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ON SET-THEORETIC AND CYCLIC REPRESENTATION 
OF THE STRUCTURE OF BARYCENTRES 

Abstract . In the paper certain abstract combinatorial structures are studied as repre-
sentations of the structure of barycentres of all the subsimplices of a given simplex in an 
arbitrary Desarguesian affine space. General properties of the configuration of barycentres 
are characterized in terms of those combinatorial structures. Most essential parameters of 
these structures are established and relevant automorphism groups are characterized. 

1. Introduction 
The barycentre of a segment is just the midpoint of this segment. It is 

known (cf. [1], [6], [2]) that barycentre of a triangle can be obtained as the 
intersection of its medians, i.e. of lines which join vertices of the triangle with 
barycentres of its opposite sides. Continuing this procedure we can find the 
barycentre of a given simplex and barycentres of all its subsimplices. Many 
lines are drawn to achieve this, and it may turn out that some of them are 
parallel. It may be interesting to figure out what is the abstract schema of 
the configuration which arises in this way, i.e. of the configuration which is 
formed by the family of all barycentres of all the subsimplices of a given 
simplex in an arbitrary Desarguesian affine space. 

In the paper we define several combinatorial structures which characteri-
ze such configurations. The first of them, denoted by 05(N) (N is any set of 
cardinality n < oo) determines all the necessarily collinear triples of points 
in the family B(A) of all barycentres of all subsimplices of an n-simplex 
A (cf. 2.1). The next two configurations, D(N) and £(iV) are obtained by 
adding to every family of necessarily parallel lines formed from points in 
<B(A) (cf. 2.3) their common direction as a new point. The last configu-
ration Sj(N) characterizes the projective structure of added directions. All 
the basic numerical parameters of the configurations defined in the paper 
(the number of points, the number of lines, and ranks of points and lines, 
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cf. [4]) are determined in section 3. Finally, for configurations 23 (iV) and 
D(N) we find their automorphism groups (propositions 4.4 and 4.5). It is 
evident that a permutation of vertices of a simplex A determines a bijection 
of 13(A) which preserves both collinearity and parallelity. From our abstract 
point of view this means that any permutation of the set N determines an 
automorphism of every structure defined in the paper. However, it turned 
out that in two cases presented in the paper corresponding automorphism 
groups of configurations are greater and contain also automorphisms which 
cannot be associated with any affine automorphism of a given simplex. We 
close the paper with some comments and (open) problems, mainly concer-
ning projective embeddings and representations of the structures defined in 
this paper. 

2. Basic construct ions 
Let A = {a i , . . . , a n } be a set of points of an affine space 21, represented 

in a vector space V with the coordinate field Recall that if char($))(k 
then for every A:-set A = {ii,...,ik} C { l , . . . , n } =: N the barycentre 

• • •) &ik) — B(a j x , . . . , a,ik) of the set {a^ , . . . , aik} is defined by the 
formula B(a i l 5 . . . , aik) *i±£±fiii. We simply write B(,4) = &%{A) = 
B({oj: i 6 A}) for AC N. Therefore, if n < char($) or char(3) = 0, then 
the barycentre Bsji(A) exists for every system ai,..., an of points of 21 and 
every A C N. Note that for some set A of points of an affine space 21 and 
Mi M Q N it may happen that Ai ^ A2 and Ba(^4i) = B2l(A2). But 

if Ba(-Ai) = Ba(-^2) for every affine space 21 and for every system 
a\,...,an of points of 21 (n < char($) or char($) = 0) then, 
necessarily, Ai = 

That's why we consider A C iV as an "abstract" barycentre B(A). In this 
section we shall demonstrate how to analogously define an " abstract" colli-
nearity and an "abstract" parallelity on the set of "abstract" barycentres. 

Let us define on the set X = P(N) \ {0} of nonempty subsets of N an 
incidence structure 23(N) := (X, Co), with the family of lines Co defined by 

Co = {{Bl,B2,Bz}-. B\,B2-,BZ £ X,BI = B2 UB3,B2 DBS = 0}. 
Clearly, 23(N) is a partial linear space. Further properties of 23(N) are given 
in the sequence of the following lemmas. 
LEMMA 2.1. Let BI,B2,BS be three pairwise distinct nonempty subsets of 
N. The following conditions are equivalent: 

(i) For any family { a i , . . . , a n } of points of an affine space 21, the points 
B(-Bi), B(B2); and B(B3) are collinear in 21; 

(ii) BUB2,B3 are collinear in 23(N). 
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Proof . Set k{ = |_Bt| for i = 1,2,3; clearly, ki > 0. Assume that (ii) holds 
true. Without loss of generality we can write B\ = B2 U £ 3 , B2 D £ 3 = 0. 
Then fci = k2 + k3 and B(£, ) = fa aj for » = 1,2,3. Thus B (£ i ) = 

H " j + H E j eBa = & B ( £ 2 ) V ( l - g ) B ( £ 3 ) , which proves (i). 
Now, assume that (i) holds and B\, £2,-63 are pairwise distinct. Let 

B(Bi ) = q • B ( B 2 ) + (1 - A) • B (£ 3 ) i.e. 

El * a 1 — a 

iefli Kl jeB2 K2 jeB3 

One can take points aj such that they are linearly independent. If there was 
jo in exactly one of the sets £1, B2, £ 3 then we obtain either aaj0 = 0 or 
(1 — a)aJ0 = 0, so a = 0 or a = 1, which contradicts assumptions. 

N o w , suppose that there is j o G £ 1 f l B2 H £3 . T h i s yields FAAJ0 = 

l | a j o + ^ T a j o > so fa = % + ^ f . w h i c h g ives akx(k3 - k2) = k2(k3 - ki). 

I f there is j 1 G B2 D £ 3 \ B\ then ^ + = 0, which yields, contradictory, 

fa = 0. I f j3 G BI n B2 \ B3 then fa = so = 0, which is impossible. 

Finally, if j2 G £ 1 n B3 \ B2 then fa = which leads to ^ = 0. 
Therefore, if there is jo as above then B\ = B2 = B3. Hence we conclude 
with BiDB2DB3 = 0. 

Thus every j G £ 1 U £ 2 U £ 3 belongs to exactly two of the sets Bi,B2,B3. 

Set A{x = Bi2nB{3 for all {ii,i2,i3} = {1,2,3}. Suppose that A\,A2, A3 0. 
As above, considering suitable ji G Ai, we obtain the following system of 
equations 

(1) a(k3-k2)~ —k2 with j\ G A\, 

( 2 ) afci = k i - k 3 ^ 0 w i th j2 G A2, 

( 3 ) aki = k2 w i th j3 G A3. 

