

Liaqat Ali Khan

TRANS-SEPARABILITY IN SPACES OF CONTINUOUS VECTOR-VALUED FUNCTIONS

Abstract. Let X be a completely regular Hausdorff space and E a Hausdorff topological vector space (TVS). In this note, we study the notion of trans-separability for certain subspaces of $C_b(X, E)$ endowed with the σ -compact-open and some related topologies.

Let X be a completely regular Hausdorff space and E a Hausdorff topological vector space (TVS) with a base \mathcal{W} of balanced neighbourhoods of 0, and let $C_b(X, E)$ (resp. $C_{rc}(X, E)$) denote the vector space of all continuous E -valued functions f on X such that $f(X)$ is bounded (resp. relatively compact). Let $C_0(X, E)$ be the subspace of $C_b(X, E)$ consisting of those functions which vanish at infinity. If X is compact, $C_b(X, E) = C_{rc}(X, E) = C_0(X, E)$. When E is the real or complex field, $C_b(X, E) = C_{rc}(X, E)$ and we denote this by $C_b(X)$ and $C_0(X, E)$ by $C_0(X)$. The σ -compact-open topology σ (resp. compact-open topology k , countable-open topology σ_0) [4, 5, 11] on $C_b(X, E)$ is defined as the linear topology which has a base of neighbourhoods of 0 consisting of all sets of the form

$$N(A, W) = \{f \in C_b(X, E) : f(A) \subseteq W\},$$

where A varies over all σ -compact (resp. compact, countable) subsets of X and $W \in \mathcal{W}$. The uniform topology u on $C_b(X, E)$ is the linear topology which has a base of neighbourhoods of 0 consisting of all sets of the form $N(X, W)$, where $W \in \mathcal{W}$. Clearly, $\sigma_0 \leq \sigma \leq u$ and $k \leq \sigma$. Further, by ([11], Theorem 3.3), $\sigma = u$ iff $X = \bar{A}$ for some σ -compact subset A ; $k = \sigma$ iff every σ -compact subset of X is relatively compact; $\sigma_0 = u$ iff X is separable. For any $A \subseteq X$, let $\|\cdot\|_A$ denote the seminorm on $C_b(X)$ given by $\|f\|_A = \sup_{x \in A} |f(x)|$, $f \in C_b(X)$. We shall denote by $C_b(X) \otimes E$ the vector subspace of $C_b(X, E)$ spanned by the set of all functions of the form

1991 *Mathematics Subject Classification*: Primary 46E10; Secondary 46E40, 46A10.

Key words and phrases: topological vector spaces, vector-valued continuous functions, σ -compact-open topology, uniform topology, trans-separable spaces.

$\varphi \otimes a$, where $\varphi \in C_b(X)$, $a \in E$, and $(\varphi \otimes a)(x) = \varphi(x)a$, $x \in X$. Let βX denote the Stone-Čech compactification of X . Each g in $C_b(X)$ or $C_{rc}(X, E)$ has a continuous extension \hat{g} to βX and the spaces $C_b(X) \otimes E$ and $C_{rc}(X, E)$ are linearly isomorphic to $C_b(\beta X) \otimes E$ and $C_b(\beta X, E)$, respectively. Recall that a TVS E is called *admissible* if the identity operator on E can be uniformly approximated on compact subsets by continuous operators with finite dimensional range [12]. Every F -space with a basis, in particular l_p ($0 < p < \infty$), is admissible ([18], p. 101). We shall require the following known result. We sketch its proof for the sake of completeness (cf. [18], [11]).

THEOREM 1. $C_b(X) \otimes E$ is *u-dense* (hence also σ -, σ_0 -dense) in $C_{rc}(X, E)$ in each of the following cases:

- (i) X is a normal Hausdorff space of finite covering dimension and E any TVS.
- (ii) X is any Hausdorff space and E an admissible TVS.
- (iii) X is any completely regular Hausdorff space and E a locally convex TVS.

Proof. (i) Since X is a normal Hausdorff space of finite covering dimension, βX is also of finite covering dimension [3]. Thus, by ([18], Theorem 1), $C_b(\beta X) \otimes E$ is *u-dense* in $C_b(\beta X, E)$, and so the results follows from the above observation.

