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QUANTUM GROUPOIDS OF THE FINITE TYPE 
A N D QUANTIZATION ON ORBIT SPACES 

Abstract. We show that the Hopf algebra on a transformation groupoid T = E x G, 
where G is a finite group acting on the total space of a principal fibre boundle over M = 
E/G, is the cross product of the algebras C0C'(E) and CG. We study duality properties 
of this algebra, and consider quantization on orbit spaces program in this context. 

1. Introduction 
The quantization on homogeneous spaces program began with Mackey's 

fundamental work [6] who studied particle motion on spaces G'/G where 
G is a closed subgroup of G'. This work gave rise to various modifications 
and generalizations, for instance [1, 4, 5], Together with the advent of the 
quantum group theory the Mackey's quantization program acquired a new 
momentum. It was Shahn Majid who noticed that if the quantum algebra 
of observables is a Hopf algebra, then the noncocommutative coproduct cor-
responds to a non-Abelian group structure on the phase space which, in 
turn, means that the underlying Riemannian manifold has curvature. This 
could put "quantum mechanics and gravity on an equal but mutually dual 
footing" (Majid elaborated his previous ideas in [8]). In this context quan-
tization on orbit spaces provides heuristic models allowing one to elaborate 
new techniques and better physical intuitions. The main results obtained by 
Majid in this field refer to finite quantum groups [7, Chapter 6.1], 

In the present work, we generalize this kind of research by changing 
from finite quantum groups to quantum groupoids of the final type (by the 
latter we mean the situation when a finite quantum group is acting on a 
non-necessarily finite space, see below). In fact, we show that even in the 
previous research a certain finite quantum groupoid was implicitly involved. 

To define a quantum groupoid is not a trivial thing (see [2, 9, 10]), and 
even for finite quantum groupoids there exist several definitions some of 



672 M. Heller, Z. Odrzygozdz, L. Pysiak, W. Sasin 

which are equivalent with each other [11, 12]. We start with constructing 
a transformation groupoid F = £ x G, where G is a finite group and E a 
principal fibre bundle over M = E/G, and then we show that the groupoid 
algebra is isomorphic with the cross product C°°(E)x1CG. This material is 
presented in Section 2. In Section 3, we demonstrate that our cross product 
algebra exhibits nice self-duality property and, in Section 4, we generalize 
Majid's version of quantization on homogeneous spaces to the context of 
quantum groupoids of the final type. This generalization could be important 
from the physical point of view since space-time M appears in it naturally 
when E is interpreted as the total space of the frame bundle. 

2. Groupoids of the finite type 
Let E be a differential manifold with a group G acting on it smoothly 

and freely to the right, ExG —> E. We have the bundle (E, itm, M = E/G). 
The frame bundle over M with the Lorentz group G as its structural group 
is a special case of this construction. Let G be a finite subgroup of G, and 
s : M —> E a cross section of the bundle (E,itm,M). We do not assume 
that it is continuous, we simply chose one element of E from each fibre (it 
can be easily seen that if the cross section s : M —> E is smooth, the bundle 
(E,ttm,M) is a trivial G-bundle). 

We define E = \JxeM s(x)G. Since G acts freely (to the right) on E, 
E x G —> E, the Cartesian product T = E x G has the transformation 
groupoid structure. Let 71 = (pi, <?i) and 72 = (P2,32) be elements of I\ 
They are composed in the following way: (p i , g i ) o (p2,32) = (pi,9i92), if 
P2 — Px9i- The source and range mappings for 7 — (p, g) can now be written 
as 

d(l) =P = s(x) -9u 

r(7) = P9 = s(x) • Qi, 

x G M, for <71, <72 € G, respectively; with 92 — gig. 
The above groupoid F = E x G, for both .E and G finite, will be called 

the finite groupoid; if only G is finite it will be called the groupoid of the 
finite type. 

Let us consider the following algebras: 
1. The groupoid algebra A = C°°(r,C) with the convolution as multi-

plication 
(a * 6)(7) = o M b f r r S ) -

7ierd(7) 

2. The algebra A — Cco(E, C) with the usual pointwise multiplication. 
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3. The group algebra H = CG (linear combinations of elements of G with 
coefficients from C and linear extension of group multiplication as product) 
together with its Hopf algebra structure [7, Examples 1.5.3 and 1.5.4]. 

Let A >3 H be the left cross product of the algebras A and H with the 
multiplication 

(a <g> h)(b ® g) = ^a(h > b)hg, 

where 
(h > b)(p) = b(ph), 

and the multiplication extends by linearity. 

