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ON SET-THEORETIC AND CYCLIC REPRESENTATION
OF THE STRUCTURE OF BARYCENTRES

Abstract. In the paper certain abstract combinatorial structures are studied as repre-
sentations of the structure of barycentres of all the subsimplices of a given simplex in an
arbitrary Desarguesian affine space. General properties of the configuration of barycentres
are characterized in terms of those combinatorial structures. Most essential parameters of
these structures are established and relevant automorphism groups are characterized.

1. Introduction

The barycentre of a segment is just the midpoint of this segment. It is
known (cf. {1}, [6], [2]) that barycentre of a triangle can be obtained as the
intersection of its medians, i.e. of lines which join vertices of the triangle with
barycentres of its opposite sides. Continuing this procedure we can find the
barycentre of a given simplex and barycentres of all its subsimplices. Many
lines are drawn to achieve this, and it may turn out that some of them are
parallel. It may be interesting to figure out what is the abstract schema of
the configuration which arises in this way, i.e. of the configuration which is
formed by the family of all barycentres of all the subsimplices of a given
simplex in an arbitrary Desarguesian affine space.

In the paper we define several combinatorial structures which characteri-
ze such configurations. The first of them, denoted by B(N) (N is any set of
cardinality n < oco) determines all the necessarily collinear triples of points
in the family B(A) of all barycentres of all subsimplices of an n-simplex
A (cf. 2.1). The next two configurations, D(N) and €(N) are obtained by
adding to every family of necessarily parallel lines formed from points in
B(A) (cf. 2.3) their common direction as a new point. The last configu-
ration $)(NV) characterizes the projective structure of added directions. All
the basic numerical parameters of the configurations defined in the paper
(the number of points, the number of lines, and ranks of points and lines,
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cf. [4]) are determined in section 3. Finally, for configurations B(N) and
D(N) we find their automorphism groups (propositions 4.4 and 4.5). It is
evident that a permutation of vertices of a simplex A determines a bijection
of B(A) which preserves both collinearity and parallelity. From our abstract
point of view this means that any permutation of the set N determines an
automorphism of every structure defined in the paper. However, it turned
out that in two cases presented in the paper corresponding automorphism
groups of configurations are greater and contain also automorphisms which
cannot be associated with any affine automorphism of a given simplex. We
close the paper with some comments and (open) problems, mainly concer-
ning projective embeddings and representations of the structures defined in
this paper.

2. Basic constructions

Let A = {a1,...,an} be a set of points of an affine space 2, represented
in a vector space V with the coordinate field §. Recall that if char(F)[k
then for every k-set A = {i1,...,4} C {1,...,n} =: N the barycentre
Ba(ai,...,a;) = B(a;,. .., a;) of the set {a;,,...,a; } is defined by the
formula B(a;,,...,a;) = Lkﬂlh We simply write B(4) = By(A) =
B({a;: i € A}) for A C N. Therefore, if n < char(F) or char(F) = 0, then
the barycentre Bg(A) exists for every system ay,...,a, of points of 2 and
every A C N. Note that for some set A of points of an affine space 2 and
Ay, Ay C N it may happen that A; # Ay and Bg(A;) = By(A2). But

if By(A;) = By(As) for every affine space 2 and for every system
ai,...,an of points of A (n < char(F) or char(F) = 0) then,
necessarily, A; = As.

That’s why we consider A C N as an "abstract” barycentre B(A). In this
section we shall demonstrate how to analogously define an ”abstract” colli-
nearity and an "abstract” parallelity on the set of ”abstract” barycentres.
Let us define on the set X = ©(N) \ {0} of nonempty subsets of N an
incidence structure B(N) := (X, Lo), with the family of lines Lo defined by

Lo = {{B1, B2, B3}: B1,By,B3 € X,B; = Bo U B3, BN B = 0}
Clearly, BB(N) is a partial linear space. Further properties of B(N) are given
in the sequence of the following lemmas.

LEMMA 2.1. Let By, Bs, B3 be three pairwise distinct nonempty subsets of
N. The following conditions are equivalent:

(i) For any family {ai,...,an} of points of an affine space A, the points
B(B1), B(Bz), and B(Bs) are collinear in ;

(i) Bi, Bg, B3 are collinear in B(N).
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Proof. Set k; = |B;| for ¢ = 1,2,3; clearly, k; > 0. Assume that (ii) holds
true. Without loss of generality we can write By = By U Bz, BoN By = 0.
Then ki = ke + k:3 and B(B;) = k EJEB a; for i = 1,2,3. Thus B(B;) =
k1 k2 > jeB, a,+ 0 k3 YjeBs @ = JB(Bg)-l—(l —Z)B(Bg) which proves (i).

Now, assume that (i) holds and By, By, By are pairwise distinct. Let
B(B;) = a-B(B3) + (1 — a) - B(B3) i.e.

S = 2 et e

j€EB k1 jeBz j€B3

One can take points a; such that they are linearly independent. If there was
Jo in exactly one of the sets By, By, B3 then we obtain either aaj, = 0 or
(1 —a)aj, =0, s0 a =0 or o =1, which contradicts assumptions.

Now, suppose that there is jo € B; N By N Bs. This yields %ajo =
k%ajo + 1,:—30‘(1_7'0, S0 -kl—l = 7% -+ ll—:;a-, which gives akl(k3 - k2) = kg(k3 - kl).
If there is j1 € BoN Bz \ By then & -+ k_"‘ = 0, which yields, contradictory,

=0.If js€ BiNBy\ Bs then k_ = £, 80 lkiag = 0, which is impossible.

Fmally, if jo € By N B3\ By then ﬁ = 1—,:33, which leads to f‘; = 0.
Therefore, if there is jo as above then B; = By = Bs. Hence we conclude
with By N By N By = 0.

Thus every j € B;UB2UBj3 belongs to exactly two of the sets By, By, Bs.
Set A;;, = B;,NB;, for all {i1,i9,i3} = {1,2,3}. Suppose that A;, Ag, A3 # 0.
As above, considering suitable j; € A;, we obtain the following system of
equations

(1) a(ks — ko) =  —ko with j, € Ay,
(2) aky = k1 — k3 #0 with jo € Ao,
(3) aky = ko with J3 € As.

