidean topology T_e in \mathbb{R}^k . If $B \subset X$ is a residual set then there is a family \mathcal{A} of quasicontinuous functions from X to \mathbb{R} such that $U = B$.*

Proof. Since the set $A = X \setminus B$ is of the first category, there is an F_σ -set $E \supset A$ of the first category. Let

$$E = \bigcup_{n \geq 1} E_n, \text{ where } E_{n+1} \supset E_n \text{ for } n \geq 1,$$

and E_n are closed and nowhere dense.

As in the proof of Theorem 3 we define a family \mathcal{A}_1 of continuous functions from X to \mathbb{R} such that all sets

$$\{f(x); f \in \mathcal{A}_1\} \text{ are dense for } x \in X \setminus E,$$

and all sets

$$\{f(x); f \in \mathcal{A}_1\} \text{ are bounded for } x \in E_n, n \geq 1.$$

For $n \geq 1$ put $H_n = E_n \cap B$. Moreover let (w_n) be a sequence of all rationals such that $w_n \neq w_m$ for $n \neq m$. Without loss of the generality we can suppose

that $H_n \neq \emptyset$ for $n \geq 1$. For each index $n \geq 1$ there is a family $K_{n,i}$, $i \geq 1$, of pairwise disjoint closed balls such that

- $K_{n,i} \cap E_n = \emptyset$ for $i \geq 1$;
- $\forall_{x \in E_n} \forall i \forall \varepsilon > 0 \exists_{j > i} : K_{n,j} \subset B(x, \varepsilon) = \{t; |x - t| < \varepsilon\}$.

Now for indices $n, i \geq 1$ define a continuous function $f_{n,i} : K_{n,i} \rightarrow [-i, i]$ such that $f_{n,i}(K_{n,i}) = [-i, i]$ and $f_{n,i}(x) = 0$ on the boundary $S_{n,i}$ of $K_{n,i}$. Let

$$\begin{aligned} g_{n,m}(x) &= f_{n,i}(x) \text{ for } x \in K_{n,i}, \quad i \geq 1, \\ g_{n,m}(x) &= w_m \text{ for } x \in H_n, \end{aligned}$$

and

$$g_{n,m}(x) = 0 \text{ otherwise on } \mathbb{R}^k.$$

Every function $g_{n,m}$, $n, m \geq 1$, is quasicontinuous at each point. Let

$$\mathcal{A} = \mathcal{A}_1 \cup \{g_{n,m}; n, m \geq 1\}.$$

Then all functions of the family \mathcal{A} are quasicontinuous at each point. If $x \in X \setminus E$ then the set

$$\{f(x); f \in \mathcal{A}\} \supset \{f(x); f \in \mathcal{A}_1\}$$

is dense.

If $x \in H_n = E_n \cap B$ for some index n then the set

$$\{f(x); f \in \mathcal{A}\} \supset \{g_{n,m}(x); m \geq 1\} = \{w_m; m \geq 1\}$$

is also dense. So

$$B = (X \setminus E) \cup (E \cap B) = (X \setminus E) \cup \bigcup_{n \geq 1} H_n \subset U.$$

If

$$x \in X \setminus B = A \subset E = \bigcup_{n \geq 1} E_n$$

then there is an index n such that $x \in E_n \setminus B$. So,

$$x \in X \setminus \bigcup_{i \geq 1} K_{n,i} \text{ for } m \geq n,$$

and consequently the difference

$$\{f(x); f \in \mathcal{A}\} \setminus \{f(x); f \in \mathcal{A}_1\}$$

is finite. Since $x \in E_n$, the set

$$\{f(x); f \in \mathcal{A}_1\}$$

is bounded and $x \in X \setminus U$. So $U = B$ and the proof is completed.

The notion of quasicontinuity is a particular case of cliquishness.

Remind that a function $f : X \rightarrow Y$, where (Y, ρ) is a metric space, is cliquish at a point $x \in X$ if for each positive real ε and each set $V \in T_X$ containing x there is a nonempty set $W \in T_Y$ contained in V such that $\text{osc}_W f < \varepsilon$ ([12]).

In the next example we show that there is a countable family of monotone functions from \mathbb{R} to \mathbb{R} which are discontinuous only at one point (so they are cliquish) satisfying condition (3) from Theorem 2 whose set of all universal points is empty.