PROPOSITION 1. The algebras A x H and A are isomorphic. The isomor-
phism J : .AX H —• A is given by 

J {a ® g) = a ® 5g 

on primitive elements and extended by linearity to other elements. One has 

J(a®g)(p,gi) = a(p)<5g(si) 
where 5g is the Kronecker S function. 

P r o o f . First, let us notice that AxH and A are isomorphic as C°°(M)-
modules. Indeed, the isomorphism J - 1 : A —* Ax\ H is given by 

J - 1 (a ® 8g) = a® g. 

Then we check that J is the homomorphism of algebras, i.e., we check 
by direct computation that 

J{(a®h)(b®g))(p,gi) = (J(a ® h) * J(b ® g))(p, gi). 

It remains to show that J ( 1 <g> e) = 1 ® Se, where e is the unity of G, is 
the convolution unit. Indeed, for any f £ A we have 

(/ * (1 ® Se))(p,9) = £ /(P,fl)(l ® i e ) ( p p , r 1 3 ) 

geG 

geG 

Let Ex be the fiber over x € M, and Fx — Ex x G. Let us consider the 
algebras: Ax = C°°(EX, C) which is isomorphic with the algebra C ( E x ) of 
all functions on Ex with the pointwise multiplication, and Ax = C°°(rx, C) 
which is isomorphic with the algebra C r x of all linear combinations of ele-
ments from r x with convolution as multiplication. 
PROPOSITION 2. The algebras AxX\H and Ax, for every x E M are iso-
morphic. Moreover, the algebras Ax and H are strictly paired, and therefore 
A* = H and H* = Ax as vector spaces. 
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P r o o f . The first part of the proof is analogous to that of Proposition 1. To 
prove the second part let us notice that E = \JxeM s(x)G. Then we have 
Ex = {s(x)g : g e G}, and the pairing form is 

(<P,h) = Y1 h(9)<f>{s{x)g), 
geG 

<p e C(EX), h = h(g)g € G. This form is nondegenerate, i.e., 

V7i e H,((p,h) = 0 <p = 0, 

Vy> € Ax, {<p, h) = 0 => h = 0. 

The first of these equalities we obtain by substituting for h the subsequent 
elements of the group G that generate the algebra H; the second of these 
equalities by putting <p = Ss^g. • 

The above proof depends on the choice of the cross section s(x), but we 
should remember that this cross section enters into the very construction 
of the groupoid T (through the definition of E). The same cross section 
ensures the isomorphism of the algebras Ax and C(G) [7, Example 1.5.2] 
which allows us to equip Ax with the Hopf algebra structure. For / € Ax 

we define the coproduct 

A/(P1,P2) = Af(s(x)g1,s(x)g2) = f(s{x)g1g2), 

Pi) P2 € Ex, the counit 
ef = f(s(x)e) = f(s(x)), 

and the antipode 
(Sf)(s(x)g) = f(s(x)g-1). 

COROLLARY 3. The algebras Ax and H are strictly dual as Hopf algebras. • 

It should be noticed that the structure of the algebra Ax depends on the 
choice of the section s : M —> E. Therefore, we in fact have a "bundle of 
coalgebras" over M. 

We are now able to define a quantum grouppoid of the finite type. The 
algebra A will be called its total algebra and the algebra Z := C°°(M) its 
base algebra. The source and target maps, a : Z —> A, are equal and are 
defined to be 

a ( f ) — Pr*f 
for / € Z, where pr is the composition of the natural projection of T onto 
E with the bundle projection KM- The total algebra A has the natural 
(Z, Z)-bimodular structure given by multiplication of elements of the type 
pr* f . We have the coproduct AA A <g> A 

A (Sp <g> Sg) = 6p®6g®6p®6g 



Quantum groupoids 675 

on simple elements, to be extended by linearity. A is a mapping of (Z, Z)-
bimodules, but it does not preserve unit. The counit e : A —> A is 

e(a<S>6g)x = a(s(x)) 

for every a € A. It can be easily seen that = 1. And the antipode 
S : A A is 

5 ( a ) ( 7 ) = air1), 

for every a e A and 7 6 F. 
Here we also have a "bundle of quantum groupoids of the finite type" 

dpending on the section s : M E. 
It can be readily checked that our groupoid of the final type satisfies 

all conditions of the Hopf bi-algebroid definition given by Lu [2] with the 
exception that the coproduct A does not preserve unit. For this reeason we 
shall also call it the weak Hopf algebroid. It is worthwhile to notice that 
in some groupoid definitions preservation of unit is not required (see for 
instance [12]). 