Then we calculate a(ks — ko) = —ak; by (1) and (3), so k3 — kg = —ky,
and ko = k; — k3 by (2) and (3). This gives k3 = 0, which cannot hap-
pen. Therefore, there is i; with A;; = 0, and then B;, = B;, U B;,;, where
{i1,49,43} = {1,2 3} as required. O

For given Df, 2 € X we define:
D} D), = D{Dj iff there are Dl,Dz € X and D', D" c N with Dy Dy =,
|D1| = |D2| such that D, = D;uD’, D! = D; UD” and D', D” are disjoint
with D;.

LEMMA 2.2. Let D}, D}, DY, D} € X.

(i) Dj,Djw DyDY iff Dj, Dy = DyDY, iff D}, Dy = Dy Dy,
(i) Di,Dj= D{Dj iff D} \ Dy = D} \ D and D\ D} = D\ D}.
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(iii) If D1, Dy = DYDYy then for any family {a1,...,an} of points of an
affine space 2 the vectors B(D})B(D}) and B(D})B(DY) are parallel in .
Proof. The statements (i) and (ii) are evident. To prove (iii) assume that

1. Dy = D{Dj; let D;, D', D" be taken in accordance with definition. Set
k = |Di| = |Dq|, ¥ = |D'|, and k" = |D"|. Then |D}] = k' + k and
B(D)B(D.) = 1 1 —_1

(D1)B(D3) = gz jepy %~ 7k ZjeD' a5 = g3 (Ljen, 4~ Ljen, )

————>
and, analogously, B(D3)B(DY) = prg (Z]eDg a; — X jep, 4j)- This yields
our claim. ad

LEMMA 2.3. Let By, By, BY, By € X. Assume that B} # By and B{ # Bj.
The following conditions are equivalent:

1 or any family 1a1, ..., ant of points of an affine space 2l the vectors
i) Fe famil nts of A th
B(B})B(Bj) and B(BY)B(B4) are parallel in 2.
(i) There are D}, D5, DY, D3 € X such that D}, Dy =« DY Dy, D} # D5,
! # Djy. Bi, B}, D}, D4 are on a line in Ly, and BY, By, D, Dy are on a
line in Lgp.

Proof. The implication (ii)=>(i) follows immediately from 2.2(iii) and 2.1.

Now we assume that (i) holds; let o - B(B] )B(BQ) B(B5 '\B(B!) with
a # 0. Let us set k, = |Bj|, ¥/ = |B/|, B = B} N By, B” = B{ n By,
= B\ B, and A} = B/'\ B". Note that

B(B})B(B;) = ) kl,aj— >3 a_7+ Z( ki,)aj and

jeAy 2 eA’ JEB’ ks
T 1 1 1
B(Bil)B(Bg = Z ']?/'a‘j Z k” a; + Z k” - k”)
jeAy "2 jeAl jeB”

. a . - La. i
We have EjeBg it 2jeB, v = 2 jeBy 'I?{aJ 2jeBy ¥, e

(4) > gt X gut X G-y

JEAL JGA’ jeB’
1 1 1
= Z Waj— Z k//aJ + Z k" - k”)
jeAy 2 jEAY j€B"

As in the proof of 2.1, we can assume that the points a; are linearly
independent vectors of a real vector space. Without loss of generality we
can take o > 0. Note that A = ) = A}_, yields B} = Bf for t =',” so,
under our assumptions, At # 0 for some j =1,2.

For simplicity we wrlte t for ’,”, and we use t as a number with 3 —' =

" 3="=" Weset d = and o = 1. Then coefficients of a;j in the
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equation (4) are
(—1)*¢% for j € AL
%g— - %g— for j € Bt
Let us begin with some simple but useful facts (the proof of each of
them is ended with A). Note that every a; which occurs with a non zero
coefficient on one side of the equation (4), must occur on the second side of

this equation.

(i) Comparing signs of coefficients in the equation (4) we see that AN
A}t =0fort="," and s = 1,2.

(ii) There are no 1,4y € N such that iy € AL N B3t for s = 1,2 and
some t =",".

. 3- 3-
Proof. If there were i1,i2 as above, we would have both %3::- - -‘53-_—; =
2 1
3
Tcr>0a.nd—3—; ;3—:'———{<0 A

(iii) There are no 4,j € N such that i € AL N A3~* and j € AL N B3¢
for somet="'," and s = 1, 2.

at _ a3—! at . as—t a3—t
Proof. Assume contrary, then il and (-1)° - BT T
which gives contradictory & —rr =0. A

3—.9
(iv) There are no #/,3"” € N such that i’ € A, N B” and i" € AY N B’ for
some s = 1,2,

Proof. Assume the contrary for e.g. s = 2. Then f‘,z- = Elg - kl and
1

kl = f‘; — - This gives f,l- + Fly = 0, which is impossible. The reasoning

for s =1 is analogous. Y

(v) There are no 4,5 € N with i € AN B3t and j € B'N B” for some
t='"ands=1,2.
Proof. Suppose that the contrary holds. Then we obtain %2; - %,l'- = %g - %17
and (—1)’%;— ;;—:- F—f And then ks_t = 0, which is impossible. A
(vi) If AL N A3t # 0 then AL = A3
Proof Let j € At N A3t Take any i € AL. Then i ¢ A3~ by (i),
and i ¢ B3t by (iii). Thus i € A3~%; this gives A C A3~*. Analogously,
AT C AL A
(vii) If AL N B3t # § then A3~ = 0.
Proof. Let j € ALNB3~*. Suppose that there is i € A3~*. By (i), i ¢ A5_,,
and by (iv), ¢ ¢ B®. This yields i € A%, which contradicts (iii). a



624 M. Lapinski, K. Prazmowski

Then, we pass to the proof of our lemma. There are several cases to
consider:

1. We have A, # 0 for some s; assume that s = 2 and take any i}, € Aj.
From (ii), iy € A or iy € B”.

1.1. Assume that i, € Aj. From (vi) we obtain A = Aj.

1.1.1. Suppose that A'1 # 0, let 3} € A}. By (ii), ¢} € A or ) € B".

1.1.1.1. Assume that #} E A" Again, with (vi) we get A] = Af.
Suppose that Bt # § and 2 T —T # 0. Then by (iii), B’ = B”, so B, = BY
fors=1,2.

