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QUANTUM GROUPOIDS OF THE FINITE TYPE
AND QUANTIZATION ON ORBIT SPACES

Abstract. We show that the Hopf algebra on a transformation groupoid I' = E x G,
where G is a finite group acting on the total space of a principal fibre boundle over M =
E/G, is the cross product of the algebras C°°(E) and CG. We study duality properties
of this algebra, and consider quantization on orbit spaces program in this context.

1. Introduction

The quantization on homogeneous spaces program began with Mackey’s
fundamental work [6] who studied particle motion on spaces G'/G where
G is a closed subgroup of G’. This work gave rise to various modifications
and generalizations, for instance [1, 4, 5]. Together with the advent of the
quantum group theory the Mackey’s quantization program acquired a new
momentum. It was Shahn Majid who noticed that if the quantum algebra
of observables is a Hopf algebra, then the noncocommutative coproduct cor-
responds to a non-Abelian group structure on the phase space which, in
turn, means that the underlying Riemannian manifold has curvature. This
could put “quantum mechanics and gravity on an equal but mutually dual
footing” (Majid elaborated his previous ideas in [8]). In this context quan-
tization on orbit spaces provides heuristic models allowing one to elaborate
new techniques and better physical intuitions. The main results obtained by
Majid in this field refer to finite quantum groups [7, Chapter 6.1].

In the present work, we generalize this kind of research by changing
from finite quantum groups to quantum groupoids of the final type (by the
latter we mean the situation when a finite quantum group is acting on a
non-necessarily finite space, see below). In fact, we show that even in the
previous research a certain finite quantum groupoid was implicitly involved.

To define a quantum groupoid is not a trivial thing (see [2, 9, 10]), and
even for finite quantum groupoids there exist several definitions some of
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which are equivalent with each other {11, 12]. We start with constructing
a transformation groupoid I' = E x G, where G is a finite group and E a
principal fibre bundle over M = E/G, and then we show that the groupoid
algebra is isomorphic with the cross product C*°(E)><q CG. This material is
presented in Section 2. In Section 3, we demonstrate that our cross product
algebra exhibits nice self-duality property and, in Section 4, we generalize
Majid’s version of quantization on homogeneous spaces to the context of
quantum groupoids of the final type. This generalization could be important
from the physical point of view since space-time M appears in it naturally
when F is interpreted as the total space of the frame bundle.

2. Groupoids of the finite type

Let E be a differential manifold with a group G acting on it smoothly
and freely to the right, £ x G — E. We have the bundle (E, ™, M = E/é)
The frame bundle over M with the Lorentz group G as its structural group
is a special case of this construction. Let G be a finite subgroup of G, and
s : M — FE a cross section of the bundle (E, 7, M). We do not assume
that it is continuous, we simply chose one element of E from each fibre (it
can be easily seen that if the cross section s : M — FE is smooth, the bundle
(E,7pr, M) is a trivial G-bundle).

We define E = |,y s(x)G. Since G acts freely (to the right) on E,
E x G — E, the Cartesian product I' = E x G has the transformation
groupoid structure. Let v; = (p1,91) and v2 = (p2,92) be elements of T
They are composed in the following way: (p1,g1) © (p2,92) = (p1,9192), if
ps = p1g1. The source and range mappings for v = (p, g) can now be written
as

d(y) =p = s(z) - g1,

r(v) = pg = s(z) - g2,
x € M, for g1, g2 € G, respectively; with g2 = g19.

The above groupoid I' = E x G, for both F and G finite, will be called
the finite groupoid; if only G is finite it will be called the groupoid of the
finite type.

Let us consider the following algebras:

1. The groupoid algebra A = C*°(T',C) with the convolution as multi-
plication

@xb)() =3 a0y

71€F4(y)

2. The algebra A = C*°(E, C) with the usual pointwise multiplication.
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3. The group algebra H = CG (linear combinations of elements of G with
coefficients from C and linear extension of group multiplication as product)
together with its Hopf algebra structure {7, Examples 1.5.3 and 1.5.4].

Let A >4 H be the left cross product of the algebras A and H with the
multiplication

(a®h)(b®g) =>_a(h >b)hg,
where
(h > b)(p) = b(ph),
and the multiplication extends by linearity.
PROPOSITION 1. The algebras A>dH and A are isomorphic. The isomor-
phism J : A>AH — A is given by
J(a®g)=a®d,

on primitive elements and extended by linearity to other elements. One has

J(a ® g)(p, 91) = a(p)dg(g1)
where 0y is the Kronecker 6 function.

