

U. C. De, Anup Kumar Sengupta

NOTES ON THREE-DIMENSIONAL QUASI-SASAKIAN MANIFOLDS

Abstract. A non-cosymplectic quasi-Sasakian manifold of dimension 3 is Ricci-semisymmetric if and only if it is Einstein.

1. Introduction

On a 3-dimensional quasi-Sasakian manifold, the structure function β has been defined by Z. Olszak [5] and with the help of this function he has obtained necessary and sufficient conditions for the manifold to be conformally flat [6]. Next he has proved that if the manifold is additionally conformally flat with $\beta = \text{constant}$, then (a) the manifold is locally a product of \mathbb{R} and a 2-dimensional Kahlerian space of constant Gauss curvature (the cosymplectic case), or (b) the manifold is of constant positive curvature (the non-cosymplectic case, here the quasi-Sasakian structure is homothetic to a Sasakian structure). An example of a 3-dimensional quasi-Sasakian structure being conformally flat with non-constant structure function is also described in [6].

The object of the present paper is to study 3-dimensional quasi-Sasakian manifolds. We prove that a parallel symmetric $(0, 2)$ tensor field in a 3-dimensional non-cosymplectic quasi-Sasakian manifold is a constant multiple of the associated metric tensor and a parallel 2-form is the zero form on such manifolds. A Riemannian manifold is called semisymmetric (respectively, Ricci-semisymmetric) if $R(X, Y).R = 0$ (respectively, $R(X, Y).S = 0$) [4], [7] where $R(X, Y)$ is treated as a derivation of the tensor algebra for any tangent vectors X, Y .

1991 *Mathematics Subject Classification*: 53C15, 53C40.

Key words and phrases: quasi-Sasakian manifold, structure function, Ricci-semisymmetric.

2. Preliminaries

Let M be a $(2n+1)$ -dimensional connected differentiable manifold endowed with an almost contact metric structure (ϕ, ξ, η, g) , where ϕ is a tensor field of type $(1,1)$, ξ is a vector field, η is a 1-form and g is the Riemannian metric on M such that [2], [3]

$$\begin{aligned}\phi^2 &= -I + \xi \otimes \eta, \quad \eta(\xi) = 1 \\ g(\phi X, \phi Y) &= g(X, Y) - \eta(X)\eta(Y), \quad X, Y \in T(M).\end{aligned}$$

Then also

$$\phi\xi = 0, \quad \eta(\phi X) = 0, \quad \eta(X) = g(X, \xi).$$

Let Φ be fundamental 2-form of M defined by $\Phi(X, Y) = g(X, \phi Y)$, $X, Y \in T(M)$. Then $\Phi(X, \xi) = 0$, $X \in T(M)$. M is said to be quasi-Sasakian if the almost contact structure (ϕ, ξ, η) is normal and the fundamental 2-form Φ is closed ($d\Phi = 0$), which was first introduced by Blair [1]. The normality condition gives that the induced almost complex structure of $M \times \mathbb{R}$ is integrable or equivalently, the torsion tensor field $N = [\phi, \phi] + 2\xi \otimes d\eta$ vanishes identically on M . The rank of a quasi-Sasakian structure is always odd [1], it is equal to 1 if the structure is cosymplectic and it is equal to $(2n+1)$ if the structure is Sasakian.

3. Quasi-Sasakian structure of dimension three

An almost contact metric manifold M of dimension 3 is quasi-Sasakian if and only if [5]

$$(3.1) \quad \nabla_X \xi = \beta \phi X, \quad X \in T(M)$$

for a certain function β on M such that $\xi\beta = 0$, ∇ being the operator of the covariant differentiation with respect to the Levi-Civita connection of M . Clearly, such a quasi-Sasakian manifold is cosymplectic if and only if $\beta = 0$. As a consequence of (3.1), we have [5]

$$(3.2) \quad (\nabla_X \phi)(Y) = \beta(g(X, Y)\xi - \eta(Y)X), \quad X, Y \in T(M).$$

In a 3-dimensional Riemannian manifold, we always have

$$\begin{aligned}(3.3) \quad R(X, Y)Z &= g(Y, Z)QX - g(X, Z)QY + S(Y, Z)X \\ &\quad - S(X, Z)Y - \frac{r}{2}(g(Y, Z)X - g(X, Z)Y)\end{aligned}$$

where Q is the Ricci operator i.e., $g(QX, Y) = S(X, Y)$ and r is the scalar curvature of the manifold.