EXAMPLE 1. Let $A = \{(x_n, y_n); n \geq 1\} \subset \mathbb{R}^2$ be a countable set dense in \mathbb{R}^2 and such that each vertical section

$$A_x = \{y \in \mathbb{R}; (x, y) \in A\}$$

is of the cardinality $\text{card}(A_x) \leq 1$.

For $n \geq 1$ let

$$g_n(x) = \begin{cases} E(y_n) - 1 & \text{for } x < x_n \\ y_n & \text{for } x = x_n \\ E(y_n) + 1 & \text{for } x > x_n, \end{cases}$$

where $E(x)$ denotes the greatest integer which is $\leq x$.

Then the functions g_n are monotone and continuous at all points $x \neq x_n$. Moreover the values of g_n are integers for $x \neq x_n$. So

$$\text{if } \mathcal{A} = \{g_n; n \geq 1\} \text{ then } U = \emptyset.$$

We will show that the family \mathcal{A} satisfies condition (3) of Theorem 2.

Let $V, W \in T_e$ be nonempty sets. Since the set A is dense in \mathbb{R}^2 , there is an index k such that $(x_k, y_k) \in V \times W$. Consequently,

$$y_k \in g_k(V) \cap W \neq \emptyset.$$

So the family \mathcal{A} satisfies condition (3) from Theorem 2.

THEOREM 6. *Let X be a Baire space, let Y be second countable and let $\mathcal{A} = \{T_j; j \in J\}$ be a family of functions from X to Y . If there is a set $A \subset X$ of the first category such that for each $f \in \mathcal{A}$ the restricted functions $f|_{(X \setminus A)}$ are quasicontinuous (on $X \setminus A$) and for each pair of nonempty sets $V \in T_X$ and $W \in T_Y$ there is an index $j \in J$ such that $T_j(V \setminus A) \cap W \neq \emptyset$, then the set U of all universal elements for \mathcal{A} is residual in X .*

P r o o f. This theorem is an immediate corollary from Theorem 2. Since the space $X \setminus A$ is a Baire space and for each $f \in \mathcal{A}$ the restricted function $f|_{(X \setminus A)}$ is quasicontinuous, so the set U for the family $\mathcal{A} = \{T_j|_{(X \setminus A)}; j \in J\}$ is residual in $(X \setminus A)$. So it is also residual in X . This finishes the proof.

In connection with Example 1 we have:

THEOREM 7. *Let $X = Y = \mathbb{R}$ and $T_X = T_Y = T_e$ be the Euclidean topology in \mathbb{R} . If $\mathcal{A} = \{g_n : X \rightarrow Y; n \geq 1\}$ is a countable family of monotone functions satisfying the condition (3) from Theorem 2 such that for each positive real ε there is an index k such that $\text{osc}g_n(x) < \varepsilon$ for each point $x \in X$ and for each index $n \geq k$, then the set U for the family \mathcal{A} is residual.*

P r o o f. For each index $n \geq 1$ let $D(g_n)$ denote the set of all discontinuity points of the function g_n . Since the functions g_n are monotone, the sets $D(g_n)$ are countable. So the set

$$A = \bigcup_{n \geq 1} D(g_n)$$

is also countable. As the countable set A is of the first category and the restricted functions $g_n|_{(X \setminus A)}$, $n \geq 1$, are continuous. It suffices to prove that the family \mathcal{A} satisfies the remaining hypotheses of Theorem 6. For this, fix bounded open intervals $V, W \subset \mathbb{R}$ and denote by (x, y) the center of the rectangle $V \times W$. Find a positive real

$$\varepsilon < \frac{\min(|V|, |W|)}{4},$$

where $|V|$ denotes the length of the interval V . Let k be an index such that

$$\text{osc}g_n(x) < \varepsilon \text{ for all } x \in X \text{ and } n \geq k$$

and let

$$S = (x - \varepsilon, x + \varepsilon) \times (y - \varepsilon, y + \varepsilon).$$

Since the graphs of monotone functions are nowhere dense in \mathbb{R}^2 , the set

$$S_1 = S \setminus \bigcup_{n < k} \text{cl}(\text{Gr}(g_n)),$$

where cl denotes the closure operation, is open and nonempty. There are open intervals $V_1 \subset (x - \varepsilon, x + \varepsilon)$ and $W_1 \subset (y - \varepsilon, y + \varepsilon)$ such that

$$V_1 \times W_1 \subset S_1.$$

Since the family \mathcal{A} satisfies the condition (3) from Theorem 2, there is an index $m \geq k$ such that

$$g_m(V_1) \cap W_1 \neq \emptyset.$$

Let $(x_1, g_m(x_1))$ be a point belonging to $V_1 \times W_1$. If $x_1 \in \mathbb{R} \setminus A$, then

$$\emptyset \neq g_m(V_1 \setminus A) \cap W_1 \subset g_m(V \setminus A) \cap W.$$

