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GROUPOIDS, THEIR REPRESENTATIONS
AND IMPRIMITIVITY SYSTEMS

1. Introduction

Groupoids play a crucial role in the study of symmetry in differential
geometry and physics; also in algebraic topology the very useful notion is
that of the fundamental groupoid (see [10] for a survey).

The importance of the theory of representations of groupoids has its
origin in models unifying general relativity and quantum mechanics (see
[2, 3, 4]) based on noncommutative convolution algebras. We have used the
technique of representations of groupoids to study the theory of spacetime
singularities (see [1]).

The representations of goupoids were defined and studied in different
manners by various authors (see [11] for example).

The aim of this paper is to define, clarify and explain some basic concepts
of the goupoids representation theory related to similar concepts for groups.

To simplify the exposition we assume that groupoids are finite sets, al-
though most of results holds for more general case.

In section 2 we describe groupoids, transformation groupoids and define
transitive action groupoids. In Lemma 2.2 we prove the isomorphism of
transitive free action groupoid with a pair groupoid.

In section 3 we define a representation of groupoid, describe basic prop-
erties of the representation, recall the concepts of a system of impimitivity
and of an induced system of imprimitivity.

In section 4 we investigate a correspondence between the set of represen-
tations of a transformation groupoid I' = X x G and the set of systems of
imprimitivity of the group G. We prove in Theorem 4.1 that this correspon-
dence is one-to—one. The proof in the finite case is simple and transparent.
A version for C *-algebras of that correspondence one can find in [5], chap-
ter III-3 (see also [8]). In the paper [1] we present a partial construction of
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the correspondence in the case of I' = F x G where FE is the frame bundle
over the spacetime M and G is the structural group of the bundle.

Finally, we conclude, using the imprimitivity theorem of Mackey (7], that
every representation of groupoid is unitarily equivalent to induced one.

2. Preliminaries
2.1. Basic concepts. A groupoid and a transformation groupoid
A groupoid is a certain generalization of a group, in which multiplica-
tion is only partially defined. When it is defined, it is associative, and each
element has an inverse in a suitable sense. Let us recall (see, for instance
the book of Paterson [8], chapter 1) that a groupoid I' consists of set I',
a distinguished subset 'y C T x T, called the set of composable elements,
a mapping of multiplication: - : 'y — I, defined by (z,y) — z -y and an
inversion map z +— z~! from T to I, such that (z7!)~! = z. These two
mappings satisfy:

(1) if (z,y), (y, z) € [y then (zy, 2), (z,yz) € I'y and (zy)z = z(y2),
(ii) (y,y~1) € I’y for every y € I and if (z,y) € I'y then z7!(2y) = y and
(zy)y ' ==

We also define the set of units ['* = {z7!z : z € '} (I° C I). Let us
define two mappings d,r : I' = I' by d(z) = 27!z and r(z) = zz~! called
the source mapping and range mapping respectively. It is easily seen that
(z,y) € Ty if and only if d(z) = r(y).

For each u € I'° let denote I', = d~!(u) and T* = r~!(u). Now the set
'Y :=T*NT, has a structure of group. It is called the isotropy group at u.

A groupoid I will be called a transitive groupoid if for every pair u,v € I'
there exists z € I" such that d(z) = v and r(z) = v.

In natural way we define a subgroupoid I'y of I" as a subset I'y C I closed
with respect to the multiplication and inversion map. Clearly the unit space
of subgroupoid I'; will be subset of the groupoid I'.

We can also consider additional structures as topology or differential
structure in the set I'. Then the composition and inversion mapping have to
be respectively continuous or smooth. But in this paper we study algebraic
properties of some groupoids.

An important class of groupoids is that of transformation groupoids (or
action groupoid). Let X be a set with a group G acting on it to the right,
XxG— X.

