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ON UNIVERSAL ELEMENTS FOR SOME FAMILIES 
OF FUNCTIONS 

Abstract . A point x 6 X is called universal element for a family $> of functions 
from X to Y if the set {f(x);f 6 <£} is dense in Y. In this article we show that every 
residual Gj-set in a completely regular space X (every residual set in is the set of 
all universal elements for some family of continuous functions from J to 1 (for some 
family of quasicontinuous functions from M* to R). Moreover we investigate the sets of 
all universal elements for some families of monotone functions and for some families of 
functions having the property of Denjoy-Clarkson. 

Let (X,Tx) and ( Y , T y ) be topological spaces with topologies T\ and 
Ty respectively. Let 

A = {Tj : X —> Y;j E J}, where J is an index set, 
be a family of mappings from X to Y. 

A point x € X is called a universal element for the family A if the set 
{Tj(x)]j € J} is dense in Y. Let U denote the set of all universal elements 
for A. 

REMARK. If (X,Tx) is a topological space, if ( Y , T y ) is second countable 
topological space and if T j ( j E J ) is continuous then U is Gj-set. 

P r o o f . Let Wk(k > 1) be the nonempty members of a countable base of 
the topology of Y. Then U = n ^ Uj€j T~l(Wk) is Gs-set. 

In [6, 7, 9] the following theorem is proved: 

THEOREM 1. Let X be a Baire space, let Y be second countable and let Tj 
be continuous for each j £ J. Then the following assertions are equivalent: 

(1) The set U is residual in X; 
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(2) The set U is a dense G$-subset of X; 
(3) The set U is dense in X; 
(4) For each pair of nonempty sets V eTx and W eTy there is an index 

j e J such that 
Tj(V)nw 

In [8] G. Herzog and R. Lemmert extend this result for families of qua-
sicontinuous functions. Remind that a function / : X —> Y is called quasi-
continuous ([11, 12]) at a point x e X if for all sets V eTx and W e Ty 
with x e V and f(x) eW there is a nonempty set S eTx such that S C V 
and f(S) C W. 

In [8] the authors proved the following theorem: 

THEOREM 2. Let X be a Baire space, let Y be second countable, and let 
Tj be quasicontinuous for each j e J. Then the following assertions are 
equivalent: 

(1) The set U is residual; 
(2) The set U is dense in X; 
(3) For each pair of nonempty sets V eTx and W eTy there is an index 

j e J such that 
Tj(V)f)W 7^0. 

Moreover it is obvious that if the family A contains only one function 
having the graph dense in the product space 1 x 7 and if there exists no 
singleton dense in Y then A satisfies the condition (3) from Theorem 2 and 
the set U for this family is empty. The functions with dense graphs may 
have some important properties, for example in the case X = Y — R, where 
R denotes the set of all reals, such functions may have the Darboux property 
or may be additive ([10]). 

In connection with Theorem 1 observe that if the space X contains an 
isolated point x e X then for each family A of functions from X to Y 
satisfying the condition (4) from Theorem 1 the point x is a universal element 
for A. 

It is well now that there are regular topological spaces (X, Tx) such that 
each function / : X —> R is continuous ([4], p. 55). 

For each a family of continuous functions from X to R satisfying condi-
tion (4) from Theorem 1 we have U = X. Therefore, if A C X is a proper 
G^-set dense in X then A ^ U for every family A of continuous fonctions 
from X to R satisfying condition (4) from Theorem 1. 

But the following theorem is true: 
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THEOREM 3. Let X be a completely regular topological space. Then for each 

Gs-set B C X there is a family A of continuous functions from X to 1R for 

which U = B. 

P r o o f . The set A = X \ B is an iv-set. So there are closed sets An, n > 1, 
such that 

A = [J An and An C An+i for n > 1. 
n>l 

Let (wn ) be a sequence of all rationals such that wn / wm for n ^ m. Since 
X is a completely regular space, it satisfies the axioms of separation T\ and 
TV. So for each point t G B the set { i } is closed and there are continuous 
functions 

fntt : X —» [min(0, wn), max(0, wn ) ] such that fn,t{t) = wn and fn t(An)-{0}. 

Let 

A = {/n,t; t e B and n > 1}. 

If a point x G B then 

{f(x)-J eA}DQ = {wn]n>l}, 

and consequently x 6 U. 