Let M be a 3-dimensional quasi-Sasakian manifold. The Ricci tensor S of M is given by [6]

$$(3.4) \quad S(X, Y) = \left(\frac{r}{2} - \beta^2 \right) g(Y, Z) + (3\beta^2 - \frac{r}{2}) \eta(Y) \eta(Z) - \eta(Y) d\beta(\phi Z) - \eta(Z) d\beta(\phi Y)$$

where r is the scalar curvature of M .

As a consequence of (3.4), we get for the Ricci operator Q

$$(3.5) \quad QX = \left(\frac{r}{2} - \beta^2 \right) X + (3\beta^2 - \frac{r}{2}) \eta(X) \xi + \eta(X) (\phi \text{ grad } \beta) - d\beta(\phi X) \xi,$$

where the gradient of a function f is related to the exterior derivative df by the formula $df(X) = g(\text{ grad } f, X)$. From (3.4) we have

$$(3.6) \quad S(X, \xi) = 2\beta^2 \eta(X) - d\beta(\phi X).$$

Moreover, as a consequence of (3.3)–(3.5), we find

$$(3.7) \quad R(X, Y) \xi = \beta^2 (\eta(Y) X - \eta(X) Y) + d\beta(Y) \phi X - d\beta(X) \phi Y, \quad X, Y \in T(M).$$

4. Parallel $(0, 2)$ -tensor fields

Let us consider a parallel symmetric $(0, 2)$ -tensor field α on a 3-dimensional quasi-Sasakian manifold M . Then, by $\nabla \alpha = 0$, we have

$$(4.1) \quad \alpha(R(W, X)Y, Z) + \alpha(Y, R(W, X)Z) = 0.$$

In the above and in the sequel we assume that W, X, Y, Z are arbitrary vector fields on M if it is not otherwise stated. As α is symmetric, putting $W = Y = Z = \xi$ in (4.1), we obtain

$$(4.2) \quad \alpha(\xi, R(\xi, X)\xi) = 0.$$

Let us assume that M is non-cosymplectic. Take a non-empty connected open subset U of M on which $\beta \neq 0$ and restrict our considerations to this set. Since $\beta \neq 0$, by applying (3.7) and $\xi\beta = 0$ into (4.2) we get

$$(4.3) \quad \alpha(X, \xi) = \alpha(\xi, \xi) g(X, \xi).$$

Differentiating (4.3) covariantly along Y and applying again (4.3) and (3.1), we find

$$(4.4) \quad g(X, \phi Y) \alpha(\xi, \xi) - \alpha(X, \phi Y) = 0.$$

Putting ϕY instead of Y in (4.4) and using (4.3), we get

$$\alpha(X, Y) = \alpha(\xi, \xi) g(X, Y).$$

Hence, since α and g are parallel tensor fields, $\lambda = \alpha(\xi, \xi)$ is constant on U . Thus, $\alpha = \lambda g$ on the subset U . By the parallelity of α and g it must be $\alpha = \lambda g$ on the whole of M .

Thus we have the following:

LEMMA 4.1. *A parallel symmetric $(0, 2)$ tensor field in a 3-dimensional non-cosymplectic quasi-Sasakian manifold is a constant multiple of the associated metric tensor.*

Let us now assume that α is a parallel 2-form on M , that is $\alpha(X, Y) = -\alpha(Y, X)$ and $\nabla\alpha = 0$. Then

$$(4.5) \quad \alpha(\xi, \xi) = 0.$$

Covariant differentiation of (4.5) implies

$$(4.6) \quad \alpha(\nabla_X \xi, \xi) = 0.$$

By (3.1) we obtain from (4.6)

$$-\beta\alpha(\phi X, \xi) = 0.$$

Assume $\beta \neq 0$ on an open connected subset $U \neq \emptyset$. Then on U we have

$$(4.7) \quad \alpha(\phi X, \xi) = 0.$$

Putting ϕX instead of X in (4.7) and using (4.5) we obtain

$$(4.8) \quad \alpha(X, \xi) = 0.$$

Covariant differentiation of the above gives

$$(4.9) \quad \alpha(X, \phi Y) = 0.$$

Putting ϕY instead of Y in (4.9) and using (4.8) we get

$$\alpha(X, Y) = 0.$$

Hence $\alpha = 0$ on U . Since α is parallel on M , $\alpha = 0$ on M .

