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GROUPOIDS, THEIR REPRESENTATIONS 
AND IMPRIMITIVITY SYSTEMS 

1. Introduction 
Groupoids play a crucial role in the study of symmetry in differential 

geometry and physics; also in algebraic topology the very useful notion is 
that of the fundamental groupoid (see [10] for a survey). 

The importance of the theory of representations of groupoids has its 
origin in models unifying general relativity and quantum mechanics (see 
[2, 3, 4]) based on noncommutative convolution algebras. We have used the 
technique of representations of groupoids to study the theory of spacetime 
singularities (see [1]). 

The representations of goupoids were defined and studied in different 
manners by various authors (see [11] for example). 

The aim of this paper is to define, clarify and explain some basic concepts 
of the goupoids representation theory related to similar concepts for groups. 

To simplify the exposition we assume that groupoids are finite sets, al-
though most of results holds for more general case. 

In section 2 we describe groupoids, transformation groupoids and define 
transitive action groupoids. In Lemma 2.2 we prove the isomorphism of 
transitive free action groupoid with a pair groupoid. 

In section 3 we define a representation of groupoid, describe basic prop-
erties of the representation, recall the concepts of a system of impimitivity 
and of an induced system of imprimitivity. 

In section 4 we investigate a correspondence between the set of represen-
tations of a transformation groupoid F = X x G and the set of systems of 
imprimitivity of the group G. We prove in Theorem 4.1 that this correspon-
dence is one-to-one. The proof in the finite case is simple and transparent. 
A version for C ""-algebras of that correspondence one can find in [5], chap-
ter III—3 (see also [8]). In the paper [1] we present a partial construction of 
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the correspondence in the case of T = E x G where E is the frame bundle 
over the spacetime M and G is the structural group of the bundle. 

Finally, we conclude, using the imprimitivity theorem of Mackey [7], that 
every representation of groupoid is unitarily equivalent to induced one. 

2. Preliminaries 
2.1. Basic concepts. A groupoid and a transformation groupoid 

A groupoid is a certain generalization of a group, in which multiplica-
tion is only partially defined. When it is defined, it is associative, and each 
element has an inverse in a suitable sense. Let us recall (see, for instance 
the book of Paterson [8], chapter 1) that a groupoid T consists of set T, 
a distinguished subset r 2 C T x T, called the set of composable elements, 
a mapping of multiplication: • : T2 —• T, defined by (x, y) i-> x • y and an 
inversion map x a; -1 from T to T, such that (a ; - 1) - 1 = x. These two 
mappings satisfy: 

(i) if (x,y), (y, z) € r 2 then (xy,z), (x,yz) € T2 and (xy)z = x(yz), 
(ii) (y,y~l) e r 2 for every y 6 T and if (x,y) € r 2 then x~l{xy) = y and 

(xy)y~l = x. 
We also define the set of units T0 = {x~lx : x G T} (r° C T). Let us 

define two mappings d, r : T —> T0 by d(x) = x~lx and r(x) = xx~x called 
the source mapping and range mapping respectively. It is easily seen that 
(x, y) € r 2 if and only if d{x) — r(y). 

For each u € let denote Tu = d~l(u) and Tu = r_ 1(u) . Now the set 
r „ := Tu fl r u has a structure of group. It is called the isotropy group at u. 

A groupoid T will be called a transitive groupoid if for every pair u,v eT 
there exists x 6 T such that d(x) — u and r{x) = v. 

In natural way we define a subgroupoid Ti of T as a subset Ti C T closed 
with respect to the multiplication and inversion map. Clearly the unit space 
of subgroupoid Ti will be subset of the groupoid T. 

We can also consider additional structures as topology or differential 
structure in the set T. Then the composition and inversion mapping have to 
be respectively continuous or smooth. But in this paper we study algebraic 
properties of some groupoids. 

An important class of groupoids is that of transformation groupoids (or 
action groupoid). Let X be a set with a group G acting on it to the right, 
X x G -» X. 

A transformation groupoid will be the set T = X x G equipped with the 
following structure: Two elements 71,72 of T, i.e. two pairs 71 = (xi, <71), 
72 = (^2,^2), where x\,x2 € X and gi,g2 £ will be composable if and 
only if x2 = 2:151 and then the product will be defined by the following 



Groupoids, their representations 663 

formula: 

71 072 = (xigug2) o (2:1,31) = (£1,3132). 