A transformation groupoid will be the set I' = X x G equipped with the
following structure: Two elements 3,72 of T', i.e. two pairs 1 = (z1,491),
v2 = (z9,92), where z1,z9 € X and g¢1,g92 € G, will be composable if and
only if 9 = z;9; and then the product will be defined by the following
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formula:
M °¥2 = (2191, 92) © (21, 91) = (21,9192)-

The inverse of v = (z,g9) € T will be v~! = (zg,¢97!). If we represent
v = (z, g) as an arrow beginning at z and ending at zg, then two arrows v;,
v2 can be composed if the beginning of v, coincides with the end of ;. Now,
the set of units of the groupoid I'is I'* = {y~!y:y € T} = {(z,e) : z € X},
where e is the unity of the group G. We can write I'® = X, identifying an
element (z,e) with £ € X. Next

[: ={(z,9) : g€ G},
I*={(zg7',9): g€ G)}.

It is clear that the set I'; can be represented as the set of arrows which begin
in z (or in (z,e) € ') and the set I'* as the set of arrows which end at z.

2.2. A transitive action groupoid

The transformation groupoid I' = X x G which is a transitive groupoid
will be called a transitive action groupoid. It is clear that I' is a transitive
action groupoid if and only if G acts transitively on the set X. In this case
the set X forms a single orbit of the group G and can be identifield with
the set K \ G of right cosets of a subgroup K of G. Denote by 0 € X the
origin of X, i.e. the point of X for which we have

{9€G:09=0}=K.
It is clear the isotropy group 'O = {(0,k) : k € K} ~ K.

LEMMA 2.1. Let x € X. Choose an element g, € G such that og, = = and
denote by K, the subgroup of G of the form K, = {g;'kg, : k € K}. Then
the isotropy group at x I'S = {(x, k) : k € K. }. Hence all the isotropy groups
I'Z (z € X) are mutually isomorphic and isomorphic to K.

Proof. We observe that v € I'Z if and only if it is of the form v = (z, g)
where g € G satisfies © = zg~! or equivalently og: = 0g;¢g~! or finally
09-99; ' = r. But this means that g,gg;! € K and we have g = g7 kg, for
some k€ K. O

Now, let observe that if for a transitive action groupoid I' = X x G, G
acts freely on X, then K = {e} (and all the isotropy groups I'Z are trivial).
In that case we can identify X with G.

Now, return to a general transformation groupoid I' = X x G. The set X
is the union of disjoint G—orbits: X = |J X; and the group G acts transitively
on every set X;. This leads to decomposition of I" in the union of disjoint
subgroupids I'; = X; x G :

r=r
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and every I; is a transitive action groupoid. It may occur that the isotropy
group for different orbits X; are not isomorphic mutually. This implies that
the different orbits X; would not be bijective or in the case of differential
transformation groupoid (see [3]) would not be of the same differential di-
mension. We have studied this fact in [1] in the case of I' = E' x G where E
is the frame bundle over spacetime M and G is the structural group of E.
The group G acts transitively on each fiber E,, of the bundle E over a point
m € M. It follows that the groupoid I splits into the union of subgroupoids

I'm=E,xG:T'= | I'n. Now, every subgroupoid [, is a transitive
meM
action groupoid. But only if a point m € M is a regular point of spacetime

M, G acts freely on E,, and then E,, is diffeomorphic to G. In singular
points m € M we have E,, ~ K \ G for some subgroup K of G.

Another important class of groupoids is formed by the pair groupoids.
For a set X we consider I' = X x X and define the multiplication as follows:

(z,y)o(y,2) = (z,2) forallz,y,z€ X.

Now, recall the definition of an isomorphism of two groupoids I', I". Let
[y, T’y denote their respective sets of composable elements. The mapping
® : ' — IV is called an isomorphism of groupoids if it is a bijection such
that

(i) (z,y) € I'y if and only if (®(z), ®(y)) € I,
(ii) for (z,y) € I'y we have ®(z o y) = ®(z) o D(y),
(iii) forz € T ®(z71) = [®(2)]7

In the paper [2] we have investigated the groupoid I' = E x G, where
FE is a subbundle of the frame bundle mentioned above and G is a finite
group acting freely and transitive on each fiber E,, of the bundle E. We
have introduced the groupoid M x G x G with the multiplication defined by
(m,g¢',g) o (m,g,9") = (m,g,7). We have proved that these two groupoids
(I' and M x G x G) are isomorphic. For m € M fixed, the subgroupoid
I'i = B x G of the first groupoid is also isomorphic to the respective
subgroupoid {m} x G x G of the second one. This fact can be reformulated
in a more simple manner using more general notation:

Let X be a finite set with a (finite) group G acting on X transitively
and freely. Let I' = X x G be the corresponding transitive action groupoid.
Then

LEMMA 2.2. The groupoid ' is isomorphic to the pair groupoid X x X.