In the contrary case, i f x 6 ^ 4 = X \ 5 there is an index k such that 
x 6 An for n > k. Then 

/n>t(x) = 0 for t E B and n> k, 

and 
fn,t(x) C [—max|ion|,max|u;n|] for t € B and n < k. 

' n<k n<k 

So the set 
{f(x)-,feA} 

is not dense in R and consequently x € X \ U. This completes the proof. 
Let (Z , p) be a metric space. Remind that the functions / : X —> Z of 

a family $ are equicontinuous at a point x € X if for every positive real r 

there is a set V 6 Tx containing x such that 

f(V) C K(f(x), r) = {ue Z-p(u,f(x)) < r } for each / e 

THEOREM 4. Let Y be a metric space. If A = {Tj : X Y;j € J} is a 

family of functions equicontinuous at each point x £ l satisfying condition 

(4) from Theorem 1 then U = X. 

P r o o f . Assume, by a contradiction, that there is a point x € X \ U. Then 
there is a ball K(y, r) with center y and radius r > 0 such that 

(* ) { / ( * ) ; / e .4} n t f ( y , r ) = 0. 
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Since the functions / G A are equicontinuous at the point x, there is a set 
V G Tx containing x and such that 

(**) f(V) C K(f(x), for each f € A. 

But the family A satisfies condition (4) from Theorem 1, so there is an index 
j € J such that 

Let v G V be a point such that Tj(v) G K(y, By (**) we obtain 

p(Tj(x),y) < piTjix^Tjiv)) + p ( T » , y ) < T- + = r, 

which contradicts with (*). This contradiction finishes the proof. 
In connection with Theorem 2 observe that there is a topological space 

(X, Tx) such that all quasicontinuous functions / : X —> R are constant. 
For example, such is each uncountable space X with the topology 

T* = {0} U {A c X; X \ A is countable}. 

If A is a family of quasicontinuous functions from a such space X to M 
satisfying condition (3) from Theorem 2 then U = X. Such spaces may 
contain some dense residual subsets A ^ X. So, for such A we have A ^ U 
for each family of quasicontinuous functions from X to R satisfying condition 
(3) from Theorem 2. 

However the following theorem is true: 

THEOREM 5. Let X = Rk and let Tx be the Euclidean topology Te in R f c . If 
B C X is a residual set then there is a family A of quasicontinuous functions 
from X to R such that U = B. 

Proo f . Since the set A = X \ B is of the first category, there is an iv-set 
E D A of the first category. Let 

E = ( J En, where En+1 D En for n > 1, 
n>l 

and En are closed and nowhere dense. 
As in the proof of Theorem 3 we define a family Ai of continuous func-

tions from X to R such that all sets 

{/(x); / € Ai} are dense for x G X \ E, 

and all sets 

{/(x); / G .4i} are bounded for x G En, n > 1. 

For n > 1 put Hn = EnC\B. Moreover let (wn) be a sequence of all rationals 
such that wn / wm for n ^ m. Without loss of the generality we can suppose 
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that Hn ^ 0 for n > 1. For each index n > 1 there is a family KUii, i > 1, 
of pairwise disjoint closed balls such that 

- Kn,i n £ n = 0 for i > 1; 
- Vxe£;n Vi Ve > 0 3j>i : K n j C B(z, e) = {t; |x - i| < e}. 

Now for indices n,i > 1 define a continuous function : Kn>i —> [—i, i] 
such that fn,i(Kn,i) = [—'M] and /n,i(x) = 0 on the boundary Sn>i of Kn i. 
Let 

9n,m{x) = fn,i(X) for x £ Kn,i, i > 1, 

2n,m(z) - l«m for X G #„, 
and 

gn,m(x) = 0 otherwise on 

Every function gn,m, n, m > 1, is quasicontinuous at each point. Let 

A = A\U {gn,m'i n,m> 1}. 