Thus we have the following:

LEMMA 4.2. *On a 3-dimensional non-cosymplectic quasi-Sasakian manifold there does not exist a non-zero parallel 2-form.*

5. Ricci-semisymmetric quasi-Sasakian manifolds

LEMMA 5.1. *Let M be a Ricci-semisymmetric 3-dimensional non-cosymplectic quasi-Sasakian manifold. Then the structure function β is constant.*

Proof. Let $R(X, Y).S = 0$, for any $X, Y \in T(M)$. Then we have

$$(5.1) \quad S(R(X, Y)U, V) + S(U, R(X, Y)V) = 0.$$

Putting $U = V = \xi$ in (5.1), we have

$$S(R(X, Y)\xi, \xi) = 0.$$

Hence, by applying (3.6) and (3.7), we get after certain calculations

$$(5.2) \quad \eta(Y)d\beta(\phi X) - \eta(X)d\beta(\phi Y) = 0$$

on the set on which $\beta \neq 0$. Taking $Y = \xi$ in (5.2) we obtain

$$d\beta(\phi X) = 0.$$

Now taking ϕX instead of X in the above and using $\xi\beta = 0$, we get $d\beta = 0$ on the set where $\beta \neq 0$. Therefore β is a constant function on M .

THEOREM 5.1. *Let M be a 3-dimensional non-cosymplectic quasi-Sasakian manifold. Then the following conditions are equivalent:*

- (i) M is an Einstein manifold;
- (ii) the Ricci tensor S of M is parallel i.e., $\nabla S = 0$;
- (iii) M is Ricci-semisymmetric.

Proof. (i) \Rightarrow (ii) and (ii) \Rightarrow (iii) are clear. We will prove (iii) \Rightarrow (i).

Let us assume that condition (iii) holds. Then equation (5.1) holds good. Also by Lemma 5.1 we have β is a constant function. Since the manifold M is non-cosymplectic, $\beta \neq 0$.

Now putting $X = U = \xi$ in (5.1) and then using (3.7), we have

$$-S(Y, V) + \eta(Y)S(\xi, V) + g(V, Y)S(\xi, \xi) - \eta(V)S(\xi, Y) = 0,$$

which implies, by using (3.6),

$$S(Y, V) = 2\beta^2 g(Y, V).$$

This completes the proof.

REMARKS. It is obvious that by the formula (3.3) the conditions (i)-(iii) in Theorem 5.1 can be replaced by the following conditions:

- (i') M is of constant curvature;
- (ii') M is locally symmetric ($\nabla R = 0$);
- (iii') M is semisymmetric.

Acknowledgement. The authors express their sincere thanks to the referee for his valuable suggestions in the improvement of the paper.

References

- [1] D. E. Blair, *The theory of quasi-Sasakian structure*, J. Differential Geom. 1 (1967), 331–345.
- [2] D. E. Blair, *Contact Manifolds in Riemannian Geometry*, Lecture Notes in Math., 509, Springer-Verlag, Berlin-Heidelberg-New York (1976).
- [3] D. E. Blair, *Riemannian Geometry of Contact and Symplectic Manifolds*, Progress Math. Vol. 203, Birkhäuser, Boston-Basel-Berlin, 2002.
- [4] R. Deszcz, *On pseudosymmetric spaces*, Bull. Belg. Math. Soc. Ser A, 44 (1992), 1–34.

- [5] Z. Olszak, *Normal almost contact metric manifolds of dimension three*, Ann. Polon. Math. 47 (1986), 41–50.
- [6] Z. Olszak, *On three-dimensional conformally flat quasi- Sasakian manifolds*, Period. Math. Hungar. 33(2) (1996), 105–113.
- [7] Z. Szabo, *Structure theorems on Riemannian spaces satisfying $R(X, Y) \cdot R = 0$* , I. The local version, J. Differential Geom. 17 (1982), 531–582.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF KALYANI
KALYANI-741235, INDIA
E-mail: ucde@klyuniv.ernet.in

Received December 24, 2002; revised version July 14, 2003.