So suppose that $x_1 \in A$. Since $\text{osc}g_m(x_1) < \varepsilon$, there is an open interval $V_2 \subset V_1$ containing x_1 and such that $\text{osc}_{V_2} g_m < \varepsilon$. Fix a point $x_2 \in V_2 \setminus A$. Then

$$|g_m(x_2) - g_m(x_1)| < \varepsilon \text{ and } g_m(x_2) \in W.$$

Consequently, $(x_2, g_m(x_2)) \in V \times W$ and

$$g_m(V \setminus A) \cap W \neq \emptyset.$$

So the family \mathcal{A} satisfies all hypotheses of Theorem 6 and the set U for the family \mathcal{A} is residual in \mathbb{R} . This finishes the proof.

Finishing we will consider the families of functions $f : \mathbb{R} \rightarrow \mathbb{R}$ connected with the density topology.

Remember that x is a density point of a set $A \subset \mathbb{R}$ if there is a Lebesgue-measurable set $B \subset A$ such that

$$\lim_{h \rightarrow 0^+} \frac{\mu(B \cap (x - h, x + h))}{2h} = 1,$$

where μ denotes the Lebesgue measure in \mathbb{R} , and that the family

$$T_d = \{A \subset \mathbb{R}; \forall_{x \in A} x \text{ is a density point of } A\}$$

is a topology called the density topology ([1, 14]). It is well known that all sets belonging to the density topology are measurable (Bruckner [1] p.19 (the proof of Theorem 5.2), Tall [13], Wilczyński [12], pp. 675–685).

From the Lebesgue density theorem it follows that a set $A \subset \mathbb{R}$ is of the first category with respect to T_d if and only if $\mu(A) = 0$.

If T_e denotes the Euclidean topology in \mathbb{R} then the continuity of functions from (\mathbb{R}, T_d) to (\mathbb{R}, T_e) is called the approximate continuity.

All Lebesgue-measurable functions $f : \mathbb{R} \rightarrow \mathbb{R}$ are almost everywhere approximately continuous ([1]).

The quasicontinuity of mappings $f : (\mathbb{R}, T_d) \rightarrow (\mathbb{R}, T_e)$ is called approximate quasicontinuity ([5]).

From Theorem 2 it follows that if $X = Y = \mathbb{R}$, $T_X = T_d$, $T_Y = T_e$ and \mathcal{A} is a family of approximately quasicontinuous functions from X to Y satisfying the condition (3) of Theorem 2 then $\mu(\mathbb{R} \setminus U) = 0$, i.e. almost all points $x \in \mathbb{R}$ are universal elements for the family \mathcal{A} .

Observe that if for a function $f : \mathbb{R} \rightarrow \mathbb{R}$ and a point x there is a measurable set $A \ni x$ such that the restricted function $f|_A$ is continuous at x and

$$(i) \quad \limsup_{h \rightarrow 0^+} \frac{\mu(A \cap [x - h, x + h])}{2h} > 0,$$

then f is approximately quasicontinuous at x .

We will say that a function $f : \mathbb{R} \rightarrow \mathbb{R}$ has the property (p_i) if f has at each point a path satisfying the condition (i) (i.e. for each point x there is a measurable set $A \ni x$ satisfying the condition (i) such that the restricted function $f|_A$ is continuous at x).

A natural generalization of the property (p_i) is the property of Denjoy-Clarkson ([2, 3]).

Remind that a nonempty measurable set $A \subset \mathbb{R}$ has the property of Denjoy-Clarkson if for every open interval I such that $A \cap I \neq \emptyset$ the measure $\mu(A \cap I) > 0$. Moreover we suppose that \emptyset has the property of Denjoy-Clarkson.

We say that a function $f : \mathbb{R} \rightarrow \mathbb{R}$ has the property of Denjoy-Clarkson if for each open set $U \in T_e$ the preimage $f^{-1}(U)$ has the property of Denjoy-Clarkson.