Then we calculate a(k3 — k2) = — aki by (1) and (3), so k3 — k2 = —ki, 
and k2 — k\ — k3 by (2) and (3). This gives k3 = 0, which cannot hap-
pen. Therefore, there is i\ with A^ = 0, and then BLL = BI2 U £i3, where 
{¿1,^2,^3} = {1,2,3}, as required. • 

For given D[,D'2, D", D'{ G X we define: 
D[D2 SC D'{D'± iff there are D u D 2 e X and D', D" C N with £>1 N £>2 = 0, 
|I>i| = \D2\ such that D[ = D{ U D', D" = D{ U D", and D\ D" are disjoint 
with A -

LEMMA 2.2. Let D\,D'2,D'l,D'l G X. 

( i ) D[,D>2 ~ D'{D'i i f f D [ , D ' 2 ~ D>1D'{, iff ~ D\D'2. 

( i i ) D[,D'2 ~ D"D2 iff D[ \ D2 = D'{ \ D'{ and D2 \ D[ = D'{ \ D". 
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(iii) If D'^D'2 — D'{D2 then for any family { a i , . . . , a n } of points of an 
affine space 21 the vectors B(D'i)B(D2) and B(D'{)B{D2)

 a r e parallel in 21. 

P r o o f . The statements (i) and (ii) are evident. To prove (iii) assume that 
D[, D2 — D"D2', let D{, D', D" be taken in accordance with definition. Set 
k = [AI = \D2\, kf = \D'\, and k" = \D"\. Then \D[\ = k' + k and 
B{D[)B(D'2) = pg^ T,jep>2

 aj~y+k aj = WTkCEjeD2
 aj'-£jeDi ai) 

and, analogously, B(D%)B(D'{) = aj ~ ^j&D, «?)• This yields 
our claim. • 

LEMMA 2.3. Let B^B^B^B^ E X. Assume that B[ ± B'2 and B'{ + B'{. 
The following conditions are equivalent: 

(i) For any family { a i , . . . , an} of points of an affine space 21 the vectors 
B(B[)B(B'2) and B(B'{)B(B%) are parallel in 21. 

(ii) There are D'^D'^ D'{, 6 X such that D[, D'2 s= D'{D'{, D[ ± D2, 
D'l ± D2. B[, B'2, D[, D'2 are on a line in C0, and B'{, B2, D", D2 are on a 
line in Cq. 

P r o o f . The implication (ii)=*>(i) follows immediately from 2.2(iii) and 2.1. 
Now we assume that (i) holds; let a • B(B[)B(B2) = B{B'{)B(B'{) with 

a ^ 0. Let us set k[ = \B<\, k'( = \B'{\, B' = B[ n B'2, B" = B'( n B'l 
A'i = B'i \ B', and A" = B'{ \ B". Note that 

B(B[)B(B>2) = and 

jeA>2 jeA[ jeB> 2 

B ( B f ) B ( B i ) = E ~ E + E (¿7 -
J€A>> 2 jeA'{ K1 jeB" 2 

We have YljeB'2 W2
ai ~ Ejefli V^j = EjeB" ¿¿Uj - i-e. 

/.x OL s.—v a v-^ / a a \ 
(4) E 17*3 - E i r a i + E ( i t " Tr)a3 = 

j€A'2 fc2 j e A [ Jgfl' 2 «1 

= E P7 a i - E uJ a i + E (u7 -
jeA'i fc2 jsA" j<zB" 2 

As in the proof of 2.1, we can assume that the points al are linearly 
independent vectors of a real vector space. Without loss of generality we 
can take a > 0. Note that A\ = 0 = A\_i yields B\ = B\ for t = so, 
under our assumptions, A^ 0 for some j = 1,2. 

For simplicity we write t for ", and we use t as a number with 3 — ' = 
3 — " = '. We set ct' = a and a " = 1. Then coefficients of a j in the 
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equation (4) are 

( - 1 ) ^ for j € A\ 

f r - f r for j e B K 
k2 k1 

Let us begin with some simple but useful facts (the proof of each of 
them is ended with A). Note that every aj which occurs with a non zero 
coefficient on one side of the equation (4), must occur on the second side of 
this equation. 

(i) Comparing signs of coefficients in the equation (4) we see that A* fl 
Alz\ = 0 for t = " and a = 1,2. 

(ii) There are no ii,i2 € N such that is € Als fl B3~l for s = 1,2 and 
some t = ',". 

3—t 3—t 
P roo f . If there were ¿i, ¿2 as above, we would have both p^r — = 

i > 0 a n d f r - f F = - i < 0 - 2 1 A 

(iii) There are no i,j € N such that i € Als D and j € A\ D B3~l 

for some t = '," and s = 1,2. 

P roo f . Assume contrary, then f r = and (—l)s • f r = — fi=r, 
KS k3 KS K 2 

3 — t 
which gives contradictory f^rr = 0. A 

3—s 
(iv) There are no i', i" € N such that i' € A's n B" and i" 6 A" fl B' for 

some s = 1,2. 

P roo f . Assume the contrary for e.g. s = 2. Then p- = F7 — F7 anc* 

•pr = -p- — pk This gives f r + -pr = 0 , which is impossible. The reasoning 

for s = 1 is analogous. A 

(v) There are no i,j € N with i € A* D £?3_t and j € B' D B" for some 
t = '," and s = 1,2. 

P roo f . Suppose that the contrary holds. Then we obtain rr — fx = ttt — jC 
2 1 2 1 t 3—t 3—t t 

and (—l)5 fr = — tj^t- And then tf— = 0, which is impossible. A 
K ' «2 *3-« 

(vi) If A\ n A^-* ? 0 then A\ = A3-*. 

Proo f . Let j e A* ("1 A*-'. Take any i € A*,. Then i $ by (i), 
and i ^ B3~l by (iii). Thus i € -A3-4; this gives A\ C Al~l. Analogously, 
A3'1 CAl A 

(vii) If A* fl B3~l ^ 0 then A = 0. 

P roo f . Let j € A^nB3'1. Suppose that there is i 6 By (i), i $ Al3_s, 

and by (iv), i £ Bl. This yields i € Als, which contradicts (iii). A 
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Then, we pass to the proof of our lemma. There are several cases to 
consider: 

1. We have A's ^ 0 for some s; assume that s = 2 and take any i2 G A2. 
Prom (ii), t'2 G A'i or i'2 G B". 

1.1. Assume that i'2 G A2. From (vi) we obtain A2 = A2. 
1.1.1. Suppose that A[ ^ 0, let i[ € A[. By (ii), i\ G A" or i\ € B". 
1.1.1.1. Assume that i[ G A". Again, with (vi) we get A[ = A". 