The inverse of 7 = (x,g) € T will be 7 _ 1 = (xg,g~l). If we represent 
7 = (x, g) as an arrow beginning at x and ending at xg, then two arrows 71, 
72 can be composed if the beginning of 72 coincides with the end of 71. Now, 
the set of units of the groupoid T is T0 = { 7 - 1 7 : 7 G T} = {(x, e) : x € X } , 
where e is the unity of the group G. We can write r ° = X, identifying an 
element (x, e) with x € X. Next 

rx = {(x,g) : g 6 G), 

T x = {(xg-1,g):geG}. 

It is clear that the set F x can be represented as the set of arrows which begin 

in x (or in (x, e) E T) and the set T 1 as the set of arrows which end at x. 

2.2. A transitive action groupoid 
The transformation groupoid F = X x G which is a transitive groupoid 

will be called a transitive action groupoid. It is clear that T is a transitive 
action groupoid if and only if G acts transitively on the set X. In this case 
the set X forms a single orbit of the group G and can be identifield with 
the set K\G of right cosets of a subgroup K of G. Denote by o £ X the 
origin of X, i.e. the point of X for which we have 

{g e G : og = 0} = K. 

It is clear the isotropy group F° = {(o, k) : k £ K} ~ K. 

LEMMA 2.1. Let x € X. Choose an element gx 6 G such that ogx = x and 
denote by Kx the subgroup of G of the form Kx = {g~ 1kgx : k 6 K}. Then 
the isotropy group at x T* = {(x, k) : k 6 Kx}. Hence all the isotropy groups 
r* (x 6 X) are mutually isomorphic and isomorphic to K. 

P r o o f . We observe that 7 € if and only if it is of the form 7 = (x, 3) 
where 3 € G satisfies x = xg~l or equivalently ogx = ogxg~x or finally 
ogxggx 1 = x. But this means that gxggxl G K and we have 3 = gxlkgx for 
some k € K. • 

Now, let observe that if for a transitive action groupoid T = X x G, G 

acts freely on X, then K = {e} (and all the isotropy groups T* are trivial). 

In that case we can identify X with G. 

Now, return to a general transformation groupoid T = X xG. The set X 
is the union of disjoint G-orbits: X = \JXi and the group G acts transitively 
on every set X{. This leads to decomposition of T in the union of disjoint 
subgroupids = Xi x G : 

r = U r i 
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and every is a transitive action groupoid. It may occur that the isotropy 
group for different orbits Xi are not isomorphic mutually. This implies that 
the different orbits Xi would not be bijective or in the case of differential 
transformation groupoid (see [3]) would not be of the same differential di-
mension. We have studied this fact in [1] in the case of F — E x G where E 
is the frame bundle over spacetime M and G is the structural group of E. 
The group G acts transitively on each fiber Em of the bundle E over a point 
m € M. It follows that the groupoid T splits into the union of subgroupoids 
I'm = Em x G : F = U r m . Now, every subgroupoid r m is a transitive 

m€M 
action groupoid. But only if a point m E M is a regular point of spacetime 
M, G acts freely on Em and then Em is diffeomorphic to G. In singular 
points m € M we have Em ~ K \ G for some subgroup K of G. 

Another important class of groupoids is formed by the pair groupoids. 
For a set X we consider r = X x I and define the multiplication as follows: 

(z, y)0 ( y . z ) = ( x , z ) for a11 x,y,z€ x. 
Now, recall the definition of an isomorphism of two groupoids T, T'. Let 

r 2 , r 2 denote their respective sets of composable elements. The mapping 
$ : T —> r ' is called an isomorphism of groupoids if it is a bijection such 
that 

(i) (x,y) 6 r 2 if and only if $>(</)) 6 T'2, 
(ii) for (x , y ) e we have $ ( x o y) — $ (x) o 

(iii) for x € T = [^(x)]- 1 . 

In the paper [2] we have investigated the groupoid F = E x G, where 
E is a subbundle of the frame bundle mentioned above and G is a finite 
group acting freely and transitive on each fiber Em of the bundle E. We 
have introduced the groupoid M xGxG with the multiplication defined by 
(m,g',g) o (m,g,g') — (m,g,g). We have proved that these two groupoids 
( r and M x G x G) are isomorphic. For m € M fixed, the subgroupoid 
r m = Em x G of the first groupoid is also isomorphic to the respective 
subgroupoid {m} x G x G of the second one. This fact can be reformulated 
in a more simple manner using more general notation: 

Let X be a finite set with a (finite) group G acting on X transitively 
and freely. Let r = X x G be the corresponding transitive action groupoid. 
Then 

LEMMA 2.2. The groupoid F is isomorphic to the pair groupoid X x X. 