Proof. First, let us notice that A>4H and A are isomorphic as C*(M)-
modules. Indeed, the isomorphism J~! : A — A>q H is given by

JHa®d)=a®yg.

Then we check that J is the homomorphism of algebras, i.e., we check
by direct computation that

J((a®h)(b®9))(p,g1) = (J(a®h) x J(b® 9))(p, 91)-

It remains to show that J(1 ® e) = 1 ® d,, where e is the unity of G, is
the convolution unit. Indeed, for any f € A we have

(f*(1868&))(pg) = f(P,9)(1®6)(r7,5"9)

geiG
=Y f(,5).(37'9) = f(p,9). O

geG
Let E, be the fiber over x € M, and I'; = E, x G. Let us consider the
algebras: A, = C*°(FE;, C) which is isomorphic with the algebra C(E;) of
all functions on E; with the pointwise multiplication, and A, = C*°(I';, C)
which is isomorphic with the algebra CI'; of all linear combinations of ele-

ments from I', with convolution as multiplication.

PROPOSITION 2. The algebras A;>dH and Az, for every x € M are iso-
morphic. Moreover, the algebras A, and H are strictly paired, and therefore
Ar = H and H* = A, as vector spaces.
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Proof. The first part of the proof is analogous to that of Proposition 1. To
prove the second part let us notice that E = |J,¢ps s(z)G. Then we have
E, = {s(z)g : g € G}, and the pairing form is

(o, h) = Y h(g)d(s(z)g),

geG
¢ € C(Ez), h =3 ;e Mg)g € G. This form is nondegenerate, i.e.,
Vhe H,(p,h) =0= =0,
Vo € Az, (p,h) =0=>h =0,

The first of these equalities we obtain by substituting for h the subsequent
elements of the group G that generate the algebra H; the second of these
equalities by putting ¢ = d,(z),- D

The above proof depends on the choice of the cross section s(z), but we
should remember that this cross section enters into the very construction
of the groupoid I' (through the definition of F). The same cross section
ensures the isomorphism of the algebras A, and C(G) [7, Example 1.5.2]
which allows us to equip A; with the Hopf algebra structure. For f € A,
we define the coproduct

Af(P17P2) = Af(s(m)gl, S(.’L‘)gg) = f(s(x)glg2),
p1, p2 € Eg, the counit

ef = f(s(x)e) = f(s(z)),
and the antipode
(SF)(s(2)g) = f(s(z)g™).
COROLLARY 3. The algebras Ar and H are strictly dual as Hopf algebras. O

It should be noticed that the structure of the algebra A, depends on the
choice of the section s : M — E. Therefore, we in fact have a “bundle of
coalgebras” over M.

We are now able to define a quantum grouppoid of the finite type. The
algebra A will be called its total algebra and the algebra Z := C*°(M) its

base algebra. The source and target maps, o : £ — A, are equal and are
defined to be

off) =pr*f
for f € Z, where pr is the composition of the natural projection of I' onto
E with the bundle projection mps. The total algebra A has the natural

(Z, Z)-bimodular structure given by multiplication of elements of the type
pr* f. We have the coproduct A4 - AQ A

Abp ®dg) =0, ® 5, @6, ® g
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on simple elements, to be extended by linearity. A is a mapping of (Z, 2)-
bimodules, but it does not preserve unit. The counit € : 4 — A is

€(a ® dg)z = a(s(z))
for every a € A. It can be easily seen that €(14) = 1. And the antipode
S:A— Ais
S(@)(v) = a(v71),
foreverya € Aand ye€T.

Here we also have a “bundle of quantum groupoids of the finite type”
dpending on the section s: M — E.

It can be readily checked that our groupoid of the final type satisfies
all conditions of the Hopf bi-algebroid definition given by Lu [2] with the
exception that the coproduct A does not preserve unit. For this reeason we
shall also call it the weak Hopf algebroid. It is worthwhile to notice that

in some groupoid definitions preservation of unit is not required (see for
instance [12]).