Suppose that Bl ± 0 and - £ ^ 0. Then by (iii), J5' = B", so = J3£' 
for s = 1,2. 

If B' = 0 = then, again, = B " f o r s = 1,2. Finally, if B' ^ 0 and 
¿- = p- then /ci = k'2, so \A[ \ = \A'2\ and thus B[B2 ~ B'{B'{. 

1.1.1.2. Assume that i\ G B". From (vii), A" = 0, so A!x = B" = B'{ and 
B",B2,A2 are collinear. Moreover, from (v), B' n B" = 0. This yields two 
possible solutions. 
If B' = 0, then A'2A[ = A%B'{. If B' + 0 but f = then = |A'2| and 
thus B'jB^ - - A![B'[. 

1.1.2. Analogously, the claim of the lemma holds if we assume that A" ^ 0. 
1.1.3. Assume that A[ = 0 = A". Then B\ = Bl and k{ ± k\ for t =',". 

Thus B' = B" and B[B2 = B'{B2. 
1.2. Assume that i'2 G B". From (vii) we infer A2 = 0, and from (v), 

B' n B" = 0; thus A2 = B". Moreover, A" ± 0. If A![ C\A!X±% we get the 
case analogous to 1.1.1.2. Assume that there is j G A'[C\B'. From (vii) we get 
A[ = 0, and A![ = B'. In this case the points B[ = B' = A'{, B'2, B'{, B2 = 
B" — A'2 are collinear. • 

For BUB2 G X we write Bx ~ B2 if Bi n B2 = 0 and |Bi| = \B2\. 
To every set {Bi,B2} such that B\ ~ B2 we assign a new abstract point 
(BI ,B 2)°° and we define a new class of lines 

£ i = { { B 1 U B , B 2 U B , ( B I , B 2 ) 0 0 } : 

B 2 G X , Bi ~ B2, B C (N\ (Bi U B 2 ) ) } . 

The set of all those new abstract points will be denoted by V, formally 

V={(B1,B2)°° :BuB2eX, Bi ~ B2}. 

Let D(N) : = (X U V, C\). Clearly, D(N) is a partial linear space. 

LEMMA 2.4. Two distinct points Bi,B2 of X belong to a line BI, B2 in C\ 
iff\Bi\ = \B2\. If\Bi\ = \B2\ and Bi ^ B2 then the improper point Bi, B2 

ofB^mis(Bi\B2,B2\Bi)°°. 

Proof . Evidently, if Bl = B[ U B, B[ ~ B'2, and B n [B[ U B'2) = 0 then 
\Bi\ = \B2\. 
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Conversely, if |Bi| = \B2\ we set B := Bi n S 2 , B[ := Bt\B to get 
B[ ~ B2, and then the points Bi, B2, and (B[)B'2)00 are on a line of C\. • 

3. Combinatorial representation of the structure of barycentres 
and its numerical parameters 
In this section we shall establish the most essential parameters of the 

structures 2$(iV), and Q(N), as well as some others derived from these. 
Recall that the structures 93(TV) and D(N) are partial linear spaces. As 

usual we use the symbol £1, B2 (B\ ^ B2) to denote the line which joins 
the points B\ and Bi in currently considered structure. Recall also that, if 
®T = (Z, C) is a partial linear space, then 

(5) X > ( * ) = E ' W . 
z&z Lec 

where r(z) is the rank of z (the number of lines which pass through z), and 
l(L) is the rank of L, i.e the number of points on L. 

Evidently, 
LEMMA 3.1 . The number uq{u) of points of the structure *B(N) is 

1/0(n) = 2n-l. 
LEMMA 3 .2 . The number \o(n) of lines of the structure 2$(iV) is 

on 1 
A0(n) = y - 2 " + - . 

P roof. By definition, each line of 25 (N) is of the form {Bi, B2, B3} for some 
BuB2,Bz € X such that Bx = B2UB3 and B2PiB3 = 0. Then i = |Bi| > 2 
and the set B\ can be chosen in (") ways. For a given B\, a set is an 
arbitrary nonempty proper subset of Bi, so it can be chosen in 2l — 2 ways, 
and JB3 = Bi \ B2. Following this way, the pair (B2, Bz) is counted twice, 
so for a given B1 we have ^ ^ = 2 t _ 1 — 1 possibilities to get a line of the 
above form. 

Finally, we get A0(n) = £?=2 (") • (2l~1 - 1 ) = f - - 2 n + as required. • 
Clearly, each line of <B(iV) is of the same rank lo(n) = Zo = 3. 

LEMMA 3 .3 . If B e X and | B | = k, then the rank of the point B in 55( iV) 
is 

r 0 ( B ) = r0(n, k) = 2k~l + 2n~k - 2. 
If Bi,B2 € X have the same rank, then |JBi| + |i?2| = n + l or |£?i| = |B2|. 
P r o o f . Let B € L G Cq. Then two possibilities occur. 

(i) L = {B,Bi,B2} with B = B\ U B2. A set B\ is an arbitrary but 
nonempty and proper subset of B, so - as in 3.2 - we have = 2fe_1 — 1 
lines of this form which contain B. 
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(ii) L = {B, Bu B2}, where B2 = B U Bi and Bx C N \ B. A set Bi 
can be chosen in 2n~k — 1 ways, since it is arbitrary, but nonempty. 

Thus we obtain the required formula for ro(B). 

Now, if ro(n, k) = ro(n, i) from the formula proved above we get 

(:2kx - 2n+1)(x -2k) = 0 with x = 2\ 

The only solutions of this equation are x = 2 and x = 
2 n + i w h i c h proves 

our claim. • 

LEMMA 3 .4 . The number \\{n) of lines ofD(N) is 

Proof . By 2.4, each line in C\ is uniquely determined by a pair of distinct 
subsets of N with the same cardinality. Thus 

as required. • 

LEMMA 3 .5 . The number <5I(N) of "directions" (the cardinality of the set 
T>) is 

1 E(f) 
= o E 

z ¿=1 

n — i 
i 

Proof . Each direction (Bi ,B2) 0 0 is uniquely determined by two disjoint 
subsets £?i, Bi of X with the same cardinality. Let B\ = i\ then 2i < n, so 
i < E(|). A set B\ can be chosen in ( " ) ways, and then B2, as a subset of 
N \ B i , can be chosen in ( "7 * ) ways. A pair B\, B% is counted twice, which 
yields our formula. • 

As an immediate consequence of 3.1 and 3.5 we obtain a formula for the 
number u\(n) of points of 2)(iV): 

E(—) 

u l ( n ) = *o(n) + tfi(n) = 2" - 1 + J E [ f • f n 7 ^ 1-
¿=1 

By definition, every line of D(N) has l\(n) = 3 points. 