If B’ = ) = B" then, again, B, = B for s = 1,2. Finally, if B’ # 0 and
312, = 75{ then k} = kb, so |A)| = |A | and thus B B2 BYBY.

1.1.1. 2 Assume that i} € B”. From (vii), A” 0, so A} = B" = BY and

1, By, Ay are collinear. Moreover, from (v), B’ N B” = (). This yields two
poss1ble solutlons
If B’ = 0, then AA} = A4BY. If B' # § but Ellr = Flr then |A}| = |4} and
thus B Bj » A} A, = A7BY.

1.1.2. Analogously, the claim of the lemma holds if we assume that A} #0.

1.1.3. Assume that A] = 0 = A]. Then B! = B* and k% # k§ for t = -—’ "
Thus B’ = B” and B'B2 = B{Bj.

1.2. Assume that ) € B” From (vn) we infer A5 = @, and from (v),
B’ N B" = 0; thus A, = B”. Moreover, A # 0. If A7 N A} # 0 we get the
case analogous to 1.1.1.2. Assume that there is j € A{NB’. From (vii) we get
A} =0, and A] = B’. In this case the points B} = B’ = A, By, B{,Bj =
B” Af are colhnear a

For By,Bs € X we write By ~ By if BN By = 0 and |B;| = |Ba|.
To every set {Bi, By} such that B; ~ B, we assign a new abstract point
(B1, B3)™ and we define a new class of lines

Ly = {{B1U B, By U B, (B1,B2)*}:
Bi,By€ X,By ~ By, BC (N\ (B1UBy))}.
The set of all those new abstract points will be denoted by D, formally
D = {(B1,B2)®: B1,B; € X, By ~ By}.
Let D(N) := (X UD, L,). Clearly, D(NN) is a partial linear space.

LEMMA 2.4. Two distinct points By, By of X belong to a line By, By in Ly
iff |B1| = |Bg|. If |B1| = |B2| and By # Bz then the improper point By, Bo
of By, Bs is (Bl \ B,, By \ B1)°°

Proof. Evidently, if B; = B/ U B, B} ~ Bj, and BN (B} U By) = 0 then
|B1| = |Ba|-
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Conversely, if |B;| = |Bs| we set B := By N By, B] := B; \ B to get
B! ~ B}, and then the points By, Ba, and (B}, B5)™ are on a line of £;. O

3. Combinatorial representation of the structure of barycentres

and its numerical parameters

In this section we shall establish the most essential parameters of the
structures B(N), and D(N), as well as some others derived from these.

Recall that the structures B(N) and D(N) are partial linear spaces. As
usual we use the symbol By, Bz (By # Bs) to denote the line which joins
the points By and Bs in currently considered structure. Recall also that, if
M = (Z, L) is a partial linear space, then
(5) d_r(x) = UL,

2€Z Lel

where r(z) is the rank of z (the number of lines which pass through z), and
I(L) is the rank of L, i.e the number of points on L.

Evidently,

LEMMA 3.1. The number vo(n) of points of the structure B(N) is
Vo(n) =2 - 1.
LEMMA 3.2. The number Ao(n) of lines of the structure B(N) is
3" 1

Proof. By definition, each line of B(N) is of the form {B;, B2, B3} for some
By, B, B3 € X such that By = BoUB3 and BoNB3z = 0. Then i = |By| > 2
and the set By can be chosen in (':) ways. For a given Bj, a set By is an
arbitrary nonempty proper subset of Bj, so it can be chosen in 2¢ — 2 ways,
and B3 = By \ Bs. Following this way, the pair (B, B3) is counted twice,
so for a given B; we have 32 = 2i=1 — 1 possibilities to get a line of the
above form.

Finally, we get Ao(n) = X7 (7)- (271~ 1) = 3 ~ 2"+ 1, as required. O

Clearly, each line of B(N) is of the same rank lp(n) = lp = 3.
LEMMA 3.3. If B € X and |B| = k, then the rank of the point B in B(N)
18

ro(B) = ro(n, k) = 2k~ 4 2nF 9,

If By, Bs € X have the same rank, then |B;| + |B2| = n+1 or |By| = |By).
Proof. Let B € L € Ly. Then two possibilities occur.

(i) L ={B,B;,B;} with B = B; U Bj. A set B is an arbitrary but

nonempty and proper subset of B, so — as in 3.2 — we have L2“2 =2k-1_1
lines of this form which contain B.
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(ii) L= {B,BI,BQ}, where By = BU By and By C N\B A set B;
can be chosen in 2% — 1 ways, since it is arbitrary, but nonempty.

Thus we obtain the required formula for ro(B).
Now, if 7o(n, k) = ro(n, 1) from the formula proved above we get
(22 — 2"*1)(z — 2%) = 0 with « = 2%,

The only solutions of this equation are z = 2% and = = 2**1=* which proves
our claim. ]

LEMMA 3.4. The number A1(n) of lines of D(N) is

AL(n) = % (271) _on-1

n

Proof. By 2.4, each line in £; is uniquely determined by a pair of distinct
subsets of NV with the same cardinality. Thus

w =3[ (- ()] =2((7) -2)-e-2]

as required. , d
LEMMA 3.5. The number 81(n) of ”directions” (the cardinality of the set
D) is
E(3) :
1 & [[n n—1
=32 |(3) ("))
Proof. Each direction (Bj, B2)* is uniquely determined by two disjoint

subsets By, By of X with the same cardinality. Let By = ¢; then 2i < n, so
i < E(%). A set By can be chosen in () ways, and then By, as a subset of

N\ B;, can be chosen in ("i_") ways. A pair By, B; is counted twice, which
yields our formula. 0

As an immediate consequence of 3.1 and 3.5 we obtain a formula for the
number v1(n) of points of D(N):

vi(n) =vo(n) +d1(n) =2" -1+

N} =
g
N
. 3
~—
N

3
=)

o~
N—

By definition, every line of D(N) has I;(n) = 3 points.
LEMMA 3.6. Let |B1| = k. The number of lines of D(N) which pass through

B is
n
ri(n, k) = <k) -1
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If By ~ By then the number of lines of ®(N) which pass through ¢ =
(Bl) B2)°° is

re = r(n, k) = 2772,
Proof. Each line L through ¢ is of the form L = {Bj, Bs, q}, where B, =
B; U B for some B C (N \ (B; U By)). For given B;, By, we obtain distinct

lines L with distinct sets B chosen as above. This yields the formula for r.
The formula for 71(n, k) follows by 2.4. a

The straightforward consequence of the above is

COROLLARY 3.7. From (5) and 3.3 we obtain

n

3 A0(n) =Y (’Z‘) ro(mi) = 3 (") (251 4 onk _ ).

i=1 i=1 \?