(ii) Let $f \in C_{rc}(X, E)$ and W a neighbourhood of 0 in E . Since $\overline{f(X)}$ is compact and E is admissible, there exists a continuous map $\psi : \overline{f(X)} \rightarrow E$ with finite dimensional range such that $\psi(f(x)) - f(x) \in W$ for all $x \in X$. By using the same argument as that of ([18], Proposition 1), we see that $\psi \circ f \in C_b(X) \otimes E$, and so f is in the *u*-closure of $C_b(X) \otimes E$.

(iii) If E is locally convex, then ([18], Theorem 1) remains valid without the assumption of finite covering dimension on X , and so the result follows as in (i). ■

A locally convex space is L is called *seminorm-separable* if, for each continuous seminorm p on L , (L, p) is separable. The following two classical results are stated for reference purpose.

THEOREM 2. (i) [13, 20] $(C_b(X), \|\cdot\|)$ is separable iff X is a compact metric space.

(ii) [16, 20] If X is locally compact, then $(C_0(X), \|\cdot\|)$ is separable iff X is a σ -compact metric space.

THEOREM 3. [5] The following statements are equivalent:

- (a) $(C_b(X), \sigma)$ is seminorm-separable.

- (b) $(C_b(X), \sigma_0)$ is seminorm-separable.
- (c) The closure in βX of each σ -compact subset of X is metrizable in βX .

A uniform space L is called *trans-separable* if every uniform cover of L admits a countable subcover ([7], [6]). This notion has occurred to be useful in the work of ([14], [1], [15]) while studying the metrizability of precompact sets in locally convex spaces (see also [9]). Drewnowski [2] had actually coined the word “trans-separable” and it has been further used by Robertson [15]. Recently, in [10], the author has introduced a generalized notion of separability in the TVS setting and characterized it for vector-valued function spaces endowed with the strict and compact-open topologies. This notion may be defined equivalently, as follows. Let (L, τ) be a TVS whose topology is generated by a family $Q(\tau)$ of continuous F -seminorms [21, p. 2]. Then (L, τ) is called *F-seminorm-separable* if (L, q) is separable for each $q \in Q(\tau)$. Clearly, separability implies *F*-seminorm-separability; the converse holds in metric spaces.

The following result establishes the equivalence of the notions of trans-separability and *F*-seminorm-separability.

PROPOSITION 4. *A TVS (L, τ) is trans-separable iff (L, q) is separable for each $q \in Q(\tau)$.*

P r o o f. Suppose L is trans-separable, and let $q \in Q(\tau)$. For each $n \geq 1$, let $V_n = \{x \in L : q(x) < 1/n\}$, a balanced neighbourhood of 0 in L . Then, for each $n \geq 1$, $U_n = \{x + V_n : x \in L\}$ is a uniform cover of L , and so it has a countable subcover $U_n^* = \{x_k^{(n)} + V_n : k \in \mathbb{N}\}$. Let $D = \bigcup_{n=1}^{\infty} \{x_k^{(n)} : k \in \mathbb{N}\}$. To show that D is dense in (L, q) , let $y \in L$ and $\varepsilon > 0$. Choose $N \geq 1$ such that $1/N < \varepsilon$. Since U_N^* is a cover of L then $y \in x_K^{(N)} + V_N$ for some $K \in \mathbb{N}$. Thus $q(y - x_K^{(N)}) < 1/N < \varepsilon$ and hence (L, q) is separable.

Conversely, suppose (L, q) is separable for each $q \in Q(\tau)$. Let $\{x + U : x \in L\}$ be any uniform cover of L , where U is a neighbourhood of 0 in L . Choose a balanced neighbourhood V of 0 in L with $V + V \subseteq U$. Pick $q \in Q(\tau)$ such that $W = \{x \in L : q(x) < 1\} \subseteq V$. Let $\{z_n\}$ be a countable dense subset in (L, q) . Since $L = \bigcup_{x \in L} (x + V)$, then for each $z_n \in L$, there exists some $x_n \in L$ such that $z_n - x_n \in W$. Let $y \in L$. Choose z_k such that $q(y - z_k) < 1$. Then

$$y - z_k = (y - z_k) + (z_k - x_k) \in W + W \subseteq U,$$

and so $L = \bigcup_{n \geq 1} (x_n + U)$. ■

THEOREM 5. *Let E be any non-trivial TVS. Then the following statements are equivalent:*

- (a) $(C_b(X) \otimes E, \sigma)$ is trans-separable.
- (b) $(C_b(X) \otimes E, \sigma_0)$ is trans-separable.
- (c) The closure in βX of each σ -compact subset of X is metrizable in βX and E is trans-separable.