LEMMA 3 .6 . Let |F?I| = k. The number of lines ofD(N) which pass through 
B\ is 
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If B\ ~ B2 then the number of lines of D(N) which pass through q = 
(BUB2)°° is 

r, = r!°(n,fc) = 2n-2fc. 

Proof . Each line L through q is of the form L — {B[,B'2,q}, where B[ = 
BiUB for some B C (N \ (Bi U B2)). For given £1,-62, we obtain distinct 
lines L with distinct sets B chosen as above. This yields the formula for rq. 
The formula for ri(n, k) follows by 2.4. • 

The straightforward consequence of the above is 

COROLLARY 3 . 7 . From ( 5 ) and 3 . 3 we obtain 

3 • A0(n) = £ ( " ) r0(n, <) = £ ( " ) (2*"1 + 2""fc - 2). 

5ince even/ /ine ofD(N) has exactly one point in V and exactly two points 
in X, from 3.6 and (5) we obtain 

*.<»>-si'co C7' î -'̂ forr)̂  
3• A,(n) . g ( 7 ) r l ( » . 0 - g ( ? ) ( ( » ) - l ) . 

Now, we are going to deal with the most interesting structure investiga-
ted in this section. Note that, formally, we cannot use the family CQ U C\ 
as a family of lines. Thus the lines of the structure C(7V), which we define 
now, are of three types. First, we distinguish the set S of all pairs B\, B^ 
such that they are collinear in both 25(iV) and D(N). 

LEMMA 3 . 8 . LetBi,B2 be two distinct points inX. The following conditions 
are equivalent: 

(i) There are lines K' G C0, K" G A such that BUB2 € K', K". 
(ii) £ I ~ 5 2 . 

If the condition (i) is satisfied and K' = {Bi, B2, B3} then neither Bi,B% 
nor B2, B3 are collinear in D(N). 

Proof . The implication (ii) = > (i) is evident, just take K' = {BI,B2, B\ U 
B2} a n d K" = {BI,B2,(BI,B2)°°}. 

Let (i) hold. By 2.4, |J3i| = \B2\, so neither BI C B2 nor B2 C BX. Thus 
K' = {BUB2, £3} with £3 = BILLB2 and B1 n B 2 = 0. This yields BX ~ B2. 
Finally, by the above, |i?3| ^ |Bi| = IB2I, which, by 2.4, finishes the proof. 

• 
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Let us set 

4 = Co \ {{Bh B2, U B2}: Bh B2 € X & Bx ~ B2} 

£[ = A \ {{BUB2, (BuB2)°°}: BuB2 e X & ~ £?2} 

£2 = { { 5 ! , 5 2 , B i U S 2 , (51,52)°°}: £1, B2 € X & £1 ~ S 2 } . 
Finally, we define 

£(N) := (Xul?,4u£iu£2). 
Clearly, £(7V) is a partial linear space. 
Lemma 3.9. The number u2(n) of points of <t(N) is v2(n) = I^i(n). The 
cardinality of the family C2 is Si(n). Consequently, the number X2{n) of 
lines of £{N) is 

A2(n) = A0(n) + Ai(n) - 5\{n) 

Evidently, lines in £'0 U £[ have rank 3, and lines in C2 have rank 4. It 
is more difficult to determine the rank of a point in £(N). 
Lemma 3.10. Let B 6 X, = k and, let r2(n, k) be the number of lines in 
C2 through B. The rank of B in £(iV) is 

r2(n, k) = ro(n, k) + r i (n , k) - r2(n,k). 

If k > E(§) then r'2(n,k) = 0, and if k < E ( f ) then r'2(n,k) = (n*fc)-

P r o o f . To find lines in C2 through B we must find all the points B' with 
B ~ B', that is all the fc-subsets of the set N\B. This justifies the formula 
for r'2(n, k). 
Originally, each such a pair B,B' was used twice: to produce a line in Co 
and a line in C\. Thus we obtain the required formula for r 2 (n , k). • 

Finally, we shall build a structure of collinearity on the universe of direc-
tions. For this purpose we should first determine triangles of 03 (iV), since in 
any case, elements of a triangle must belong to a plane "spanned" by this 
triangle. 

PROPOSITION 3.11. 

(i) Any three pairwise disjoint nonempty subsets B\, B2, -B3 of N yield 
a triangle in *B(N), denoted by A (B\, B2, B3). Set B[ := Bj U Bs for 
{i, j, s} = {1,2,3} - these are points on lines which join vertices of this 
triangle, and Bo = -B1U.B2U.B3 - a diagonal point. Let II = H(Bi,B2, £3) = 
{B\, B2, B3, B[,B2, B'Z, Bo}- Then we obtain 15 new triangles in *B(N) with 
vertices in Tl{B\,B2, B3) of the following forms: 
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1: A (B{, Bj,Bo) for i, j = 1,2,3, i ^ j (3 triangles); 

2: A ( B i , B j , B [ ) fori,j = 1,2,3, i / j triangles); 

3: A (Bj, BP Bq) for i, j = 1,2,3, i ^ j (6 triangles). 

We write T(B\, B2, B3) /or i/ie family of the triangles determined as above. 
(ii) If Ai, A2, A3 is a triangle in 23 (N) then there are pairwise disjoint 

nonempty subsets B\,B2,B$ of N such that A (A\,A2,Az) G T(B\,B2,BZ). 

Proo f . The statement (i) is evident and follows just from the definition of 
the family CQ. Let A\, A2, >13 be a triangle A. Thus A%, A2, A3 are pairwise 
collinear in ©(AT). One can see that this can occur only in the following 
cases. Either 

1. Ai n Aj = 0 for all 1 < i < j < 3 - then A e T(AU A2, A3); 

or there are i, j, s with {i, j, s} = {1,2,3} such that 

2. Ai C Aj CAS- then A G T(Ai, Aj \ Ah As \ Aj)\ or 
3. Ai, Aj C As and AiDAj = ® - then A G T(Ai, Aj,As \ (Ai U Aj))-, or 
4. Ai C Aj and Aj n As - 0 - then A G T(AS, Aj \ Ait Ai). 

This proves the claim. • 

In view of the above a plane of ©(AT) is a set II(i?i, B2, B$) (cf. 3.11(i)), 
determined by a triple B\, B2, B$ of pairwise disjoint elements of X. For an 
arbitrary plane P we set 

= {{Dl,D2r- Di,D2 ^ AuA2, Ai, A2 G P}. 