EXAMPLE 2. Let $C \subset [0, 1]$ be a Cantor set of positive measure such that $0, 1 \in C$. Enumerate in a sequence (I_n) all components of the complement $[0, 1] \setminus C$ and in each open interval I_n find a closed interval $K_n = [a_n, b_n] \subset I_n$. For $n \geq 1$ define a continuous function $f_n : K_n \rightarrow [-n, n]$ such that $f_n(a_n) = f_n(b_n) = 0$ and $f_n(K_n) = [-n, n]$. Let

$$f(x) = f_n(x) \text{ for } x \in K_n \text{ and } f(x) = 0 \text{ otherwise on } \mathbb{R}.$$

There are nonmeasurable sets B, E such that

$$C = B \cup E, \quad B \cap E = \emptyset$$

and for each measurable set $G \subset C$ of positive measure the intersections $G \cap B$ and $G \cap E$ are nonempty. Let (w_n) be an enumeration of all rationals. For each pair $(x, n) \in B \times N$, where N denotes the set of positive integers, define

$$g_{x,n}(u) = f(x) \text{ for } u \neq x \text{ and } g_{x,n}(u) = w_n \text{ for } u = x.$$

For $n \geq 1$ let

$$h_n(x) = f(x) + w_n \text{ for } x \in \mathbb{R} \setminus C \text{ and } h_n(x) = f(x) = 0 \text{ for } x \in C.$$

Let

$$\mathcal{A} = \{h_n; n \geq 1\} \cup \{g_{x,n}; x \in B \text{ and } n \in N\}.$$

Evidently all functions from the family \mathcal{A} have the property of Denjoy-Clarkson. Moreover the family \mathcal{A} satisfies condition (3) from Theorem 2 for $X = Y = \mathbb{R}$, $T_X = T_d$ and $T_Y = T_e$, but $U = \mathbb{R} \setminus E$ is not residual in (\mathbb{R}, T_d) .

Acknowledgement. The authors would like to thank the referee for all remarks and suggestions.

References

- [1] A. M. Bruckner, *Differentiation of Real Functions*, Lectures Notes in Math. 659, Springer-Verlag, Berlin 1978.
- [2] J. A. Clarkson, *A property of derivatives*, Bull. Amer. Math. Soc. 53 (1947), 124–125.
- [3] A. Denjoy, *Sur les fonctions dérivées summables*, Bull. Soc. Math. France 43 (1915), 161–248.

- [4] R. Engelking, *General Topology*, (Polish) PWN, Warszawa (1989), vol.I.
- [5] Z. Grande, *Sur les fonctions approximativement quasi-continues*, Rev. Roum. Math. Pures et Appl. 34 (1989), 17–22.
- [6] K. G. Grosse-Erdmann, *Holomorphe Monster und universelle Funktionen*, Mitt. Math. Sem. Giessen 176 (1987), 1–84.
- [7] K. G. Grosse-Erdmann, *Universal families and hypercyclic operators*, Bull. Amer. Math. Soc. 36 (1999), 345–381.
- [8] G. Herzog, R. Lemmert, *Universal elements for families of discontinuous mappings*, Demonstratio Math. 35 (2002), 199–204.
- [9] I. Joó, *On the divergence of eigenfunction expansion*, Ann. Univ. Sci. Budapest Eotvos Sect. Math. 32 (1989), 3–36.
- [10] F. B. Jones, *Connected and disconnected plane sets and the functional equations $f(x+y) = f(x) + f(y)$* , Bull. Amer. Math. Sci. 48, (1942), 115–120.
- [11] S. Kempisty, *Sur les fonctions quasicontinues*, Fund. Math. 19 (1932), 184–197.
- [12] T. Neubrunn, *Quasi-continuity*, Real Anal. Exch. 14 (1988–89), 259–306.
- [13] F. D. Tall, *The density topology*, Pacific J. Math. 62 (1976), 275–284.
- [14] W. Wilczyński, *Density Topologies*, Edited by Pap E. *Handbook of Measure Theory*, Elsevier Science B.V., Amsterdam (2002), vol.I, chap.XV.

Zbigniew Grande

THE UNIVERSITY OF COMPUTER SCIENCE AND ECONOMICS TWP
ul. Wyzwolenia 30
10-106 OLSZTYN, POLAND

Ewa Strońska

INSTITUTE OF MATHEMATICS
BYDGOSZCZ ACADEMY
Plac Weyssenhoffa 11
85-072 BYDGOSZCZ, POLAND

Received May 5, 2003; revised version November 13, 2003.