Proof. It is obvious that (a) implies (b).

That (b) implies (c) follows from Theorem 3 and the fact that both $(C_b(X), \sigma_0)$ and E are isomorphic to subspaces of $(C_b(X) \otimes E, \sigma_0)$ via the maps $\varphi \rightarrow \varphi \otimes a$ ($0 \neq a \in E$ fixed) and $z \rightarrow 1_X \otimes z$, respectively.

(c) implies (a): By Theorem 3, $(C_b(X), \sigma)$ is trans-separable. Fix a σ -compact subset A of X and a balanced $W \in \mathcal{W}$. We need to show that there is a countable set $H \subset C_b(X) \otimes E$ such that $C_b(X) \otimes E = H + N(A, W)$.

For every pair $m, n \in \mathbb{N}$ choose a balanced $U_{m,n} \in \mathcal{W}$ so that, for $V_{m,n} = U_{m,n} + mU_{m,n} + U_{m,n}$, one has

$$V_{m,n} + \cdots + V_{m,n} \text{ (n-summands)} \subset W.$$

Also, choose a countable set $D_{m,n}$ in E so that $E = D_{m,n} + U_{m,n}$. Let D be the union of all these sets $D_{m,n}$ ($m, n \in \mathbb{N}$).

Next, for each $k \in \mathbb{N}$ denote $B_k = \{f \in C_b(X) : \|f\|_A \leq 1/k\}$ and choose a countable set G_k in $C_b(X)$ so that $C_b(X) = G_k + B_k$. Let G be the union of all these sets G_k ($k \in \mathbb{N}$).

We are going to show that the countable set $H = H_{A,W}$ of all functions in $C_b(X) \otimes E$ of the form $h = \sum_{i=1}^r g_i \otimes d_i$, where $g_i \in G$ and $d_i \in D$ ($i = 1, \dots, r$, $r \in \mathbb{N}$), is as required.

Take any $f \in C_b(X) \otimes E$. Then $f = \sum_{i=1}^n f_i \otimes a_i$ for some $f_1, \dots, f_n \in C_b(X)$ and $a_1, \dots, a_n \in E$. Let $m \in \mathbb{N}$ be such that $\|f_i\|_A \leq m$ for $i = 1, \dots, n$, and next choose $k \in \mathbb{N}$ so that $k^{-1}a_i \in U_{m,n}$ for $i = 1, \dots, n$. By the definitions of $D_{m,n}$ and G_k , there are $d_1, \dots, d_n \in D_{m,n}$ and $g_1, \dots, g_k \in G_k$ such that

$$a_i - d_i \in U_{m,n} \quad \text{and} \quad \|f_i - g_i\|_A \leq 1/k \quad \text{for } i = 1, \dots, n.$$

Now, for $i = 1, \dots, n$ and $x \in A$,

$$\begin{aligned} (*) \quad f_i(x)a_i - g_i(x)d_i \\ = (f_i(x) - g_i(x))a_i + f_i(x)(a_i - d_i) + (g_i(x) - f_i(x))(a_i - d_i). \end{aligned}$$

Hence (using the fact that $U_{m,n}$ is balanced)

$$f_i(x)a_i - g_i(x)d_i \in U_{m,n} + mU_{m,n} + U_{m,n} = V_{m,n}.$$

In consequence, setting $h = \sum_{i=1}^n g_i \otimes d_i$, we have $h \in H$ and for every $x \in A$,

$$f(x) - h(x) = \sum_{i=1}^n (f_i(x)a_i - g_i(x)d_i) \in W$$

so that $f - h \in N(A, W)$. ■

REMARK (I). A somewhat more transparent variant of the above proof that (c) implies (a) can be based on Proposition 4. Thus, one has to show that for any σ -compact subset A of X and any continuous F-seminorm p on E , the space $(C_b(X) \otimes E, p_A)$ is separable, where $p_A(f) = \sup_{x \in A} p(f(x))$. Now, let G be a countable subset dense in $(C_b(X), \|\cdot\|_A)$, and D a countable set dense in (E, p) . Take any $f = \sum_{i=1}^n f_i \otimes a_i$ in $C_b(X) \otimes E$, and choose $m \in \mathbb{N}$ so that $\|f_i\|_A \leq m$ for each i . Given $\varepsilon > 0$, let $g = \sum_{i=1}^n g_i \otimes d_i$, where $g_i \in G$ and $d_i \in D$. Assume that $\|f_i - g_i\|_A \leq \delta$ for all i and some as yet unspecified $0 < \delta < 1$. Then, making use of (*), it can be easily seen that

$$\begin{aligned} p_A(f - g) &\leq \sum_{i=1}^n (p(\|f_i - g_i\|_A a_i) \\ &\quad + p(\|f_i\|_A (a_i - d_i)) + p(\|f_i - g_i\|_A (a_i - d_i))) \\ &\leq \sum_{i=1}^n (p(\delta a_i) + (m + 1)p((a_i - d_i)). \end{aligned}$$