Since every line of D(N) has ezactly one point in D and ezactly two points
in X, from 3.6 and (5) we obtain

= 2 (0) (1748 () (7Y
" /n L n
2./\1(n)=§(i>r1(n,i)=;(i>((i>_1)_

Now, we are going to deal with the most interesting structure investiga-
ted in this section. Note that, formally, we cannot use the family Lo U £;
as a family of lines. Thus the lines of the structure €(INV), which we define
now, are of three types. First, we distinguish the set S of all pairs By, By
such that they are collinear in both B(N) and D(N).

LEMMA 3.8. Let By, Bs be two distinct points in X. The following conditions
are equivalent:

(i) There are lines K' € Ly, K” € L1 such that B;,Bs € K', K".

(i) By~ Bs.
If the condition (i) is satisfied and K' = {B1, By, Bs} then neither By, Bs
nor By, Bs are collinear in D(N).

Proof. The implication (ii) = (i) is evident, just take K’ = {B;, B2, B1 U
Bg} and K" = {Bl,B2, (Bl,Bg)oo}.

Let (i) hold. By 2.4, |B1| = |Ba|, so neither B; C By nor By C B;. Thus

K = {Bl,BQ,B3} with By = B1UBs and BN By = . This yields B; ~ Bs.

Finally, by the above, |Bs| # |Bi| = |B2|, which, by 2.4, finishes the proof.

O
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Let us set

[:6 =Ly \ {{Bl,BQ,Bl UBQ}: B1,Bye X & By ~ B2}

£y = L3\ {{B1, B, (B1,B2)®}: B1,By € X & By ~ By}

L2 = {{B1,B2,B1 U By, (B1,B2)*}: Bi,Bs€ X & By ~ By}.
Finally, we define

C(N):= (X UD,LyUL|ULy).

Clearly, €(N) is a partial linear space.
LEMMA 3.9. The number va(n) of points of €(N) is va(n) = vi(n). The

cardinality of the family Lo is 81(n). Consequently, the number X2(n) of
lines of €(N) is

A2(n) = Ao(n) + A1(n) — 81(n)
E(3)

3 o ame1 11 /2n 1 n n—1
=3 +2+2(n) 2;[(z> ( i )]

Evidently, lines in £ U £} have rank 3, and lines in £ have rank 4. It
is more difficult to determine the rank of a point in €(N).

LEMMA 3.10. Let B € X, |B| = k and let ro(n, k) be the number of lines in
Ly through B. The rank of B in €(N) is

r2(n, k) = ro(n, k) + r1(n, k) — r5(n, k).
If k > E(%) then r4(n, k) =0, and if k < E(Z) then ri(n,k) = (n-};k)-

Proof. To find lines in £y through B we must find all the points B’ with
B ~ B’, that is all the k-subsets of the set N\ B. This justifies the formula
for r4(n, k).

Originally, each such a pair B, B’ was used twice: to produce a line in Lo
and a line in £;. Thus we obtain the required formula for ra(n, k). O

Finally, we shall build a structure of collinearity on the universe of direc-
tions. For this purpose we should first determine triangles of B(N), since in
any case, elements of a triangle must belong to a plane ”spanned” by this
triangle.

ProposITION 3.11.

(i) Any three pairwise disjoint nonempty subsets By, Ba, B3 of N yield
a triangle in B(N), denoted by A (Bi,Bq,B3). Set B, := Bj U Bs for
{i,7,s} = {1,2,3} - these are points on lines which join vertices of this
triangle, and By = B UB3UB3 - a diagonal point. Let I1 = II(By, Bs, B3) =
{Bi, B2, Bs, B}, By, B}, Bo}. Then we obtain 15 new triangles in B(N) with
vertices in II( By, By, Bs) of the following forms:



On set-theoretic and cyclic representation 629

1: A (B, Bj, Bo) fori,j=1,2,3,i# j (3 triangles);
2: A (B;,B;,B]) fori,j =1,2,3, 1% j (6 triangles);
3: o (Bi, B}, Bo) fori,j=1,2,3,1#j (6 triangles).

We write T(By, Bo, Bs) for the family of the triangles determined as above.
(i) If A1, As, A3 is a triangle in B(N) then there are pairwise disjoint
nonempty subsets By, Bo, B3 of N such that A (A1, Ag, A3) € T (B, By, Bs).

Proof. The statement (i) is evident and follows just from the definition of
the family L£g. Let A;, As, A3 be a triangle A. Thus A;, A, A3 are pairwise
collinear in B(NN). One can see that this can occur only in the following
cases. Either

1. AinAj=0forall1<i<j<3-then A € T(A;, Ay, A3);

or there are 4, j, s with {4, j, s} = {1,2,3} such that

2. A; C Aj CA;-then A e T(Ai,Aj \ A; A \ AJ‘); or
3. Ai,AJ‘ C A, and A; N Aj ={ -then A e T(A;, Aj,As \ (A, U AJ')); or
4. A; C Aj and Aj NA; =0 -then A € T(AS,A]' \ A;, 4)).