3. Pontriagin duality

Let G be a finite Abelian group, and G = {x : G — C\ {0}} the set
of its characters. Pontriagin theorem asserts that G itself has the Abelian
group structure, and that there are the following isomorphisms

(1) CG ~ C(G)* = C(G),

(2) CG ~ C(Q).

These two isomorphisms are connected by the Fourier transforms in the
following way

h(w) = Y h()x(w),

xeG

#(x) = G > x(u De(w)
I l ueG
for h, € CG, p,h € C(G) (see [3]).
In our case, because of the isomorphism between A, = C(E;) and C(G)
we have

= (CG)* = C(Ex)

for every z € M (equality (2) follows from equality (1) by adding another
hat), and for the Fourier transform

f(s(@)u) = 3 frx(w)

x€G
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where f € C(E;), s(z) € Ez, u € G and f € CG is a linear combination of

characters, i.e., f = Exeé Fxx-
On the strength of Proposition 2, for any finite group, we immediately
have

A ~ C(E;)>1CG
or
A, ~ CG>CQG.

This cross product is also called quantum double of CG. For a finite Abelian
group, A, exhibits the self-duality property

A, ~ CG>qCE = CG < CE.
For the algebra A ~ A>q H everything above is true “along fibres”.

4. Quantization on orbit spaces

Let us consider a classical system (G, X, o) where G is a Lie group acting
on a space X to the right, a : X x G — X. In the following we shall assume
that X is a smooth manifold and o transitive. We regard C*°(X) as the
algebra of its observables. The right action a of G on X induces its left
action on C*°(X). In this case, G is called the momentum group.

The kinematic part of the quantization program of the above classical
system consists in finding quantum algebra of observables in which classical
observables are suitably contained. In Mayjid’s approach (7, chapter 6.1], in
which G and X are finite, this means finding an algebra B and maps

C(X) = B — CG,
such that
ﬁfﬂ—l = au(f)»

for all u € G and f € C(X). Majid shows that the cross product algebra
C(X)><1CG, together with its canonical inclusions (1® CG and C(G) ®1),
is a universal solution of the above algebraic quantization problem (Propo-
sition 6.1.1).

On the strength of Proposition 1 we have the isomorphism

J1: A — C®(E)>1CG

(with the correct inclusions) where E is the bundle introduced in Section 1.
Indeed, for a,b € C*°(E) we have

a— Ja®e)=a®d € A,
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and the convolution becomes the usual multiplication
(J(a®e)x J(b®e))(z,9) =) (a®8)(z,5)(b® &) (5,5 '9)
3eG
=Y a(2)8.(3)b(z5)8(3 7 9) = (J(ab @ €))(z, g).
geG
For g,h € CG we have
g~ J(1®g)=1®14, € A,
and the multiplication is preserved
(J1®g9)®@J1@h)(z,q1) =Y 1(z)d(3)1(x7)on (T 1)
geiG
= dgn(g1) = (J(1 ® gh))(z, g1)
The repetition of Majid’s proof (of Proposition 6.1.1 in [7]) shows that

the algebra .A, together with its two natural inclusions is also a univer-
sal solution of the algebraic quantization problem of the classical system
(G,E,a).

Moreover, there exists a representation of the algebra 4 = C*(E)>CG
in C®(FE) called the Schréodinger representation. It is defined to be a map-
ping § : A — Lin(C*°(F)) given by

(8(N)®))(p) = a(p)b(pg)

for every f = a® d; € A, a,b € C*®°(E). The algebras C*°(E) and CG
are involutive with the following involutions: for a € C*(E), a* = @, and
for h = 3} geghgg € CG, h* = 3 hgg. Now f*(y) = f(y~1), for every
f € A and v € T. In this case, the mapping J : C*°(E)><ICG — A is an
*-isomorphism. Indeed, we readily check that

1 (v) = (@® )" (p, h)

and

f(y~1) = f(ph,h71)

are equal to each other.

To prove that the algebra A = C*°(X)>1CG and its two canonical
inclusions are involutive algebra maps it is enough to check the equality
(see [7, Proposition 6.1.5])

(h >a)* =(Sh)* >a*
for every a € C*(X) and h € CG, but this is immediate
(h > a)*(p) = a(ph),

and L
((Sh)* & a®)(p) = a*(ph) = a(ph).
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In this case the action is said to be unitary, and the situation is analogous
to what is usually done in quantum mechanics.
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