P r o o f . The isomorphism $ : T —> X x X will be given by for 7 = (x,g), 
x E X, g e G by 

$(x,g) = (xg,x). 
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It is clear that $ is a bijection of T and X x X which leads to bijection of 
composable sets. Now 

$[(zg, h) o (x, 5)] = $[(®, gh)] = (xgh, x) 

and 
&(xg, h) o g) = (xgh, xg) o (xg, x) = (xgh, x). 

Similarly ^[(x^)'1} = $(xg,g~l) = (x,xg) = • 

3. Representations of groupoids 
Let us recall the definition of a groupoid representation in the finite case. 
Let T be a finite set equipped with a groupoid structure. Let X = r ° 

be its set of units. Let be given a collection H of finite dimensional complex 
Hilbert spaces H = {Hx}xex with x ranging over X. 

DEFINITION 3.1. A unitary representation (shortly u.r.) U of the groupoid 
T is the pair (li, H) where H is the collection of Hilbert spaces and U is the 
mapping 

r 9 7 M W ( 7 ) € i / ( % , i i r ( 7 ) ) 

where d and r are the source and the range mappings. (Here we denote by 
U(Hx, Hy) the space of Hilbert isomorphisms from Hx to Hy, i.e. linear maps 
leaving invariant inner products). The following conditions are imposed on 
the mapping U : 

(i) U(x) = id|j/x for x e r°, 
(ii) W(7i o 7 2 ) = ^(71) oU(y2) for all (71,72) € r2 , 

(iii) W(7 " 1 ) =W(7 ) " 1 . 

Let us observe that the composition in (ii) is well defined since r(72) = 

d(ll). 

Further, note that if the groupoid T is transitive then all the spaces of 
the collection {Hx}xex are of the same dimension. It is clear because there 
exists an isomorphism between the spaces HXl and HX2 for each pair of points 
x\, X2 € X. But, in general, the spaces Hx need not be of the same dimension. 

DEFINITION 3.2. Let {U\,Hi) and (U, H) be two u.r. of the groupoid T. 
Suppose that the collections of Hilbert spaces HI = {H\ x } x e x and H = 
{Hx}x€X satisfy HIX C HX for every x 6 X. Moreover: ¡^1(7) = U(7)|i/ld(7) 

for all 7 € r . Then {U\, 7ii) is called a subrepresetation of the representation 
(U,H). 

DEFINITION 3.3. A representation (U,H) of the groupoid T is called irre-
ducible if there exists no proper subrepresentation, i.e. if one has the collec-
tion H\ — {Hix}xex and U(7) satisfying the condition = i?ir(7) 
for all 7 € T then it implies H\x = Hx or H\x = {0 } for every x G X. 
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DEFINITION 3.4. Let (Ui,Hi) and (W 2 ,W 2 ) be two u.r. of the groupoid T. 
Assume that there exists a family of Hilbert space isomorphisms 

Ax : H\x —> #2x1 x € X 
such that 

Ar(f)Ui(f) = U2{l)Ad{ l ) 

for every 7 G T. Then we say that the representations (U\, Hi), {U2, H2) are 
unitarily equivalent. 

The main object of the paper is to relate the representations of trans-
formation groupoids to the induced representations of groups and to the 
systems of imprimitivity (see [1, 5, 6]). 

To fix notation, we recall the following definitions, for simplicity assum-
ing the finiteness of groups. 

Let G be a finite group and K its subgroup. Let (L, V) be a finite dimen-
sional unitary representation (u.r.) of K in a Hilbert space V. Let HL denote 
the space of all functions / from G to V satisfying the following condition: 

(1) f(kg) = L(k)f(g) for all k e K and g e G. 
Then we define the operators in H i : 
(2) ( U L ( g 0 ) f ) ( g ) = f(ggo) for go € G. 
In the space Hl we introduce the inner product as follows: 

( / L , / 2 ) = £ ( / I G ? ) > / 2 ( S ) ) L 
K\G 

where K\G indicates that we take just one element g for each right coset 
Kg and ( , )L denotes the inner product od the space L. The unitarity of 
L implies that (fi{g), h{g))L does not depend of the choosen element g of 
a coset. Now it is easy to see that the operators ULl(go) form a u.r. of the 
group G. 