This proves the claim. a

In view of the above a plane of B(N) is a set II(By, By, B3) (cf. 3.11(1)),
determined by a triple B;, By, B3 of pairwise disjoint elements of X. For an
arbitrary plane P we set

pP® = {(D17D2)°o: DI)D2 :A17A2> A1>A2 € P}

PRroPOSITION 3.12. Let B;, By, B3 be pairwise disjoint nonempty subsets of
N, let P = II(By, By, B3), and let L(P) be the set of lines of €(N) which
join points of P. The plane P is one of the following:

3-affine: |P*°| = 3 and there are siz lines K;,L; (i =1,2,3) in L(P) \ L;.
They can be paired such that K;*° = L;°, K; € L}, and L; € Ls.
These are all pairs BTB—J,W with1 <i< j<3.

2-affine: |P*°| = 2 and there are exactly three lines K, Ly, Ly in L(P)\ L.
We have Kj € Ly, L1, Ly € Lo, and K1 = L1*.

Typical form: B}, B}, Bi, B;, and By, B for some 1, j,s with {4, j,s} = {1,2,3}.
1-affine: |P*°| = 1 and there are ezactly two lines K,L in L(P)\ L. We

have K € L], L € L9, and K = L*.

Typical form: B}, B; and B;, B; for some i, j.

0-affine: |P™°| = 1 and there is ezactly one line K in L(P)\ L. Then
K € L.

Typical form: TB{ for some i.
projective: P> =0, so all the lines from L(P) are in Lj.
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Consequently, |P*| < 3. Moreover, in notation of 3.11(i): B}, B} € LU L],
and Bi,Bj,Bi,Bf € £6 U Lo,

Proof. By 2.4, a pair Aj, A3 yields a direction iff |A1| = |A3|. Set n; = |Bil,
then, in notation of 3.11(i), |Bj| = n; + ns, |Bo| = n1 + ng + n3. Clearly,
|Bj| = n; < |Bj| for i # j. If |Bi| = |Bj| then B;, B; = B, B}. But then
|Bi| # |Bi|. If | Bi| = |Bj]| then |B;| = |Bj;l, so we have the situation as before.
If | B;| = | B| then (note B;NB, = 0) there is no pair Ay, A; € II(By, By, Bs)
with B;, B} = Aj, As. Finally, we see that only the following can occur:

1. n; = nj # ns # n; +n; - then B;, B; yield a sole direction in P, which
has lines B;, B; and B], B;. of €(N). Then P is 1l-affine.

2. n; = ny = n3 — then P contains three pairs of lines of €(IN) with three
distinct directions: (B;, B;)™ with 1 < i < j < 3. Then P is 3-affine.

3. n; = nj # ng = n;+n; - then B;, B; yield a line B, B, B’ of €(N) parallel
to B;, B}, and points B, B, (collinear in B(N)) yleld a line B;, B! of
€(N), which is not parallel to any other line contained in P. Then P
is 2-affine.

4. ng = n;+n; and n; # n; — then the only direction, which is contained in
P is (B, B,)™, and it is a direction of just one pair of points contained

. in P. Now P is O-affine.

5. # (n1,ng,ng, n1 + na, n2 + n3,n3 + ny). Then P has no pair of points
which yield a direction.

This justifies our claim. |
LEMMA 3.13. If P, P" are two distinct planes of €(N), then |P'°NP"*| < 1.

Proof. Let P’ =I(B}, B}, B}), P" =I(BY, B4, BY). Assume that |[P'"®° 1
P"*| > 2; then without loss of generality, we can assume that P! is i-affine
fori>2andt="".

A direction b of a plane P = II(Bj, Ba, Bs) is called side direction if it is
a direction of a side of the triangle B;, By, B3; we call b a medial direction
if it is a direction of a line of the form B; U B;, Bs. Note that if two planes
have a common side direction, they have in common the corresponding side.

Consequently, if both P’ and P” are 3-affine then P’ = P”.

Let P/, P" be 2-affine. In accordance with 3.12, P**° has one side direc-
tion st and one medial direction m! for t =’,”. Assume, first, that s’ = ", so
m’ = m”. Then the triangles which determine corresponding planes have a
common side; say B} = B} and B; = BY, and then B’ UBj = B{UBj. The-
refore m’ = (B}, B{ U B)™ = (B}, By U B{)® = m", which gives Bj = Bj
and thus P’ = P”.

Now, suppose that s/ = m” and m’ = s”. Say, m" = (BY, Bf UB{)™ =
(B}, B5)™ = s'; then B} = BY (or B} = B}, which gives the same result)
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and B] = B U BY. Further, s” = (B, B§)™ = (B}, B{ U B))*™ = ' yields
Bj = B3 (or By = BY), B{ = B{UBj , and Bj, B = BY, Bj. This gives,
contradictory, Bf, B) = B}, Bj.

Finally, suppose that P’ is 3-affine and P” is 2-affine. Then, since P"
has one side direction, triangles which determine P’ and P” have one side
in common, say B} = B{ and Bj = Bj. Then (Bj, B{ UB%)® is a side
direction in P’, say (B4, Bf U B)® = (Bj, B4)™. Since B{UBj = B{UBj #
B, B; we obtain a contradiction. 0

By 3.13, the structure $(N) := (D, L3), where
L3 = {P*: P an i-affine plane of ¢(N), i = 3,2}

is a partial linear space, defined on the set D of directions. Note that the
structure (D, {P*: a 3-affine plane of €(N)}) is a partial linear space in
which every line has rank 3, and it is just a disjoint union of horizons of
Desarguesian closures (cf. [5]) of binomial graphs ¥ (cf. [3]), i.e. graphs of
the relation ~ in X.

From definition, the rank of each line of $(V) is 2 or 3.

LEMMA 3.14. Let k < E(%) and By, By € X with By ~ Bs, |B1| = k. Then
the rank r3(k) of the point (B1, B2)™ in the structure $H(N) is

r3(n, k) = r33(n, k) + r3.2(n, k),

where 73 ;(n, k) is the number of i-affine planes of 'B(N), which contain the
line By, Bs, and

n—2k .
)% if 2 fk _(n-2
r3'2(n’k)_{é”5;§’°§+(’g) if 2|k “"d’"3'3("’k)‘( k )

Consequently, r33(k) # 0 iff k < E(3).

