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NOTES ON THREE-DIMENSIONAL 
QUASI-SASAKIAN MANIFOLDS 

Abstract. A non-cosympletic quasi-Sasakian manifold of dimension 3 is Ricci-semi-
symmetric if and only if it is Einstein. 

1. Introduction 
On a 3-dimensional quasi-Sasakian manifold, the structure function ¡3 

has been defined by Z. Olszak [5] and with the help of this function he has 
obtained necessary and sufficient conditions for the manifold to be confor-
mally flat [6], Next he has proved that if the manifold is additionaly con-
formally flat with ¡3 ^constant, then (a) the manifold is locally a product 
of R and a 2-dimensional Kahlerian space of constant Gauss curvature (the 
cosympletic case), or (b) the manifold is of constant positive curvature (the 
non-cosympletic case, here the quasi-Sasakian structure is homothetic to a 
Sasakian structure). An example of a 3-dimensional quasi-Sasakian structure 
being conformally flat with non-constant structure function is also described 
in [6], 

The object of the present paper is to study 3-dimensional quasi-Sasakian 
manifolds. We prove that a parallel symmetric (0,2) tensor field in a 3-
dimensional non-cosympletic quasi-Sasakian manifold is a constant multiple 
of the associated metric tensor and a parallel 2-form is the zero form on such 
manifolds. A Riemannian manifold is called semisymmetric ( respectively, 
Ricci-semisymmetric ) if R(X,Y).R = 0 (respectively, R(X,Y).S = 0) [4], 
[7] where R(X, Y) is treated as a derivation of the tensor algebra for any 
tangent vectors X, Y. 
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2. Preliminaries 
Let M be a (2n+l)-dimensional connected differentiate manifold en-

dowed with an almost contact metric structure (</>,£,77,g), where <j> is a tensor 
field of type (1,1), £ is a vector field, 77 is a 1-form and g is the Riemannian 
metric on M such that [2], [3] 

<t>2=-I + t®ih »/(0 = 1 
g(<j>X,<f>Y) = g(X,Y)-r](X)r](Y), X, YeT(M). 

Then also 
# = 0, r]{4>X) = 0, V(X) = g(X,0-

Let $ be fundamental 2-form of M defined by $(X, Y) = g(X, <¡>Y), X,Y £ 
T(M). Then 3>(X, £) = 0, XeT(M). M is said to be quasi-Sasakian if the 
almost contact structure (<f>, r¡) is normal and the fundamental 2-form $ 
is closed (d$ = 0), which was first introduced by Blair [1]. The normality 
condition gives that the induced almost complex structure of M x E is inte-
grable or equivalently, the torsion tensor field N = [<j>, </>] + 2£<g>dr¡ vanishes 
identically on M. The rank of a quasi-Sasakian structure is always odd [1], 
it is equal to 1 if the structure is cosympletic and it is equal to (2n+l) if 
the structure is Sasakian. 

3. Quasi-Sasakian structure of dimension three 
An almost contact metric manifold M of dimension 3 is quasi-Sasakian 

if and only if [5] 

(3.1) = MX, XeT(M) 

for a certain function ¡3 on M such that £/? = 0, V being the operator of the 
covariant differentiation with respect to the Levi-Civita connection of M. 
Clearly, such a quasi-Sasakian manifold is cosympletic if and only if /3 = 0. 
As a consequence of (3.1), we have [5] 

(3.2) (yx4>)(Y) - P(g(X, - n(Y)X)t X, YeT(M). 

In a 3-dimensional Riemannian manifold, we always have 

(3.3) R(X, Y)Z = g(Y, Z)QX - g(X, Z)QY + 5(7, Z)X 
-S(X, Z)Y - § (g(Y, Z)X - g(X, Z)Y) 

where Q is the Ricci operator i.e., g(QX,Y) — S(X,Y) and r is the scalar 
curvature of the manifold. 

Let M be a 3-dimensional quasi-Sasakian manifold. The Ricci tensor S 
of M is given by [6] 
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( 3 . 4 ) S(X, Y ) = ( 5 - /32)g(Y, Z) + (3/3 2 - \)r]{Y)r]{Z) 

- r j O T W i M - r i W d p t f Y ) 

where r is the scalar curvature of M. 
As a consequence of (3.4), we get for the Ricci operator Q 

( 3 . 5 ) QX = { $ - 0 2 ) X + {3l32-i)rl(X)Z + Ti(X)(<l> grad (3) - df3(cf>X)Z, 

where the gradient of a function f is related to the exterior derivative df by 
the formula d f ( X ) = g{ grad f , X ) . From (3.4) we have 

(3.6) S ( x , 0 = 2 / ? v * ) - < w x : ) . 