Proof. The isomorphism ¢ : I' — X x X will be given by for v = (z, g),
r€X,g€Gby

&(z,9) = (29, 2).
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It is clear that & is a bijection of I' and X x X which leads to bijection of
composable sets. Now

®[(zg, k) o (z,9)] = ®[(z, gh)] = (zgh, z)
and
&(zg, h) o ®(x, g) = (zgh,zg) o (zg,z) = (zgh, z).
Similarly ®[(z,g)~!] = ®(zg,97') = (z,zg) = [8(z,9)]™". O

3. Representations of groupoids
Let us recall the definition of a groupoid representation in the finite case.
Let T be a finite set equipped with a groupoid structure. Let X = I'°
be its set of units. Let be given a collection H of finite dimensional complex
Hilbert spaces H = {H; }zex with x ranging over X.

DEFINITION 3.1. A unitary representation (shortly u.r.) U of the groupoid
T is the pair (U, H) where H is the collection of Hilbert spaces and U is the
mapping
'y U(y) € U(Hyy), He(y)

where d and r are the source and the range mappings. (Here we denote by
U(H;, Hy) the space of Hilbert isomorphisms from H; to Hy, i.e. linear maps
leaving invariant inner products). The following conditions are imposed on
the mapping U :

(i) U(z) = id|y, for z € T,

(if) U(m 0y2) = U(71) oU(72) for all (m1,72) € Iy,
(i) U(y™H) =U()~

Let us observe that the composition in (ii) is well defined since r(y2) =
d(v1)-

Further, note that if the groupoid I' is transitive then all the spaces of
the collection {H,},ex are of the same dimension. It is clear because there
exists an isomorphism between the spaces H,, and H;, for each pair of points
z1,x2 € X. But, in general, the spaces H, need not be of the same dimension.

DEFINITION 3.2. Let (U1,H1) and (U,H) be two u.r. of the groupoid I
Suppose that the collections of Hilbert spaces Hy = {Hiz}zex and H =
{H:}zex satisfy Hi; C H, for every z € X. Moreover: Ui () = U(7)|H 4,
for all v € I'. Then (U1, H1) is called a subrepresetation of the representation
U, H).

DEFINITION 3.3. A representation (U, H) of the groupoid I' is called irre-
ducible if there exists no proper subrepresentation, i.e. if one has the collec-
tion Hy = {Hiz}zex and U(7) satisfying the condition U(y)Hi4(y) = Hir(y)
for all v € T then it implies Hy, = H, or Hi; = {0} for every € X.
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DEFINITION 3.4. Let (U, H1) and (Uz, Hs) be two u.r. of the groupoid T.
Assume that there exists a family of Hilbert space isomorphisms

AZZHh;-—)ng, zeX
such that
Ar (Ui () = Ua(7) Aggyy

for every v € I'. Then we say that the representations (U1, H1), (Us, H2) are
unitarily equivalent.

The main object of the paper is to relate the representations of trans-
formation groupoids to the induced representations of groups and to the
systems of imprimitivity (see [1, 5, 6]).

To fix notation, we recall the following definitions, for simplicity assum-
ing the finiteness of groups.

Let G be a finite group and K its subgroup. Let (L, V') be a finite dimen-
sional unitary representation (u.r.) of K in a Hilbert space V. Let HL denote
the space of all functions f from G to V satisfying the following condition:

(1) f(kg) = L(k)f(g) forallke K and g € G.
Then we define the operators in Hp:
2) (U (90)f)(9) = f(990)  for go € G.

In the space HE we introduce the inner product as follows:

(f1, f2) = Y (fulg), fa(9))L

K\G

where K \ G indicates that we take just one element g for each right coset
Kg and (, )1 denotes the inner product od the space L. The unitarity of
L implies that (f1(g), f2(g))r does not depend of the choosen element g of
a coset. Now it is easy to see that the operators UZ(go) form a w.r. of the
group G.