Proof. Set b = (B;, B2)*™. Evidently, if b is the direction of a line contained
in a 3-affine plane P then B;, By € P and P = II(By, By, B3) for some Bs
such that |B3| = k and B3 C N \ (Bj U Bz). This justifies the formula for
7‘3,3(k).

Now, let b be the direction of a line contained in a 2-affine plane P. Two
possibilities appear. Either, P = II( By, Bs, B3) for some B3 C N\ (B1UB>)
with | B3| = |B; U By| — there are ("Ek%) sets By with these properties. Or,
P = II(Bi, D2, D3), where Bs_; = Do U D3 and |Da| = |D3| and i =1 or
i = 2. To find such D; we must require 2|k, i.e. kK = 2-m for some m. A pair
{D1, Dy} for B; can be chosen in % (?;;") ways, so there are (2:) triangles
of the second form. 0
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LEMMA 3.15. The number A3(n) of lines of H(N) is the sum
A3(n) = Az 3(n) + Az a(n),
where A3 ;(n) is the number of lines of rank i, and
E(3)

A33(n) "21;‘ Z (k) (n;k) (n—k%)’
E( )

Aaa(n) = % g (Z) <n;k) (n;k%)'

Proof. It suffices to note that we have to count all the triples By, Bs, B3
such that P = II(Bi, Bg, B3) exists, and it is a 3-affine or 2-affine plane. A
3-affine P is obtained if B; are pairwise disjoint and of the same cardinality
k, so 3k < n. To get 2-affine P we need k = |B;| = |B;| and |B;| = 2k; thus
4k < n. O

4. Automorphisms of the structure of barycentres

Note that if ¢ is a permutation of the set NV then ¢ induces an automor-
phism f = ¢* of B(N) by the condition f(B) = {¢(i): i € B} for B € X.
The aim of this section is to find all the automorphims of B(N) and all the
automorphisms of D(N).

Let us fix f € Aut('B(N)).

As an immediate consequence of 3.3 we have the following

COROLLARY 4.1. If B € X then either |f(B)| = |B| or |f(B)| =n+1-|B].

LEMMA 4.2. If an automorphism f fizes N, then it is determined by a per-
mutation ¢ of N.

Proof. By 4.1, f preserves the family {B € X: |B| =1 or B = N}. There-
fore, there is a permutation ¢ of N such that

F({z}) = {e(d)}
for every ¢ € N. This means that
(6) f(B) = {¢(i): i € B} = ¢*(B)

holds for every B € X with |B| = 1. Assume that (6) holds for all B with
|B| < k < n. Let |B| = k, we take any ¢ € B and write B = AU {i} with
A = B\ {i}. By assumption, f(A) = ¢*(A). Then B is the third point of the
line K = A, {1} of B(N), so f(B) must be the third point of the line f(K) =

¢(A), {(i)}. Then, either, f(K) = {0(4),{p(®)},»(4) \ {¢(i)}}, which is
impossible, since (i) ¢ ¢(A), or f(K) = {p(A4), {p(5)}, p(A)Up({i})} and
thus f(B) = {p(4) U {e(?)} = ¢(A U {i}) = ¢(B). Thus (6) holds for all
BeX. a



On set-theoretic and cyclic representation 633

LEMMA 4.3. Let a,d € N and ¢ be an arbitrary bijection of the set N \ {a}
onto N \ {d}. Define

o(i) if B={i} fori € N,i # a,
fo(B)=¢N  if B={a},
{d} fB=N.

Then the permutation fo of the points of B(N) of rank 2"~1 — 1 can be
extended, in a unique way, to an automorphism f of B(N).

Proof. Set A = {a} and D = {d} and assume that f is an automorphism of
B(N) extending the map fo. As in the proof of 4.2, for arbitrary i, 5 € N\{a}
we obtain f({%,j}) = {¥(?), v(j)} and, generally, f(B) = ¢(B) forall B e X
with a ¢ B. In particular, for A’ = N \ A we have f(A’) = p(A4).

Let a € B; set B, := B\ A. Then B is the third point of the line
B,, A, and thus f(B) is the third point of the line f(B,), f(A). We have
f(Ba) = ¢(B,) and f(A) = N, thus f(B) = N\ ¢(B,). Note that d € f(B)
in this case.

We have now an explicit definition of the map f:

_Je(B) ifa¢ B
f(B)'{N\so(B\{a}) ifoeB

for all B € X. The aim is to show that f is an automorphism.

Let K = {B, B’, B"} be a line of B(N) with B = B’Y B" (¥ stands for
the operation of disjoint union). If a ¢ B then f and ¢ coincide on K, so
f(B) = f(B)Y f(B") and f(K) is a line of B(N).

Now, let a € B; thus a € B\ B” (or a € B"\ B/, resp.). Then B, = B,V B",
s0 ¢(B,) = ¢(B.) Y ¢(B"). By elementary set theory, N \ ¢(B) = ¢(B")¥Y
(N \ ¢(B)), which yields f(B') = f(B") Y f(B’) and thus f(K) is a line,
as required. 0

The automorphism f constructed in 4.3 will be denoted by f = F,
(note that d is determined by the condition d € N \ ¢(N \ {a})). Especially
interested are maps F(q) = F{qiq); note that (F(a))2 = id for every a € N.

Now, a characterization of the group of automorphisms of B(N) will be
given.

PROPOSITION 44. Let P={Be€ X: B= NV |B|=1}.

(i) Ewvery permutation v of the set P can be uniquely extended to an
automorphism of B(N). Therefore, Aut(B(N)) = Sp41.

(ii) If f € Aut(*B(N)) then there are permutations 1,3 of N and
ay,az € N such that, either

o f =] is determined by o1, or
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o f=¢ioFg) = Fg,)o e
Thus we can write Aut(B(N)) =5, ® & = & ® S,, where & is the group

generated by {F(a): a € N} and ® is the complex product of two subgroups
in SN.

Proof. Let ¥ be a permutation of P. First, assume that ¥)(N) = N and set
I (P\ {N}). Then ¢ is uniquely extendable to an automorphism f

of B(N), and f(N) =

Then, assume that ¢¥(N) # N; let ¥(N) = {d} and ¢({a}) = N, for
some a,d € N. Set ¢ :== ¢ [ (P\ {a}). By 4.3, ¥ is uniquely extendable to
an automorphism f of B(N) with f(N) = {d} = ¥(N). This proves (i).