Then all functions of the family A are quasicontinuous at each point. If 
x € X \ E then the set 

{ f ( x y j e A } D { f ( x ) ] f e A l } 

is dense. 
If x G Hn = En C\B for some index n then the set 

{/(®);/ € A} D {gn,m(x);m > 1} = {wm] m > 1} 

is also dense. So 

B = ( I \ £ ) U ( i ; n B ) = ( I \ £ ) U \ j H n c U . 
n>l 

If 
xeX\B = A c E = ] j E n 

n> 1 

then there is an index n such that x G En\B. So, 

x € X \ [ J Kmfi for m > n, 
¿>1 

and consequently the difference 

{ f ( x ) ; f e A } \ { f ( x y , f e A 1 } 

is finite. Since x € En, the set 

{ / ( * ) ; / € ¿ 1 } 

is bounded and x e X \ U. So U = B and the proof is completed. 
The notion of quasicontinuity is a particular case of cliquishness. 
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Remind that a function / : X —> Y, where (Y,p) is a metric space, is 
cliquish at a point x € X if for each positive real e and each set V 6 Tx 
containing x there is a nonempty set W e Tx contained in V such that 
oscwf < £ ([12]). 

In the next example we show that there is a countable family of monotone 
functions from R to R which are discontinuous only at one point (so they are 
cliquish) satisfying condition (3) from Theorem 2 whose set of all universal 
points is empty. 

EXAMPLE 1. Let A = {{xn,yn)\n > 1} C R2 be a countable set dense in R2 

and such that each vertical section 

Ax = {y 6 R; (x, y) e A} 

is of the cardinality card(Ax) < 1. 
For n > 1 let 

E(yn) - 1 for x < xn 

9n{x) = yn for x = xn 

E(yn) + 1 for x 

where E(x) denotes the greatest integer which is < x. 
Then the functions gn are monotone and continuous at all points x / xn. 

Moreover the values of gn are integers for x ^ xn. So 

if A = {gn',n > 1} then U = 0. 

We will show that the family A satisfies condition (3) of Theorem 2. 
Let V,W € Te be nonempty sets. Since the set A is dense in R2, there is 

an index k such that (x^, y^) e V x W. Consequently, 

yk€9k(V)nw^<l>. 
So the family A satisfies condition (3) from Theorem 2. 

THEOREM 6. Let X be a Baire space, let Y be second countable and let 
A = {Tj\j £ J} be a family of functions from X to Y. If there is a set 
A C X of the first category such that for each f € A the restricted functions 
/l(X\A) are quasicontinuous (on X \ A) and for each pair of nonempty sets 
V E Tx and W € Ty there is an index j € J such that Tj(V \ A) fl W ^ 0, 
then the set U of all universal elements for A is residual in X. 

P r o o f . This theorem is an immediate corollary from Theorem 2. Since the 
space X \ A is a Baire space and for each / € A the restricted function 
/l(x\/l) is quasicontinuous, so the set U for the family A — {Tj\(x\A)'->J £ J} 
is residual in (X \ A). So it is also residual in X. This finishes the proof. 

In connection with Example 1 we have: 
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THEOREM 7. Let X = Y = R and Tx = Ty = Te be the Euclidean topology 

in R. If A = {gn '• X —> Y ;n > 1} is a countable family of monotone 

functions satisfying the condition (3) from Theorem 2 such that for each 

positive real e there is an index k such that oscgn(x) < £ for each point 

x € X and for each index n> k, then the set U for the family A is residual. 

Proo f . For each index n > 1 let D(gn) denote the set of all discontinuity 
points of the function gn. Since the functions gn are monotone, the sets 
D(gn) are countable. So the set 

A = IJ D(gn) 
n> 1 

is also countable. As the countable set A is of the first category and the 
restricted functions <7n|(x\/l); n ^ 1> a r e continuous. It suffices to prove that 
the family A satisfies the remaining hypotheses of Theorem 6. For this, fix 
bounded open intervals V, W C R and denote by (x, y) the center of the 
rectangle V x W. Find a positive real 

m i n i m a l ) 
4 

where |V| denotes the length of the interval V. Let k be an index such that 

oscgn(x) < e for all x € X and n > k 

and let 

S = (x - e, x + s) x (y - £, y + e). 

Since the graphs of monotone functions are nowhere dense in R2 , the set 

Si = S \ U cl(Gr(gn)), 
n<k 

where cl denotes the closure operation, is open and nonempty. There are 
open intervals Vj C (x — e, x + e) and W\ c (y — £, y + e) such that 

VixWiC Si. 

Since the family A satisfies the condition (3) from Theorem 2, there is an 
index m> k such that 

9m{Vi) nWi^d). 

Let (x\, gm(xi)) be a point belonging to Vj x W\. If x\ € R \ A, then 

0?gm(V1\A)nW1cgm(V\A)nW. 