DEFINITION 3 .5 . The u.r. ( U L , H L ) of G is called the representation of G 
induced by L. 

Now we return to the systems of imprimitivity. Let (U, TL) be a u.r. of 
finite group G in a finite dimensional Hilbert space H. Let G acts on a finite 
set X to the right: X x G —> X. Suppose that there exists a decomposition 
of Hilbert space H into direct sum of Hilbert spaces Hx (Hx C H), x G X: 
"H = 0 Hx. It is clear that the decomposition defines a family of orthogonal 

x&X 
projection operators Px of the space H onto space Hx, for all x € X: 

Px : W Hx 

which satisfy: 
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(3) 
^ 0 for x y, 

(4) = 
xeX 

The family {Px}xeX leads to a projection operators valued (probability) 
measure on X. Denote the family shortly by P. 
DEFINITION 3.6 (see [9, 6]). By a system of imprimitivity (S.I. for short) of 
the group G for the representation (U,H ) with the base X we shall mean 
the quadruple ( G , U , X , P ) , where P is the family of projection operators 
satisfying the condition (3) and (4) together with the following one 
(5) U(g)PxU(g~l) — Pxg-i for every g e G and x e X. 
The condition (5) expresses the covariance of P with respect to I f . 

S.I. is said to be transitive if G acts transitively on X. (In this case 
X — K \ G for a subgroup K of G). 
LEMMA 3 . 1 . Let (G,U, X, P) be a transitive S.I. Denote Hx — Px7i for 
x G X. Then all the Hilbert spaces Hx (x € X ) are mutually isomorphic. 

P r o o f . Let X = K\G and o € X be the origin of X. Then ok = o for every 
k E K. Now choose 6 I , i i / o. Then there exists gi E G such that 
og~l = xjl. Let h 6 H0. Then h = P0h and by the condition (5) we have: 

U{gx)h = U{gi)P0h = Pog-iU(gi)h = PXlU{gi)h. 

This means that U{g\)h 6 HX1 and that the operator U(gi) realizes the 
unitary isomorphism of the space H0 onto HXl. • 

Now we shall recall that for a induced representation of ( U l , H l ) (see 
Definition 3.5) there exists a canonical transitive S.I. (see [9] for example), 
which is given by the following family of projections 

Pt : Hl , X i e X a n d 

( 6 ) ' S W - i 0 

I f{g) for g € Xi, 

where / € HL, g € G, and Xi = Kgi for a fixed representative gi of the right 
coset Xi.H is easy to see that 

uL{go)PXi = PXig-^L(9o) 

for every go G G. 
DEFINITION 3.7. The S.I. ( G , U L , X , P L ) , where PL = {P^}Xiex and Pj ; 
are defined by the formula (6), is called the induced S.I. of G for the repre-
sentation UL . 
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We shall recall also the Imprimitivity Theorem of Mackey (see [6, 7, 9]). 

THEOREM 3.1 (Mackey). Every transitive S.I. (G,U, X, P) is unitarily equiv-
alent to an induced S.I. (G,UL, X, PL) ofG. More precisely, ifH is the space 
of the representation U and 7iL is the space ofUL then there exists a unitary 
isomorphism A :7i —> nL such that 

j ALA{g)h = UL(g)Ah for every geG,heH 
{ APxh = P^Ah for every xeX,heH ' 

4. Representations of transformation groupoids 
We continue with the finite case. Let r = X x G be a transformation 

groupoid ( r being a finite set). 
THEOREM 4.1. There exists a one-to-one correspondence J between uni-
tary representations of the transformation groupoid F and the systems of 
imprimitivity of the group G: 

J:{(U,H)}^{(G,U,X,P)}. 
P r o o f . 1°. Let (U,H) be a u.r. of T. By Definition 3.1 we have that H = 
{Hx}xeX) where Hx are finite dimensional complex Hilbert spaces. Let us 
form the Hilbert direct sum of the space Hx. H = © Hx. Then we can 

x&X 
identify the space Hx with a subspace of Ti and define Px as the projection 
operator of H onto Hx, for every x € X. Let define operators U(go) : H —> H. 
by the formula: 
(8) U(g0)(£*.) = £ W(x,go l)h x , 

xEX XEX 

where hx € Hx and go 6 G. First, observe that U(go) is well defined, because 
U(x,gQl) : Hx —+ Hxg-1. Now check that U is a representation of G: 