Let f € Aut(®B(N)). If f(N) = N then by 4.2, f is determined by a
permutation of N. Assume that f( ) # N, let f(N) = {a2} and f({a1}) =
N.Then fy = foF,,) and fa = F,,) 0 f are automorphism of B(N) fixing
N. By 4.2 we find permutations ¢1, @2 of N with f; = ¢; and the proof of
(ii) is finished. O

Clearly, every permutation ¢ of N determines an automorphism ¢* of the
structure D(N) as well. Recall that if L = {B;, By, q} with q = (B}, B})™ €
Dis aline of O(N), then | B1| = |By| and B} = B;\ B, B = B;\ B; for some
{i,5} = {1,2} (cf. 2.4). In this case the direction of f(L) is (f(B}), f(B5))™
Note that the boolean complement operation x: X 3 B~ N \ B yields an
(involutory) automorphism of D(N) as well. Clearly, if |Bi| = |Ba| then
|k(B1)| = |k(Bg)|. Moreover, if B} = B; \ B; and B)j = B; \ B; then By =
k(Bi) \ k(Bj), B = k(B;) \ £(B;) so, kK maps L onto {x(B1), k(B2),q}, and
k preserves every direction. In the sequel we shall prove that, in some sense,
these are all the automorphism of D(N).

PROPOSITION 4.5. Let f be an automorphism of D(N). Then f preserves D
and there is a permutation ¢ of N such that for every k < 3, either

a) f(B) = ¢*(B) for all B € X such that |B|=k or |B|=n—k, or
b) f(B) = kp*(B) for all B € X such that |B| =k or |[Bj=n—k.

Consequently, Aut(D(N)) = (Co)H3) & 8,,.

Proof. Note that N is the only point of D(N) such that no line of D(N)
passes through it, thus N remains invariant under every automorphism of
D(N).

A line L = {Bj, By, (B1, B2)*} with B; ~ By will be called a direction
line. A line L is dual-direction if k(L) is a direction line. Note that through
every q € D there passes exactly one direction line and exactly one dual-

direction line.
If L = {By,Bs,q} with q € D then we write (L) = |B;| and w(L) =

|B1 \ Ba|. In view of 3.6, the rank of Bj is r1(n, (L)) = (ﬁ(L)) —1, and the
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rank of q is r{°(n,w(L)) = 2"~2(L), Note that w(L) < B(L) < n — w(L),
w(k(L)) = w(L), and B(k(L)) = n — B(L). The equality 8(L) = w(L)
characterizes direction lines, and the equality §(L) = n—w(L) characterizes
dual-direction lines.

Let f € Aut(®B(N)) and L be a line of D(N). There is at least one proper
point of L mapped by f onto a proper point of f(L). Their ranks must be

equal, so (ﬁ&)) = (ﬂ(fr(lL))>’ and thus
(7) (a) : B(f(L))=B(L) or (b): B(f(L))=n—B(L).

Moreover

(8) w(f(L)) = w(L).

Indeed, if f maps L™ onto f(L)* then 2"~ 2(L) = on=2(f(1) 50 w(L) =
w(f(L)). Tf F(L®) ¢ D then (o0, ) =1 =222 and (g ) —1=
on=2(L) In both cases (7a) and (7b) we obtain 27~ 2w(L) = gn-2w(f(L)) 5o
w(L) = w(f(L)).

By (7a), (7b), and (8), if L is a direction line or L is a dual-direction line
then f(L) is a direction or a dual-direction line as well.

Assume that 2k # n, let L be a direction line with 3(L) = k; then L
and k(L) have only the point ¢ = L* in common and, moreover, 8(L) #
B(k(L)). Thus there is no line in D(N) which joins a proper point of L with
a proper point of x(L). Suppose that f(L) and f(x(L)) are two direction
lines, then they have a common proper point D; say f(L) = {D, D1,p1}
and f(k(L)) = {D, D3, po} with p1,p2 € D. Then |Dq| = |Dy|, so D1, D, are
collinear in D(N). Similarly, it is impossible to obtain two dual-direction
lines f(L) and f(x(L)). Thus only one of the lines f(L) and f(k(L)) is a
direction line, the other one is a dual-direction line, and then their common
point f(q) is improper. Therefore f(q) € D whenever q = (D;, D3)™ € D
and 2|Dq| # n.

Let B € X;takeany b € B and ¥ € N\ B, and set B’ = (B\ {b}) U {¥'}.
Then q = ({b},{b'})* is the improper point of the line L = B, B’; since
f(q) € D we get f(B) € X. Since B was arbitrary, we infer that f leaves
families D and X invariant. Set f*° = f [ D.and g= f | X.

Then g is a permutation of X such that

|B1| = |Bo| iff |g(B1)| = |g(Bz)|, for every By, By € X (cf. 2.4).

Set X = {B € X:|B| = k} and g = g | Xi. Note that if B € X
then |g(B)| = k or |g(B)| = n — k. Indeed, it suffices to consider any line
L through B; since |B| = B(L) and |g(B)| = B(f(L)), (7a),(7b) give the
claim. Thus, either g, is a bijection of X, or gx maps bijectively X, onto
Xn—k- Since f preserves the class of direction and dual-direction lines, gx
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is an automorphism of the binomial graph (X, ¥9), or an isomorphism
between (X, ¥9) and (X,,_, \I!flk__k"), where B1¥"* By means |B;NBy| =m
for By, By € X;. Then, by [3], there is a permutation ¢ of N such that,
either g = ¢* | X, or gi = ko* | Xi.

Let q = (D1,D2)® € D with |D;| = i. For every k > i there are
By, Bs € X}, with q € By, Bs. Therefore

£°(q) = gr(B1), 9x(B2) " = (r(D1), pi(D2)).

Consequently, {x(D1), or(D2)} = {@r(D1), prr(D2)} for all k', k" >
|D1| and Dy, Dy with Dy ~ Dy. With ¢ = 1 we come to ¢}, [ X2 = ¢pn | Xo
and thus, by (3], g = pir. Set ¢ = ¢;.