So suppose that x\ 6 A. Since oscgm(xi) < £, there is an open interval 
V2 C Vi containing x\ and such that oscv2gm < Fix a point X2 € Vi \ A. 

Then 

19m(x2) - 9m(xi)| < e and gm{x2) 6 W. 
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Consequently, (x%, gm{xi)) G V x W and 
gm(V\A)nW^<b. 

So the family A satisfies all hypotheses of Theorem 6 and the set U for the 
family A is residual in R. This finishes the proof. 

Finishing we will consider the families of functions / : R —• R connected 
with the density topology. 

Remember that x is a density point of a set A C R if there is a Lebesgue-
measurable set B C A such that 

u(B fl (x - h, x + h)) 
lim — — — = 1, 

h—>o+ 2 h 
where /J, denotes the Lebesgue measure in R, and that the family 

Td — {A C R; VxeAx is a density point of A} 
is a topology called the density topology ([1, 14]). It is well now that all set 
belonging to the density topology are measurable (Bruckner [1] p.19 (the 
proof of Theorem 5.2), Tall [13], Wilczynski [12], pp. 675-685). 

Prom the Lebesgue density theorem it follows that a set A C R is of the 
first category with respect to Td if and only if fi(A) = 0. 

If Te denotes the Euclidean topology in R then the continuity of functions 
from (R, Td) to (R, Te) is called the approximate continuity. 

All Lebesgue-measurable functions / : R —» R are almost everywhere 
approximately continuous ([1]). 

The quasicontinuity of mappings / : (R, Td) —> (K, Te) is called approxi-
mate quasicontinuity ([5]). 

From Theorem 2 it follows that if X = Y = R, Tx = Td, Ty = Te 
and A is a family of approximately quasicontinuous functions from X to Y 
satisfying the condition (3) of Theorem 2 then /z(R \ U) = 0, i.e. almost all 
points x e R are universal elements for the family A. 

Observe that if for a function / : R —• R and a point x there is a 
measurable set A 3 x such that the restricted function / U is continuous at 
x and 
... .. n(An[x- h,x + h]) (*) ton sup Q 2 ii > 0, 

/i—»0+ 
then / is approximately quasicontinuous at x. 

We will say that a function / : R —» R has the property (pi) if / has at 
each point a path satisfying the condition (i) (i.e. for each point x there is 
a measurable set A 9 x satisfying the condition (i) such that the restricted 
function / | a is continuous at x. 

A natural generalization of the property (pi) is the property of Denjoy-
Clarkson ([2, 3]). 
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Remind that a nonempty measurable set A C R has the property of 
Denjoy-Clarkson if for every open interval I such that AH I ^ 0 the measure 
¡JL(A fl I ) > 0. Moreover we suppose that 0 has the property of Denjoy-
Clarkson. 

We say that a function / : R —> R has the property of Denjoy-Clarkson if 
for each open set U eTe the preimage f~l(U) has the property of Denjoy-
Clarkson. 
EXAMPLE 2. Let C C [0,1] be a Cantor set of positive measure such that 
0,1 € C. Enumerate in a sequence (In) all components of the complement 
[0,1] \ C and in each open interval In find a closed interval Kn = [an, bn] C 
In. For n > 1 define a continuous function fn : Kn —> [—n, n] such that 
fn(an) = fn(bn) = 0 a n d f n ( K n ) = [-n,n]. L e t 

f(x) = fn(x) for x 6 Kn and f(x) — 0 otherwise on R. 
There are nonmeasurable sets B, E such that 

C = BUE, B N E = 0 

and for each measurable set G C C of positive measure the intersections 
GnB and G(~)E are nonempty. Let (wn) be an enumeration of all rationals. 
For each pair (x, n) € B x N, where N denotes the set of positive integers, 
define 

9x,n(u) = / ( z ) for u / x a n d gXtn{u) = wn f o r u = x. 

For n > 1 let 
hn(x) = f ( x ) + wn for x G R \ C and hn(x) = f ( x ) = 0 for I 6 C . 

Let 
A = {hn; n > 1 } U {gx,n'i x e B a n d n G iV}. 

Evidently all functions from the family A have the property of Denjoy-
Clarkson. Moreover the family A satisfies condition (3) from Theorem 2 for 
X = Y = R, Tx = Td and Ty = Te, but U = R \ E is not residual in (R, Td). 
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