PROPOSITION 3.12. Let B\,B2,B3 be pairwise disjoint nonempty subsets of 
N, let P = U(Bi,B2,B3), and let C(P) be the set of lines of £(N) which 
join points of P. The plane P is one of the following: 

3-affine: |P°°| = 3 and there are six lines Ki, Li (i — 1,2,3) in C(P) \ £$. 
They can be paired such that Ki°° = Li°°, Ki G and Li G £2-
These are all pairs Bi, Bj, B'j, B[ with 1 < i < j < 3. 

2-afflne: |P°°| = 2 and there are exactly three lines K\,L\,L2 in £(P)\£0. 
We have Kx G C'v Lu L2 G C2, and Kx°° = Lx°°. 
Typical form: B[, Bj, Bi, Bj, and Bs, B's for some i,j, s with {i,j,s} = {1,2,3}. 

1-affine: |P°°| = 1 and there are exactly two lines K,L in C(P) \ £$. We 
have K G £j, L G C2, and K°° = L°°. 
Typical form: Bj, B\ and Bi,Bj for some i , j . 

0-affine: |P°°| = 1 and there is exactly one line K in £ (P) \ £$. Then 
K G C*. 
Typical form: Bi, B[ for some i. 

projective: P°° = 0, so all the lines from C(P) are in CQ. 
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Consequently, |P°°| < 3. Moreover, in notation of 3.11(i); B'^Bj € C'oUC'i, 

and Bi,Bj, BiiB[ € £'0U C2, 

Proof . By 2.4, a pair Ai, A2 yields a direction iff = [^l - Set ni = |Bi|, 
then, in notation of 3.11(i), \B[\ = nj + ns, |Po| = m + n2 + n3. Clearly, 
\Bj\ = nj < \B{\ for i ± j. If \Bi\ = \Bj\ then Bu Bj - B[, B'j. But then 
\Bi\ ^ \B[\. If \B[\ = \Bj\ then \Bt\ = \Bj\, so we have the situation as before. 
If \Bi\ = \B{\ then (note: BiOBi = 0) there is no pair AI,A2€ II(Bi, B2, B3) 

with Bi, B[ A\, Ai. Finally, we see that only the following can occur: 
1. Hi = nj ns rii + rij - then Bi, Bj yield a sole direction in P, which 

has lines B^j and B[, B'- of €(N). Then P is 1-affine. 
2. n\ = n2 = ri3 - then P contains three pairs of lines of <£(iV) with three 

distinct directions: ( B i , B j ) ° ° with 1 < i < j < 3. Then P is 3-affine. 
3. nj = nj t^ ns = rti+nj - then Bi, Bj yield a line B[, B'- of <£(iV) parallel 

to Bi, Bj, and points Bs, B's (collinear in 0 3 ( N ) ) yield a line Bs, B's of 
£{N), which is not parallel to any other line contained in P. Then P 
is 2-affine. 

4. ns = rii+rij and rii / rij - then the only direction, which is contained in 
P is ( B s , B's)°°, and it is a direction of just one pair of points contained 
in P . Now P is 0-affine. 

5. (ni, n2, n3, n\ + n2, n2 + «3, rz.3 + n\). Then P has no pair of points 
which yield a direction. 

This justifies our claim. • 
L E M M A 3.13. IfP',P" are two distinct planes of € ( N ) , then |P / 0 0nP / / 0 0 | < 1. 
P roof . Let P' = U(B[,B'2,B'3), P" = n { B ' ( , B ' i , B ' { ) . Assume that |P'°° n 
P"°° I > 2; then without loss of generality, we can assume that Pl is ¿-affine 
for i > 2 and t = ". 

A direction b of a plane P = II(Pi, B2, B3) is called side direction if it is 
a direction of a side of the triangle B\,B2, P3; we call b a medial direction 

if it is a direction of a line of the form Bi U Bj, Bs. Note that if two planes 
have a common side direction, they have in common the corresponding side. 

Consequently, if both P' and P" are 3-affine then P ' = P". 
Let P', P" be 2-affine. In accordance with 3.12, Pt0° has one side direc-

tion sl and one medial direction m4 for t = ', ". Assume, first, that s' = s", so 
m' = m". Then the triangles which determine corresponding planes have a 
common side; say B[ = B'[ and B'3 = and then B[UB'3 = B'{UB'l The-
refore m' = (B'2, B[ U B'3)°° = (B'i, B'l U B'{)°° = m", which gives B'2 = B'{ 

and thus P' = P". 
Now, suppose that 5' = m" and m' = 5". Say, m" = {B'{, B'{ U B'i)00 = 

{B[,B'2)°° = s'; then B'2 = B'{ (or B'{ = B[, which gives the same result) 
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and B[ = B'{ U B'J. Further, s" = (B'{, B'J)°° = (B'3,B[ = m' yields 
B'3 = B'i (or B'3 = B'{), B'{ = B[ U B'2 , and B[,B'Z = B'{,B%. This gives, 
contradictory, B[,B2 = B[, B3. 

Finally, suppose that P' is 3-affine and P" is 2-affine. Then, since P" 
has one side direction, triangles which determine P' and P" have one side 
in common, say B[ = B'{ and B'3 = B'{. Then B'{ U is a side 
direction in P\ say {B'{, B'{ U B'i)00 = (B2, B'3)°°. Since B'{\JB'{ = B[uB'3 ± 
B2, B'3 we obtain a contradiction. • 

By 3.13, the structure S)(N) := {V,£3), where 

is a partial linear space, defined on the set V of directions. Note that the 
structure (X>, {P°°: a 3-affine plane of <Z(N)}) is a partial linear space in 
which every line has rank 3, and it is just a disjoint union of horizons of 
Desarguesian closures (cf. [5]) of binomial graphs ^ (cf. [3]), i.e. graphs of 
the relation ~ in X. 

From definition, the rank of each line of S)(N) is 2 or 3. 

LEMMA 3.14. Let k < E(§) and BUB2 € X with Bi ~ B2, \Bi \ = k. Then 
the rank r3(k) of the point (B\, B2)°° in the structure $)(N) is 

where r3)j(n, k) is the number ofi-affine planes of(B(N), which contain the 
line B\,B2, and 

Consequently, r^^k) / 0 i f f k < E(§). 