3. Pontriagin duality 
Let G be a finite Abelian group, and G = {x : G —> C \ {0}} the set 

of its characters. Pontriagin theorem asserts that G itself has the Abelian 
group structure, and that there are the following isomorphisms 

(1) CG ~ C(G)* = C(G), 
(2) C G ~ C ( G ) . 
These two isomorphisms are connected by the Fourier transforms in the 

following way 
h(u) = Z Kx)x(u), 

xeG 

I ' uG G 
for h, <p e CG, ip,he C(G) (see [3]). 

In our case, because of the isomorphism between Ax = C(EX) and C(G) 
we have 

CG = (CG)* = C (Ex) 

for every x 6 M (equality (2) follows from equality (1) by adding another 
hat), and for the Fourier transform 

f(s(x)u) = fxX(u) 
X€G 
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where / 6 C(EX), s(x) € Ex, u £ G and / € CG is a linear combination of 
characters, i.e., / = £ x € g / * X -

On the strength of Proposition 2, for any finite group, we immediately 
have 

Ax ~ C(Ex)x\CG 
or 

A ~ C G x C G . 

This cross product is also called quantum double of CG. For a finite Abelian 
group, Ax exhibits the self-duality property 

A x CÓXCG = CG X C G . 

For the algebra A — Ax H everything above is true "along fibres". 

4. Quantization on orbit spaces 
Let us consider a classical system (G, X, a) where G is a Lie group acting 

on a space X to the right, a : X x G —> X. In the following we shall assume 
that X is a smooth manifold and a transitive. We regard C°°(X) as the 
algebra of its observables. The right action a of G on X induces its left 
action on C°°(X). In this case, G is called the momentum group. 

The kinematic part of the quantization program of the above classical 
system consists in finding quantum algebra of observables in which classical 
observables are suitably contained. In Majid's approach [7, chapter 6.1], in 
which G and X are finite, this means finding an algebra B and maps 

C(X) ^ B ^ C G , 

such that 
üfü'1 = au(f), 

for all u e G and / 6 C(X). Majid shows that the cross product algebra 
C ( X ) X C G , together with its canonical inclusions (1 ® CG and C(G) <g> 1), 
is a universal solution of the above algebraic quantization problem (Propo-
sition 6.1.1). 

On the strength of Proposition 1 we have the isomorphism 

J - 1 : A —> C°°(E)X CG 

(with the correct inclusions) where E is the bundle introduced in Section 1. 
Indeed, for a, b G C°°(E) we have 

a i—• J {a ® e) = a <g> Se € A, 
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and the convolution becomes the usual multiplication 

(J {a <g> e) * J(b ® e))(x, g) = (a ® i e)(x, £)(6 ® ¿e)(xs, 
geG 

= a(x)6e(g)b(xg)6e(g~1 g) = (J(ab® e))(x,g). 
geG 

For g,h E CG we have 

g h-> J (1 ® 5) = 1 <g> ifl e A 

and the multiplication is preserved 
{J{l®g)®J(l®h))(x,9l) = J2 l i ^ e t s l ^ i f t i r ' s i ) 

geG 
= tigh(gi) = gh))(x,gi). 

The repetition of Majid's proof (of Proposition 6.1.1 in [7]) shows that 
the algebra A, together with its two natural inclusions is also a univer-
sal solution of the algebraic quantization problem of the classical system 
(G,E,a). 

Moreover, there exists a representation of the algebra A = C°°(E)x CG 
in C°°(E) called the Schrodinger representation. It is defined to be a map-
ping S : A -» Lin(C°°(£;)) given by 

(5(/)(6))(p) = a(p)b(pg) 
for every / = a ® 6g € A, a, b € C°°(E). The algebras C°°{E) and CG 
are involutive with the following involutions: for a € C°°(E), a* = a, and 
for h = T,geGhg9 € CG, h* = T,geGhg9- Now /* ( 7 ) = / ( 7 - 1 ) , for every 
f e A and 7 e I \ In this case, the mapping J : C°°(E)xCG —> A is an 
Msomorphism. Indeed, we readily check that 

/*(-?) = (a ®6q)*(p,h) 

and 
'Wrr) = f{pKh-1) 

are equal to each other. 
To prove that the algebra A = G°° (X)x i CG and its two canonical 

inclusions are involutive algebra maps it is enough to check the equality 
(see [7, Proposition 6.1.5]) 

(h > a)* = (Sh)* > a* 

for every a 6 C*(X) and h € CG, but this is immediate 

(h > a)*(p) = a(ph), 

and 
{(Sh)* > a*)(p) = a*(ph) = 
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In this case the action is said to be unitary, and the situation is analogous 
to what is usually done in quantum mechanics. 
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