[U{gi)U{g2))( Y , h*) = % ) ( E « ( I - A ) 

= J2U(xg2
1,g1

1)U(x,g2
1)hx, 

xex 

(because U(x,g21)hx € Hxg-1). 
Now, by the condition (ii) of Definition 3.1 and by the law of multipli-

cation of the groupoid it follows that the last sum is equal to: 

^(^,9219î1)hx = S Û{x,(gig2)~l)hx =U(g1g2)[ J] h*)• 
xex xex xex 

Finally the unitarity of the operators U(x, g^1) implies that (U, H) is unitary 
representation of G. 
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Now UPxh = U(x,g-i)h = Pxg-iU(x,g 1)h = Pxg-\U(g)h for each 
h € H and we obtain a S.I. ( G , U , X , P ) . Thus, we have constructed the 
mapping J: J{U, H) = (G, U, X, P). 

2°. Choose a S.I. ( G , U , X , P ) . Denote Hx = and define: U(x,g) : 
Hx —> Hgx by the formula: 

(9) W f o s V ^ W G T 1 ) ! / ^ ioTh€Hx. 

Observe that U(x,g) = PxgU(g~1)h, by the condition (5) of Definition 3.6. 
But it means that U(x, g)h € Hgx. Let us check the conditions (i), (ii), (iii) of 
Definition 3.1. Indeed, one has U(x, e)h — U(e)\nxh = h, for h e Hx. Further 
U(X92,9I)°1AX,92) =U{g^l)\Xg2oU{g^x)\Hx = U(gig2)~l\Hx 

And finally U(xg,g-\) = U(g)\uig = U(x,g)~l- Thus we have constructed 
the representation (U, H) of T, corresponding to the S.I. given. 

3°. It is easily seen that the mapping constructed in part 2° is inverse 
the mapping J constructed in part 1° • 

In the section 3 we have seen that for a transitive action groupoid T if 
(W, 7i) is a u.r. of T then all the members Hx, x G X of the collection H 
are mutually isomorphic Hilbert spaces. This fact, by Theorem 4.1 coincides 
with Lemma 3.1. 

Now if a transformation groupoid T is not transitive, T = U Tj, as we have 
seen in Section 2, where TJ is transitive action subgroupoid of T based on a 
G-orbit Xi. Then, if (U, H) is a u.r. of such groupoid, where H = {Hx}xex, 
one can not expect that the spaces HXl, HX2 still will be isomorphic if xi and 
X2 belong to different orbits Xi and Xi- One can consider the restrictions 
(Ui,Hi) of (It, V) to subgroupoids I1* = Xi x G. These restrictions will 
be different as the representations of different, not isomorphic (in general) 
groupoids. But still Theorem 3.1 holds in this case. 

Now we shall associate the representations of a transitive action groupoid 
with induced representations. Put r = X x G, with X — K \ G. Let (L, V) 
be u.r. of the subgroup K and consider the induced S.I. of G (G,UL, X, PL) 
for the representation UL . (See Definition 3.7). 

DEFINITION 4 . 1 . The u.r. of T (UL,HL) given by formula 

<JAL,HL) = J-1(G,UL,X, PL) 

is called the representation of T induced by L. (Here J denotes the bijection 
described in Theorem 4.1). 

T H E O R E M 4 . 2 . Every unitary representation (U,7i) of the transitive action 
groupoid T is unitarily equivalent to an u.r. (UL, H.L) i.e. to representation 
of r induced by an representation L of K. 
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P r o o f . This result is a simple consequence of Theorem 4.1 and of the Im-
primitivity Theorem of Mackey (see Theorem 3.1). • 

In a forthcoming paper which is in preparation we will present a more 
general concept of induced representations of groupoids and state a gener-
alized version of Theorem 4.2. 

Now we conclude this section with the following important and simple 
theorem. 

THEOREM 4.3. Let (UL,HL) be the representation of F induced by L. Then 
(iUl,Hl) is irreducible if and only if the representation (L, V) of the group 
K is irreducible. 

P r o o f . Now the statement of the theorem is clear by the construction of the 
induced S.I. (Definition 3.7) and by form of the bijection J of Theorem 4.1. • 
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