P r o o f . Set b = (Bi,B2)°°. Evidently, if b is the direction of a line contained 
in a 3-affine plane P then B\, B2 € P and P = Il(Si, B<2, £3) for some B3 
such that IB3I = k and B$ C N \ (B\ U B2). This justifies the formula for 

Now, let b be the direction of a line contained in a 2-affine plane P. Two 
possibilities appear. Either, P = n ( i ? i , B2, £ 3 ) for some B3 C N\ (B\ L)B2) 
with |-B3| = \B\ UB2\ - there are ("jfc^) sets £3 with these properties. Or, 
P = n (B i ,D2 ,D 3 ) , where = D2\JD3 and \D2\ = |D3 | and i = 1 or 
z = 2. To find such Dj we must require 2|k, i.e. k = 2 • m for some m. A pair 
{£>1,1)2} for Bi can be chosen in \ ways, so there are ) triangles 
of the second form. • 

£3 = {P°° : P an i-affine plane of C(N), i = 3,2} 

r 3 (n , k) = r3,z{n, k) + r3,2(n, k), 
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LEMMA 3 .15 . The number of lines of S)(N) is the sum 

A 3(n) = A 3i3 (n) + A3>2(n), 

where A3¿(n) is the number of lines of rank i, and 

P r o o f . It suffices to note that we have to count all the triples B\, B2, -B3 
such that P = Tl(Bi, B2, B3) exists, and it is a 3-affine or 2-affine plane. A 
3-affine P is obtained if Bi are pairwise disjoint and of the same cardinality 
k, so 3k < n. To get 2-affine P we need k = \B{\ = \Bj\ and \BS\ = 2k; thus 
4 k < n . • 

4. Automorphisms of the structure of barycentres 
Note that if y? is a permutation of the set N then ip induces an automor-

phism / = <p* of *B(N) by the condition f(B) = {<p(i): i 6 B} for B € X. 
The aim of this section is to find all the automorphims of 55(N) and all the 
automorphisms of 'D(N). 

Let us fix / € Aut(®(A0). 
As an immediate consequence of 3.3 we have the following 

COROLLARY 4 .1 . I f B E X then either\f(B)\ = \B\ or\f(B)\ = n + l - | £ | . 

LEMMA 4 .2 . If an automorphism f fixes N, then it is determined by a per-
mutation (p of N. 

P r o o f . By 4.1, / preserves the family {B e X: \B\ = 1 or B = N}. There-
fore, there is a permutation ¡p of N such that 

/ ( {< } ) = M < ) } 
for every i 6 N. This means that 

(6) f(B) = {<p(i):i€B} = <p*{B) 

holds for every B € X with |5| = 1. Assume that (6) holds for all B with 
\B\ < k < n. Let |B| = k, we take any i € B and write B = A U {¿} with 
A = B \ {¿}. By assumption, f(A) = <p*{A). Then B is the third point of the 
line K = A, {¿} of © ( N ) , so f(B) must be the third point of the line f(K) = 
y M . M » ) } - Then, either, f(K) = {<p(A), <p{A) \ M » ) } } , which is 
impossible, since ip(i) £ <p{A), or f(K) — {<p(A), { ^ ( i ) } , tp(A)\Jip{{i})} and 
thus f{B) = {yj(il) U {<p{i}} = tp(A U {i}) = <p(B). Thus (6) holds for all 
B e l . • 
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LEMMA 4 . 3 . Let a,d € N and <p be an arbitrary bijection of the set N \ { a } 

onto N \ { d } . Define 

<p(i) if B = {¿} for i € N,i a, 
f0(B) = l N if B = {a}, 

{<0 if B = N. 

Then the permutation fo of the points of *B(N) of rank 2n~1 — 1 can be 
extended, in a unique way, to an automorphism f of^S(N). 

Proo f . Set A — {a} and D = {d} and assume that / is an automorphism of 
*8(N) extending the map fo- As in the proof of 4.2, for arbitrary i, j 6 N\{a} 
we obtain f ( { i , j } ) = <p(j)} and, generally, f ( B ) = <p(B) for all B £ X 
with a £ B. In particular, for A' — N \ A we have f ( A ' ) = <p(A'). 

Let a 6 B\ set Ba := B \ A. Then B is the third point of the line 
Ba,A, and thus f ( B ) is the third point of the line f ( B a ) , f ( A ) . We have 
/ (B a ) = <p(Ba) and f ( A ) = N, thus f ( B ) = N\(p(Ba). Note that d 6 f ( B ) 
in this case. 

We have now an explicit definition of the map / : 

f ( B ) = i i p { B ) [ i a * B 
JK ' \N \ <p(B \ {a}) if a e B 

for all B € X. The aim is to show that / is an automorphism. 
Let K - {B, B', B"} be a line of ®(W) with B = B')L B" (V stands for 

the operation of disjoint union). If a £ B then / and tp coincide on K, so 
f(B) = f{B') v f(B") and f(K) is a line of ®(JV). 
Now, let a e B ; thus a € B'\B" (or a € B"\B', resp.). Then Ba = B'a)LB", 
so tp(Ba) = ip(B'a) v ¡p{B"). By elementary set theory, N \ <p(B'a) = y{B") v 
{N \ <p(B'a)), which yields f ( B ' ) = f{B") Y f ( B ' ) and thus f { K ) is a line, 
as required. • 

The automorphism / constructed in 4.3 will be denoted by / = F(a ^ 
(note that d is determined by the condition d£ N\<p(N \ {a})). Especially 
interested are maps F^ = F^^y, note that (F(a))2 = id for every a € N. 

Now, a characterization of the group of automorphisms of ©(iV) will be 
given. 

PROPOSITION 4 . 4 . Let V = {B e X: B = N V | £ | = 1 } . 

( i ) Every permutation %p of the set V can be uniquely extended to an 
automorphism o f ^ N ) . Therefore, Aut(93(iV)) = Sn+1. 

(ii) If f € Aut(©(iV)) then there are permutations of N and 
ai, a2 € N such that, either 

• / = Vi determined by ( f i , or 



634 M. t a p i n s k i , K. Prazmowski 

• f = <ploF{ai) = Fia2)o<p*. 
Thus we can write Aut(93(iV)) = Sn © 6 = S ® Sn, where 6 is the group 
generated by {F(a): a G N} and © is the complex product of two subgroups 
in SN. 

Proof . Let ip be a permutation of V. First, assume that tp(N) = N and set 
<p := ip \ (V \ {N}). Then ip is uniquely extendable to an automorphism / 
of ®(JV), and f(N) = N. 

Then, assume that ip(N) ± AT; let ip(N) = {d} and ip({a}) = N, for 
some a,d € N. Set ip := ip \ (V \ {a})- By 4.3, ip is uniquely extendable to 
an automorphism / of 2J(iV) with f(N) = {d} = ip(N). This proves (i). 