But this can be made less than ε by taking δ sufficiently small and choosing the d_i 's in D sufficiently close to the a_i 's. It follows that the countable set of all g 's of the above form is dense in $(C_b(X) \otimes E, p_A)$.

(II). If $C_b(X) \otimes E$ is u -dense in $C_{rc}(X, E)$ (cf. Theorem 1), then clearly Theorem 5 holds with $C_b(X) \otimes E$ replaced by $C_{rc}(X, E)$. We do not know of any general assumption on X other than its compactness in Theorem 1 ensuring that $C_b(X) \otimes E$ is σ - or σ_0 -dense in $C_b(X, E)$. However, without this density assumption, the following holds.

THEOREM 6. $(C_b(X, E), \sigma)$ is trans-separable $\Leftrightarrow (C_b(X, E), \sigma_0)$ is so.

Proof. \Rightarrow This follows from the fact that $\sigma_0 \leq \sigma$.

\Leftarrow Suppose $(C_b(X, E), \sigma)$ is not separable. We show that $(C_b(X, E), \sigma_0)$ is also not trans-separable, i.e., if $H = \{f_n\}$ is any countable set in $C_b(X, E)$, then there exist a countable set $B = \{x_n\} \subseteq X$ and a $W \in \mathcal{W}$ such that $C_b(X, E) \neq H + N(B, W)$. Since $(C_b(X, E), \sigma)$ is not separable, there exists a σ -compact set $A \subseteq X$ and a $W \in \mathcal{W}$ such that $C_b(X, E) \neq H + N(B, W)$. Then there exists an $f \in C_b(X, E)$ such that $f - f_n \notin N(A, W)$ for all $n \geq 1$. So, for each $n \geq 1$, there exists an $x_n \in A$ such that

$$f(x_n) - f_n(x_n) \notin W.$$

Thus, if $B = \{x_n\}$, $f - f_n \notin N(B, W)$ for all $n \geq 1$. Hence $C_b(X, E) \neq H + N(B, W)$, and so $(C_b(X, E), \sigma_0)$ is not trans-separable, as desired.

Next, using Theorem 2 and the method of the proof of Theorem 5, we obtain:

THEOREM 7. *Let E be a TVS. Then:*

- (a) $(C_b(X) \otimes E, u)$ is trans-separable iff X is a compact metric space and E is trans-separable.
- (b) Suppose X is locally compact. Then $(C_0(X) \otimes E, u)$ is trans-separable iff X is a σ -compact metric space and E is trans-separable.

Again we remark that, if $C_b(X) \otimes E$ (resp. $C_0(X) \otimes E$) is u -dense in $C_b(X, E)$ ($C_0(X, E)$), Theorem 6 remains valid with $C_b(X) \otimes E$ ($C_0(X) \otimes E$) replaced by $C_b(X, E)$ ($C_0(X, E)$).

Finally, we give some examples concerning the above results and remarks.

EXAMPLES. For $0 < p < 1$, let $l_p = l_p(\mathbb{N})$ denote the usual space of scalar sequences, and let $h_p = h_p(D)$ denote the Hardy space of certain harmonic functions on the unit disc D of complex plane (see [17]). l_p and h_p are not locally convex but are locally bounded (hence locally pseudo-convex or semi-convex [8]) and their duals separate points; l_p is separable while h_p is not since it contains a copy of l_∞ ([17], Theorem 3.5). Let ω be the first uncountable ordinal and ω_0 the first countable infinite ordinal. Let $\Omega = [0, \omega]$ and $\Omega_0 = [0, \omega_0]$, each endowed with the order topology, and let $T = \Omega \times \Omega_0 \setminus \{(\omega, \omega_0)\}$, the *deleted Tychonoff plank*, with the product topology ([19]). Then:

1. $(C_b(X) \otimes l_p, u)$ is u -dense (hence also σ -, σ_0 -dense) in $C_{rc}(X, l_p)$ for any Hausdorff space X since l_p is admissible.
2. $(C_b(\Omega) \otimes l_p, u)$ and $(C_b(\Omega_0) \otimes h_p, u)$ are not trans-separable since Ω is not metrizable and h_p is not (trans-) separable.
3. $(C_b(\Omega_0, l_p), u)$ is trans-separable since Ω_0 is compact and metrizable.
4. $(C_b(T) \otimes l_p, \sigma)$ is not trans-separable since, if $A = \bigcup_{i=1}^{\infty} \Omega \times \{n\}$, A is σ -compact and $\bar{A}^{\beta T} = \beta T = \Omega \times \Omega_0$ which is not metrizable (see [5], p. 259).

Acknowledgement. Theorems 5 and 6 were originally proved for E a locally pseudo-convex space with nontrivial dual E' . The author is greatly obliged to the referee for several useful suggestions including the present general proofs of Theorems 5 and 6 which holds for any non-zero TVS E .

References

- [1] B. Cascales and J. Orihuela, *On compactness in locally convex spaces*, Math. Z. 195 (1987), 365–381.
- [2] L. Drewnowski, *An other note on Kalton's Theorem*, Studia Math. 52 (1975), 233–237.
- [3] L. Gillman and M. Jerison, *Rings of Continuous Functions* (Van Nostrand, 1960).

- [4] D. Gulick, *The σ -compact-open topology and its relatives*, Math. Scand. 30 (1972), 159–176.
- [5] D. Gulick and J. Schmets, *Separability and semi-norm separability for spaces of bounded continuous functions*, Bull. Soc. Roy. Sci. Liège 41 (1972), 254–260.
- [6] A. W. Hager, *Some nearly fine uniform spaces*, Proc. London. Math. Soc. (3) 28 (1974), 517–546.
- [7] J. R. Isbell, *Uniform Spaces*, Amer. Math. Soc., Providence, 1964.
- [8] S. O. Iyahen, *Semi-convex spaces*, Glasgow Math. J. 9 (1968), 111–118.
- [9] L. A. Khan, *On seminorm separability for vector-valued function spaces*, Studia. Sci. Math. Hungarica 24 (1989), 43–45.
- [10] L. A. Khan, *Generalized separability in vector-valued function spaces*, Ann. Univ. Sci. Budapest 42 (1999), 3–8.
- [11] L. A. Khan and K. Rowlands, *The σ -compact-open topology and its relatives on a space of vector-valued functions*, Boll. Un. Mat. Ital. (7) 5-B (1991), 723–739.
- [12] V. Klee, *Leray-Schauder theory without local convexity*, Math. Ann. 141 (1960), 286–296.
- [13] M. Krein and S. Krein, *On an inner characteristic of the set of all continuous functions on a bicomplete Hausdorff space*, C. R. (Doklady) Acad. Sci. URSS (N. S.) 27 (1940), 423–430.
- [14] H. Pfister, *Bemerkungen zum Satz über die separabilität der Fréchet-Montel-Räume*, Arch. Math. 27(1976), 86–92.
- [15] N. Robertson, *The metrizability of precompact sets*, Bull. Austral. Math. Soc. 43 (1991), 131–135.
- [16] Z. Semadeni and P. Zbijewski, *Spaces of continuous functions I*, Studia Math. 16(1957), 130–141.
- [17] J. H. Shapiro, *Linear topological properties of the harmonic space h^p for $0 < p < 1$* , Illinois J. Math. 29 (1985), 311–339.
- [18] A. H. Shuchat, *Approximation of vector-valued continuous functions*, Proc. Amer. Math. Soc. 31 (1972), 97–103.
- [19] L. A. Steen and J. A. Seebach, Jr, *Counterexamples in Topology* (Springer-Verlag, 1978).
- [20] W. H. Summers, *Separability in the strict and substrict topologies*, Proc. Amer. Math. Soc. 35 (1972), 507–514.
- [21] L. Waelbroeck, *Topological Vector Spaces and Algebras*, Lecture Notes in Math. No. 230, Springer-Verlag, 1971.

DEPARTMENT OF MATHEMATICS
 FACULTY OF SCIENCE
 KING ABDULAZIZ UNIVERSITY
 P. O. BOX 80203
 JEDDAH-21589, SAUDI ARABIA
 E-mail: akliaqat@hotmail.com

Received May 24, 2002; revised last version January 31, 2004.