Moreover, as a consequence of (3.3)-(3.5), we find 

( 3 . 7 ) R(X, Y)£ = (32(V(Y)X - V ( X ) Y ) + d(3(Y)cf>X - dp(X)<f>Y, 

X,Y e T(M). 

4. Parallel (0,2)-tensor fields 
Let us consider a parallel symmetric (0,2)-tensor field a on a 3-dimen-

sional quasi-Sasakian manifold M. Then, by Va = 0, we have 

( 4 . 1 ) a{R(W, X)Y, Z) + a ( F , R(W, X ) Z ) = 0 . 

In the above and in the sequel we assume that W,X,Y,Z are arbitrary vector 
fields on M if it is not otherwise stated. As a is symmetric, putting W = 
Y = Z = £ in (4.1), we obtain 
(4.2) a(Z,R(C,X)0 = 0. 
Let us assume that M is non-cosympletic. Take a non-empty connected open 
subset U of M on which (3^0 and restrict our considerations to this set. Since 
(3^0, by applying (3.7) and = 0 into (4.2) we get 

(4.3) = 

Differentiating (4.3) covariantly along Y and applying again (4.3) and (3.1), 
we find 
( 4 . 4 ) g(X, 4>Y)a(£, 0 - a ( X , <f>Y) = 0 . 

Putting <j>Y instead of Y in (4.4) and using (4.3), we get 

Hence, since a and g are parallel tensor fields, A = a(£,£) is constant on 
U. Thus, a = Xg on the subset U. By the parallelity of a and g it must be 
a = Xg on the whole of M. 

Thus we have the following: 
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LEMMA 4.1. A parallel symmetric (0,2) tensor field in a 3-dimensional non-
cosympletic quasi-Sasakian manifold is a constant multiple of the associated 
metric tensor. 

Let us now assume that a is a parallel 2-form on M, that is a(X, Y) = 
-a(Y, X) and V a - 0. Then 

(4.5) a(£,O = 0. 

Covariant differentiation of (4.5) implies 

(4-6) a ( V x U ) = 0. 

By (3.1) we obtain from (4.6) 

-PatfX, 0 = 0. 

Assume on an open connected subset U 0. Then on U we have 

(4.7) a((f>X,£) = 0. 

Putting (j>X instead of X in (4.7) and using (4.5) we obtain 

(4.8) a ( X , 0 = 0. 

Covariant differentiation of the above gives 

(4.9) a(X, 4>Y) = 0. 

Putting 4>Y instead of Y in (4.9) and using (4.8) we get 

a(X,Y) = 0. 

Hence a — 0 on U. Since a is parallel on M, a — 0 on M. 
Thus we have the following: 

LEMMA 4.2. On a 3-dimensional non-cosympletic quasi-Sasakian manifold 
there does not exist a non-zero parallel 2-form. 

5. Ricci-semisymmetric quasi-Sasakian manifolds 

LEMMA 5.1. Let M be a Ricci-semisymmetric 3-dimensional non-cosym-
pletic quasi-Sasakian manifold. Then the structure function ¡3 is constant. 

Proof . Let R(X, Y).S = 0, for any X,Y G T(M). Then we have 

(5.1) S{R(X, Y)U, V) + S(U, R(X, Y)V) = 0. 

Putting U = V — £ in (5.1), we have 

S(R(X,Y)M) = 0-
Hence, by applying (3.6) and (3.7), we get after certain calculations 

(5.2) v(Y)dP(<f>X) - r,{X)d/3(4Y) = 0 
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on the set on which Taking Y — £ in (5.2) we obtain 

d(3(<f>X) = 0. 

Now taking <f>X instead of X in the above and using = 0, we get d/3 = 0 
on the set where Therefore /3 is a constant function on M. 

THEOREM 5.1 . Let M be a 3-dimensional non-cosympletic quasi-Sasakian 
manifold. Then the following conditions are equivalent: 
(i) M is an Einstein manifold; 
(ii) the Ricci tensor S of M is parallel i.e., VS = 0; 
(iii) M is Ricci-semisymmetric. 

Proo f . (i)=> (ii) and (ii) (iii) are clear. We will prove (iii) (i). 
Let us assume that condition (iii) holds. Then equation (5.1) holds good. 

Also by Lemma 5.1 we have /? is a constant function. Since the manifold M 
is non-cosympletic, 

Now putting X = U = £ in (5.1) and then using (3.7), we have 

-S(Yt V) + r)(Y)S(£, V) + g{V, Y)S& 0 - r,(V)S^, Y) = 0, 

which implies, by using (3.6), 

S(Y,V) = 2p2g(Y,V). 

This completes the proof. 

REMARKS. It is obvious that by the formula (3.3) the conditions (i)-(iii) in 
Theorem 5.1 can be replaced by the following conditions: 
(i') M is of constant curvature; 
(ii') M is locally symmetric (Vi? = 0); 
(iii') M is semisymmetric. 
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