Let / 6 Aut(fB(N)). If f(N) = N then by 4.2, / is determined by a 
permutation of N. Assume that f(N) ^ N, let f(N) = { a 2 } and / ( { a i } ) = 
N. Then / i = / o F(a i) and ¡2 — F(a2) o / are automorphism of ©(AT) fixing 
N. By 4.2 we find permutations <pi, ip2 of N with fi — <pi and the proof of 
(ii) is finished. • 

Clearly, every permutation ip of N determines an automorphism <p* of the 
structure D(N) as well. Recall that if L = {BI,B2, q} with q = (B[, B'2)°° E 
V is a line of ©(AT), then |Bi| = \B2\and B[ = Bi\Bh B'2 = Bj\Bi for some 
{i,j} = {1 ,2 } (cf. 2.4). In this case the direction of f(L) is (f(B[), f(B'2))°°. 
Note that the boolean complement operation k: X 3 B i-> N \ B yields an 
(involutory) automorphism of D(N) as well. Clearly, if \B\\ = |i?2| then 
\K(BI)\ = \K(B2)\. Moreover, if B[ = BI \ BJ and B2 = BJ \ BI then B'2 = 
N(Bi) \ n{Bj), B[ = n(Bj) \ K(B{) SO, K maps L onto {« (5 i ) , K(B2), q}, and 
K preserves every direction. In the sequel we shall prove that, in some sense, 
these are all the automorphism of 2)(TV). 

PROPOSITION 4.5. Let f be an automorphism ofD(N). Then f preserves V 
and there is a permutation ip of N such that for every k < ^, either 
a) f(B) = <p*(B) for all B € X such that \B\ = k or \B\ = n-k, or 
b) f (B) = nip*(B) for all B € X such that \B\ = k or \B\ = n - k. 

Consequently, Aut(2)(N)) = {C2)E^ © Sn. 
Proof . Note that N is the only point of D(N) such that no line of D(N) 
passes through it, thus N remains invariant under every automorphism of 

A line L = {Bi,B2, (BI,B2)°°} with B\ ~ B2 will be called a direction 
line. A line L is dual-direction if K(L) is a direction line. Note that through 
every q € V there passes exactly one direction line and exactly one dual-
direction line. 

If L = {BuB2,Q} with q € V then we write /3(L) = \Bi\ and UJ{L) = 
|Bi\B2|- In view of 3.6, the rank of Bx is n(n,/3(L)) = (p(L)) - 1 , and the 
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rank of q is rf(n,w(L)) = 2n~^L\ Note that u{L) < (3(L) < n - u(L), 
w(k(L)) = u>(L), and /3(k(L)) = n - (3(L). The equality 0(L) = uj{L) 
characterizes direction lines, and the equality f3(L) = n — u>(L) characterizes 
dual-direction lines. 

Let / 6 Aut(Q3(iV)) and L be a line of D(N). There is at least one proper 
point of L mapped by / onto a proper point of f(L). Their ranks must be 
equal, so ( f a ) = ( f a { L ) ) ) , and thus 

(7) (a): /?(/(£)) =/J(L) or (b) : /3(f(L)) = n - (3{L). 

Moreover 
(8) W(/(L))=u;(L). 
Indeed, if / maps L°° onto /(L)°° then 2N~2W^ = 2 N ~ 2 U I ^ \ so U(L) = 

u/(/(L)). If / ( £ « ) $ V then ( f a ) - 1 = and ( f a { L ) ) ) - 1 = 
2n-2u,(L) I n b o t h c a s e g (7 a) a n d w e o b t a i n 2n-ML) = 2»-2«(/(L))> s o 

u(L) = u ( f ( L ) ) . 

By (7a), (7b), and (8), if L is a direction line or L is a dual-direction line 
then f(L) is a direction or a dual-direction line as well. 

Assume that 2k ^ n, let L be a direction line with (3(L) = k; then L 
and k(L) have only the point q = L°° in common and, moreover, /3(L) ^ 
(3(k(L)). Thus there is no line in D(N) which joins a proper point of L with 
a proper point of k(L). Suppose that f(L) and /(k(L)) are two direction 
lines, then they have a common proper point D; say f ( L ) = {D,Di,pi} 
and /(«(I)) = {D,D2, p2} with pi,p2 € V. Then |£>i| = \D2\, so DUD2 are 
collinear in D(N). Similarly, it is impossible to obtain two dual-direction 
lines f(L) and /(/i(L)). Thus only one of the lines f(L) and /(/t(L)) is a 
direction line, the other one is a dual-direction line, and then their common 
point /(q) is improper. Therefore /(q) 6 V whenever q = (D\, D2)00 € V 
and 2|£>i| ± n. 

Let B e X ; take any b € B and b' € N\B, and set B' = (B\{b})U{b'}. 
Then q = ({6}, {&'})00 is the improper point of the line L = B,B'\ since 
/(q) 6 V we get f(B) € X. Since B was arbitrary, we infer that / leaves 
families V and X invariant. Set f°° = f \ V. and g = f f X. 

Then g is a permutation of X such that 

|5i | = \B2\ iff |0(Bi)| = |p(52)|, for every BltB2 € X (cf. 2.4). 
Set Xk = {B E X: \B\ = k} and gk = g \ Xk. Note that if B G Xk 
then |ff(B)| = k or \g(B)\ = n — k. Indeed, it suffices to consider any line 
L through B; since \B\ = (3(L) and = f3(f(L)), (7a),(7b) give the 
claim. Thus, either gk is a bijection of Xk, or gk maps bijectively Xk onto 
Xn_fc. Since / preserves the class of direction and dual-direction lines, gk 
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is an automorphism of the binomial graph (Xk, or an isomorphism 
between {Xk, tfg) and {Xn_k, where B ^ B 2 means | B i n £ 2 | = m 

for B\,B2 € X{. Then, by [3], there is a permutation <pk of N such that, 
either gk = <p* \ Xk, or gk = Kip* \ Xk. 

Let q = (D\,D2)°° € T> with \Di\ — i. For every k > i there are 
B h B 2 € X k with q € B h B 2 . Therefore 

/°°(q) = G^B^G^F = ( M D i ) , w W ) 0 0 -
Consequently, {tpk,(Di), <pk>(D2)} = {</>fc»(Di), ipk»(D2)} for all k',k" > 

\Di\ and D\, D2 with D\ ~ D2. With i = 1 we come to <p*k, \ X2 = ip\„ \ X2 

and thus, by [3], <pk> = ipkn. Set <p = (p\. 