DEFINITION 3.5. The u.r. (UX, HL) of G is called the representation of G
induced by L.

Now we return to the systems of imprimitivity. Let (i, H) be a u.r. of
finite group G in a finite dimensional Hilbert space H. Let G acts on a finite
set X to the right: X x G — X. Suppose that there exists a decomposition
of Hilbert space H into direct sum of Hilbert spaces H, (H, C H), z € X:

H = @ H,.Itisclear that the decomposition defines a family of orthogonal
zeX
projection operators P, of the space H onto space Hy, for all z € X:

P,:H— H,
which satisfy:
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(3) P.oP, = P, forz=y
0 for = # y,
(4) > P=idln.

zeX
The family {P;};ex leads to a projection operators valued (probability)
measure on X. Denote the family shortly by P.

DEFINITION 3.6 (see {9, 6]). By a system of imprimitivity (S.I. for short) of
the group G for the representation (U, H) with the base X we shall mean
the quadruple (G,U, X, P), where P is the family of projection operators
satisfying the condition (3) and (4) together with the following one

(5) U(g)PU(g™Y) = P,,-1 foreveryge G and z € X.
The condition (5) expresses the covariance of P with respect to U.

S.I. is said to be transitive if G acts transitively on X. (In this case
X = K\ G for a subgroup K of G).

LEMMA 3.1. Let (G,U, X, P) be a transitive S.I. Denote H, = P,H for
x € X. Then all the Hilbert spaces Hy (z € X ) are mutually isomorphic.

Proof. Let X = K\ G and o € X be the origin of X. Then ok = o for every
k € K. Now choose z; € X, 1 # o. Then there exists g; € G such that
og~! = z41. Let h € H,. Then h = P,h and by the condition (5) we have:

U(g1)h = U(g1)Poh = P, 1U(g1)h = Pr,U(g1)h.
This means that U(g;)h € H,, and that the operator U(g;) realizes the
unitary isomorphism of the space H, onto H;,. O

Now we shall recall that for a induced representation of (UL, HE) (see
Definition 3.5) there exists a canonical transitive S.I. (see [9] for example),
which is given by the following family of projections

Pz{’. :HL—>H£;, ;€ X and

6 0 for g & z;
© PL(f) = ‘

f(g) for g € z;,
where f € HL, g € G, and z; = Kg; for a fixed representative g; of the right
coset ;. H is easy to see that

L L _ L
u (gO)PI. - Pz‘gglu (gO)

for every go € G.

DEFINITION 3.7. The S.I. (G,U%, X, PL), where PL = {PL};.cx and P
are defined by the formula (6), is called the induced S.I. of G for the repre-
sentation UL.
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We shall recall also the Imprimitivity Theorem of Mackey (see [6, 7, 9]).

THEOREM 3.1 (Mackey). Every transitive S.I. (G,U, X, P) is unitarily equiv-
alent to an induced S.I. (G, UL, X, PL) of G. More precisely, if H is the space
of the representation U and HL is the space of UL then there exists a unitary
isomorphism A : H — HL such that

) AU(g)h = U (g)Ah  for everyge G,h e H
AP,h = PLAh for everyz e X,he H '

4. Representations of transformation groupoids
We continue with the finite case. Let I' = X x G be a transformation
groupoid (I" being a finite set).
THEOREM 4.1. There exists a one-to-one correspondence J between uni-
tary representations of the transformation groupoid I' and the systems of
imprimitivity of the group G:
J:{U,H)} - {(G,U, X, P)}.

Proof. 1°. Let (i, H) be a u.r. of T'. By Definition 3.1 we have that 7 =
{Hz}zex, where H, are finite dimensional complex Hilbert spaces. Let us

form the Hilbert direct sum of the space H,: H = € H,. Then we can
zeX
identify the space H, with a subspace of H and define P, as the projection

operator of H onto H,, for every = € X. Let define operators i (gg) : H — H
by the formula:
8) Ugo)( 3 he) = Y U(=, 95 ha

zeX reX

where h, € H, and gg € G. First, observe that U(go) is well defined, because
U(z,g5') : Hy —» H ey Now check that U is a representation of G:

e (@) 3 he) =Ulan)( 3 Ul g5 ")he)

zeX
= > U(zgy", 97" )U(z, g5 )he,
zeX

(because U(z, g5 )y € Hzgz—-l).