With every sequence o = (£1,...,&m, ), where ¢ € S,, m = E(%), and
€; = £1 we correlate a bijection g = I'(0') of X defined by

(B) = o(B) if|Bl=k,ex=1ore, =1
"\ kp(B)if|Bl =k, eg=—lore,p=-1"

By the above, I" maps (C,,)™ x S, onto Aut(D(N)). The formulae ko p* =
v* ok and (p*)* = (ko p*)™ for a permutation ¢ of N give that I is
a group homomorphism, I': (Co)™ & S, — Aut(D(N)). Finally, let o =
(€1, .. &€m,p) € (Co)™ x Sy, and (o) = id. Then |(['(0))(B)| = |B] for
every B € X and thus €, = 1 for each k with 2k # n. Therefore ¢ [ X = id,
which yields ¢ = idy. Now, suppose that n = 2m and ¢, = —1. Then we
have k(A) = A for every A € Xy, which is impossible. Thus I" has trivial
kernel, so it is an isomorphism. g

The automorphism groups Aut(€(N)) and Aut(H(NN)) will not be stu-
died in more details. We would like to only note that every f € Aut(€(N))
must preserve the family £, (as it consists of lines of rank 4). With rather
tedious calculations it comes out that f € Aut(B(N)) and f € Aut(D(N)),
which yields that f is determined by a permutation of V.

5. Final conclusions, remarks, and comments

The structures considered in the paper, 9 = B(N) and M = D(N),
are some particular partial Steiner triple systems. They are rather regular
— any two points of 9 with the same rank can be interchanged by an au-
tomorphism of 9. On the other hand these groups of automorphisms are
relatively small and quite elementary:

(i) Aut(9) = Sp41 has (n+ 1)! elements and acts on 2" — 1 points for
M = B(N) with |N| =n > 2, and

(i) Aut(9) = (Co)™ @ S, has 2™ - n! elements and acts on 2" — 1 +
(M) (":i) points for M = D(N) with [N|=n=2morn=2m+1.

1=1 1
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It is worth to note which partial Steiner triple systems defined in the pa-
per can be embedded into Fano projective spaces, and then how the results of
the paper can be interpreted in terms of the projective Fano geometry. The
boolean representation x: X — 2", which associates with a subset A of N
its characteristic function x4: N — 2 = {0,1} yields a projective repre-
sentation of B(N) in the (n — 1)-dimensional projective space PG(n — 1,2)
over GF(2). Indeed,

if By, B3, B3 € N are collinear in B(N), then x,,XB,, XB, are
collinear in PG(n — 1,2).

Since the proportionality relation in the vector space 2" coincides with the
relation of equality, the set P = 2" \ {6}, where § = xg, can be considered
as the set of points of PG(n — 1,2). Lines of this space are sets of the form
f1. f2 = {f1, f2, fi + f2}, where fi, fo € P are arbitrary but distinct. Then
B(N) is obtained by removing some lines of PG(n — 1, 2):

a line L of PG(n —1,2) is a line of B(N) if there are points
fi,fo € Lsuch that fi- fo =6

(we use the natural ring structure of 2" here).

Since the set F = {x(q}: @ € N} U {xn} of points of PG(n—1,2) is
(projectively) independent, from 4.4 we infer that every automorphisms of
D(N) is an automorphism of PG(n — 1,2) as well. It is seen that (under our
embedding) the group Aut(*B(IV)) consists of all the projective collineations
of PG(n — 1,2) which leave invariant the projective frame F.

Unhappily, the above representation cannot be (fully) extended to a
representation of (V) in a Fano space. Let f; = x4, € 2" for 4; € X.
By 2.4, the pair (A4;, A2) determines a direction in D(N) iff |x7!(f1)| =
Ix~1(f2)|- By 2.2, A1, A == A3, Ay yields fi + fo = f3+ f4, and thus

if Ay, A2 » Az, A4, then the vectors xa,, x4, and xa,, x4, are
parallel in the n-dimensional affine space over the vector space 2".

However, one cannot uniquely correlate a direction (A4;, A2)® € D with the
(projective) direction of the affine line x4,, x4, over 2". Indeed, let n > 4;
set A1 = {1,2}, A2 = {3,4}, A3 = {1,3}, Ay = {2,4}. The lines x4,, X4,
and xa,, xa, are parallel, but (A;, 42)® # (As, 44)*. We do not know
whether the structure D(N) can be embedded into a Fano space.

Clearly, 2 ¢ 3 = {1,2,3} and thus the characteristic function x4 for
A C N can be considered as an element of 3" as well. In particular, we obtain
an injection of X into the affine space 3" over GF(3). Let f; = xa, € 3" for
i=1,...,4 and let A1, Ay and A3z, A4 be collinear in D(N). Then

A1, Ay = Az, Ay iff the affine lines xa,, x4, and xa,, x4, are
parallel over 3™,
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Therefore, the map x can be extended to an injection of D(NN) into the pro-
jective completion PG(n, 3) of the above affine space. However, this repre-
sentation does not map lines onto lines. Moreover, not every automorphism
of D(N) can be extended to an automorphism of PG(n,3). On the other
hand, it seems that this injection can be extended to an injection of $(N)
into PG(n,3), but so far it is only a conjecture.

Up to now, no (natural and regular) minimal representation of €(NNV)
and of (V) in a finite projective space is known. In particular, we do not
know what is a minimal m such that $(N) can be embedded into a Fano
projective space PG(m,2). As noted on the page 631, if we remove from
$H(N) the lines with rank 2, the resulting structure will be the disjoint union
of the horizons of Desarguesian closures of some (binomial) graphs; it is
known that every such a closure can be represented in a Fano space. More
precisely, the horizon of the Desarguesian closure of the binomial graph ¥
of k-element subsets of N can be embedded into the space PG((}) — 2,2)
and this horizon contains a line only for 3k < n. Therefore, one can embed
H(N) into PG(m,2) for m = Y13’ (%) — B(Z) — 1. This embedding is
constructed, in accordance with the general theory, in a somewhat ”free”
way — one should expect that there exists an embedding with smaller m,
but no one is known yet.
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