With every sequence a = (e i , . . . , £m, <p), where <p € Sn, m — and 
£i — ±1 we correlate a bijection g = r(cr) of X defined by 

g { B ) = i
 B ) i f \B\ = k , = I OT £n-k = 1 
\ K<p(B) if \B\ = k, ek = - 1 or en_fc = - 1 

By the above, T maps (C„)m x Sn onto Aut(S(Ar)). The formulae KO ip* = 
tp* o K and = {KO ip*)°° for a permutation tp of N give that T is 
a group homomorphism, T: {C2)m © Sn —> Aut(2)(./V)). Finally, let a = 
{£i,...,em,ip) 6 {C2)m x Sn, and T(a) = id. Then \{T{a)){B)\ = \B\ for 
every B € X and thus sk = 1 for each k with 2k ^ n. Therefore <p \ Xi = id, 
which yields ip — idjy. Now, suppose that n — 2m and £m --- —1. Then we 
have ac(A) — A for every A e Xm, which is impossible. Thus T has trivial 
kernel, so it is an isomorphism. • 

The automorphism groups Aut(£(AT)) and Aut(Jo(iV)) will not be stu-
died in more details. We would like to only note that every / € Aut(£(iV)) 
must preserve the family C2 (as it consists of lines of rank 4). With rather 
tedious calculations it comes out that / € Aut(Q3(N)) and / € Aut(2)(./V)), 
which yields that / is determined by a permutation of N. 

5. Final conclusions, remarks, and comments 
The structures considered in the paper, DJl = 23(iV) and DJl = D{N), 

are some particular partial Steiner triple systems. They are rather regular 
- any two points of 9Jt with the same rank can be interchanged by an au-
tomorphism of 9Jt. On the other hand these groups of automorphisms are 
relatively small and quite elementary: 

(i) Aut(SDt) = S n + i has (n + 1)! elements and acts on 2" — 1 points for 
SDT = Q3(AT) with \N\ = n > 2, and 

(ii) Aut(SW) = (C2)m © Sn has 2m • n! elements and acts on 2n - 1 + 

YT= l (?) ( V ) P o i n t s f o r =
 ®(N)

 w i t h
 \N\ = n = 2mor n = 2m + 1. 
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It is worth to note which partial Steiner triple systems defined in the pa-
per can be embedded into Fano projective spaces, and then how the results of 
the paper can be interpreted in terms of the projective Fano geometry. The 
boolean representation x X —> 2n, which associates with a subset A of N 
its characteristic function xa• N —> 2 = {0,1} yields a projective repre-
sentation of 93(TV) in the (n — l)-dimensional projective space PG(n — 1,2) 
over GF(2). Indeed, 

if £?i,£2,-83 G N are collinear in 93(iV), then XBi,XB2iXB3
 a r e 

collinear in PG(n — 1,2). 

Since the proportionality relation in the vector space 2n coincides with the 
relation of equality, the set V = 2" \ {0}, where 6 = X0, can be considered 
as the set of points of PG{n — 1,2). Lines of this space are sets of the form 
J1J2 = {/li h, fi + /2}, where /1, f2 € V are arbitrary but distinct. Then 
*B(N) is obtained by removing some lines of PG(n — 1,2): 

a line L of PG(n — 1,2) is a line of 95 (N) if there are points 
/1, f2 € L such that /1 • /2 = 6 

(we use the natural ring structure of 2" here). 
Since the set T = { x { a } : a £ N} U { x n } °f points of PG(n — 1,2) is 
(projectively) independent, from 4.4 we infer that every automorphisms of 
D(N) is an automorphism of PG(n — 1,2) as well. It is seen that (under our 
embedding) the group Aut(93(iV)) consists of all the projective collineations 
of PG(n — 1,2) which leave invariant the projective frame T. 

Unhappily, the above representation cannot be (fully) extended to a 
representation of *D(N) in a Fano space. Let fi = XAi £ 2" for Ai € X. 
By 2.4, the pair ( A i , ^ ) determines a direction in D(N) iff |x-1(/i)l — 
|X_1(/2)I- By 2.2, AuA2 ^ A3,A4 yields /1 + f2 = /3 + /4, and thus 

if Ai,A2 ^ then the vectors XA^XM and XA3,XA4 are 
parallel in the n-dimensional affine space over the vector space 2n. 

However, one cannot uniquely correlate a direction A2)00 € V with the 
(projective) direction of the affine line XAi, Xa2 o v e r 2". Indeed, let n > 4; 
set Ai = {1,2}, A2 = {3,4}, A3 = {1,3}, A4 = {2,4}. The lines x^,X/i2 

and XA31XA4 are parallel, but (^1,^2)°° (A3, A4)00. We do not know 
whether the structure 2)(iV) can be embedded into a Fano space. 

Clearly, 2 c 3 = {1,2,3} and thus the characteristic function XA for 
A C N can be considered as an element of 3n as well. In particular, we obtain 
an injection of X into the affine space 3n over GF(3). Let fi = XAt £ 3" for 
i = 1,..., 4 and let Ai, A2 and A3, A4 be collinear in 'D(N). Then 

AI,A2 A3, A4 iff the affine lines XAI,XA2 and XA3,XA4 are 
parallel over 3™. 
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Therefore, the map \ c a n be extended to an injection of D(N) into the pro-
jective completion PG(n, 3) of the above affine space. However, this repre-
sentation does not map lines onto lines. Moreover, not every automorphism 
of D(N) can be extended to an automorphism of PG(n, 3). On the other 
hand, it seems that this injection can be extended to an injection of f j ( N ) 
into PG(n, 3), but so far it is only a conjecture. 

Up to now, no (natural and regular) minimal representation of £(N) 
and of S)(N) in a finite projective space is known. In particular, we do not 
know what is a minimal m such that $j(N) can be embedded into a Fano 
projective space PG(m, 2). As noted on the page 631, if we remove from 
fj(iV) the lines with rank 2, the resulting structure will be the disjoint union 
of the horizons of Desarguesian closures of some (binomial) graphs; it is 
known that every such a closure can be represented in a Fano space. More 
precisely, the horizon of the Desarguesian closure of the binomial graph 
of A;-element subsets of N can be embedded into the space PG((£) — 2,2) 
and this horizon contains a line only for 3fc < n. Therefore, one can embed 
Sj(N) into PG(m, 2) for m = ¿ i f (£) - E(§) - 1. This embedding is 
constructed, in accordance with the general theory, in a somewhat "free" 
way - one should expect that there exists an embedding with smaller m, 
but no one is known yet. 
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