Now, by the condition (ii) of Definition 3.1 and by the law of multipli-
cation of the groupoid it follows that the last sum is equal to:

S Uz, 95 97 Hhe = Y Uz, (9192) he = U(g1gz)( > hx).
zeX zeX zeX

Finally the unitarity of the operators U(z, g5 1) implies that (U, ) is unitary
representation of G.
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Now UP,h = U(z,g-1)h = ng-1a(m,g"1)h = P, -1U(g)h for each
h € H and we obtain a S.I. (G,U, X, P). Thus, we have constructed the
mapping J: JU, H) = (G,U, X, P).

2°. Choose a S.I. (G,U, X, P). Denote H, = P,H and define: U(z, g) :
H; — Hgy; by the formula:

(9) Uz, )h=U(g™Y|g,h  for h e H,.

Observe that U(z,g) = PyU(g~!)h, by the condition (5) of Definition 3.6.
But it means that U(x, g)h € Hg,. Let us check the conditions (i), (ii), (iii) of
Definition 3.1. Indeed, one has(z, e)h = U(e)|y,h = h,for h € H. Further
U(zgz,91) oU(x, g2) = U(G7 ") |egy oU(g3 )11, = U(9192) 7 |1, = U(z, 9192)-
And finally U(zg,g-1) = U(g)|H., = U(z,g)~!. Thus we have constructed
the representation (U, H) of I, corresponding to the S.I. given.

3°. It is easily seen that the mapping constructed in part 2° is inverse
the mapping J constructed in part 1° O

In the section 3 we have seen that for a transitive action groupoid T if
(U,H) is a u.r. of T then all the members H;, x € X of the collection ‘H
are mutually isomorphic Hilbert spaces. This fact, by Theorem 4.1 coincides
with Lemma 3.1.

Now if a transformation groupoid I' is not transitive, I' = |JTI';, as we have
seen in Section 2, where I'; is transitive action subgroupoid of I" based on a
G-orbit X;. Then, if (U, H) is a u.r. of such groupoid, where H = {H; }.ex,
one can not expect that the spaces Hy,, Hy, still will be isomorphic if z; and
z9 belong to different orbits X; and Xs. One can consider the restrictions
(Ui, H;) of (U, H) to subgroupoids I'; = X; x G. These restrictions will
be different as the representations of different, not isomorphic (in general)
groupoids. But still Theorem 3.1 holds in this case.

Now we shall associate the representations of a transitive action groupoid
with induced representations. Put I' = X x G, with X = K\ G. Let (L, V)
be u.r. of the subgroup K and consider the induced S.I. of G (G,L{L, X, PL)
for the representation . (See Definition 3.7).

DEFINITION 4.1. The u.r. of I' (7~, ") given by formula
@" " = 7Y(G,ut, X, Ph)
is called the representation of I' induced by L. (Here J denotes the bijection
described in Theorem 4.1).
THEOREM 4.2. Every unitary representation (U, H) of the transitive action

groupoid T' is unitarily equivalent to an u.r. (_L{-L,ﬁl') i.e. to representation
of I' induced by an representation L of K.
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Proof. This result is a simple consequence of Theorem 4.1 and of the Im-
primitivity Theorem of Mackey (see Theorem 3.1). O

In a forthcoming paper which is in preparation we will present a more
general concept of induced representations of groupoids and state a gener-
alized version of Theorem 4.2.

Now we conclude this section with the following important and simple
theorem.

THEOREM 4.3. Let (UL, HE) be the representation of T' induced by L. Then
(UL, HL) is irreducible if and only if the representation (L, V) of the group
K is irreducible.

Proof. Now the statement of the theorem is clear by the construction of the
induced S.I. (Definition 3.7) and by form of the bijection J of Theorem 4.1. O
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