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ON THE RATE OF POINTWISE STRONG SUMMABILITY
OF FOURIER SERIES

Abstract. There is introduced a modified local modulus of continuity as a measure
of pointwise strong summability. The approximation versions of known results FuTraing
Wang [6] and A. A. Zakharov [8] are obtained.

1. Introduction

Let LP (1 < p < o0) [resp.C| be the class of all 27-periodic real-valued
functions integrable in the Lebesgue sense with p-th power [continuous] over
Q = [-m, 7] and let X = XP where XP = [P when 1 <p<owor XP =C
when p = co. Let us define the norm of f € X? as

1/p
o 1@ — | (T 17@ P dz) " when1<p <o

Sup.eq | ()| when p=oco.
Consider the trigonometric Fourier series
oo o0
Qo .
57@) = 20 S (o) coskz + bi(f)sinka) = Y- Cuf (&)

k=0 k=0

and denote by S f, the partial sums of Sf, and let

B @) = {

+1E|Skf(:v) f@rl, @0,

The pointwise characteristic
1h 1/p
w10) = swp {5 lps 0Pt}
0

where ¢, (t) := f(z+1t) + f(x —t) — 2f (z) constructed on the base of
definition of Lebesgue points (L-points) was firstly used as a measure of
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approximation, by S. Aljanéi¢, R. Bojanic and M. Tomi¢ [1]. This charac-
teristic was very often used, but it appears that such approximation cannot
be comparable with the norm approximation beside when X = C. In [4]
there was introduced the slight modified quantity
18 1/p
w2 (8) = {3 Iz (Ot
0 .

On the base of definition of the indefinite integral differentiability points
(D-points) it was considered the quantity
1k
n S Pz (t) dt
h

w,f(0) = sup , (see [2])

0<h<$s

and in [5] was introduced the following also slight modified quantity
h

wif(8) = sup |5 [ ()d
0

0<h<é
We can observe that for p € [1,00) and f € C
wp f(0) S WL S () Swef (6)

and
wzf(8) STf(6) S wef (6)
and also, with p>pfor fe X 5, by the Minkowski inequality

(1) lo? O < [P f@) - <w £ (),
and
@ [w?f@ - < @O - <w £ (@),

where wy f is the modulus of continuity of f in the space X = X7? defined
by the formula
wxf(8):= sup |If(-+h)—f()lx-
0<|h|<8

It is well-known that HJ f (z) means tend to 0 at the D—points of f € L?
(1 < p £2).In [2] this fact was presented in the approximation version with
the quantity W} f as a measure of such approximation. Here for estimation
of the Hif (z) means both the new measures of approximation are used in
the approximation version of the result of A. A. Zaharov [8]. We will also
consider the case when p = 1 and prove the approximation version of the
result of Fu Triang Wang [6] with the following characteristic

a h
(*) w8 f(8) = sup log hl/h S |pz (2)] dt.
0<h<s 5
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By K we shall designate either an absolute constant or a constant de-
pending on the indicated parameters, not necessarily the same of each oc-
currence.

2. Statement of the results
We start with a theorem, for the case p = 1.

THEOREM 1. If f € L1, then with a > 1,

Hf (2) < K {waf (6a) + wif(m)} + K { kz:%[ L k+1 ] }1/4

2
where 6, = 5, W = {/(n+ 7y, [“’Llf(k%) , and w8 is defined

by (x) for all real x and every positive integer n.
Next, we consider the case p > 1.
THEOREM 2. If f€e IP(1<p<2) and : + =1, then

q
[m/6n] w? pyd 00 wrf (%
HYf(z) gK{(n+1)1"’ 3 #}—}PWLK{(W}-I) T z£2(7;)}

k=0 k={rr/6,)

for some positive 6, tending to zero, all real x and every positive integer n.

From (8] we can deduce the possibility of existence of a sequence 4, for
which we have

REMARK 1. If f € L! and z € R is such that

3) wyf (t) =0 (1),

then there exists , — 04 such that

(4) (n+1)é, /o0

and

(5) On sup wif (6n) = 0z (1/n).
0<é<

The construction of §, goes in the following way: Condition (3) im-
plies that there exists a minimal n; € N such that for n > n; we have

wi [f] (nL_H) < 1 and also it follows that we can find a minimal np € N

such that n22 < % and for n > ng it is w}{f] n+1) < 517 If now we

put 6, = Iy for n; < n < ng — 1, we obtain for these n the relation
(n + 1) 6 supg<s<s, wr (f] (5) < 1. Now, again by (3) we can point at such

a minimal n3 that n% < % and for n > ng it is w [f] (n+1) < 517 and
if we put 6, = 7;2+L1 for ng < n < ng — 1 we will have for these n also
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(n+ 1) bn supgs<s, Wy [f] () < 1. Repeating this argument we can find a
subsequence of natural numbers n; — oo such that for n fulfilling nx <n <
ng+1—1 we will have (n + 1) 6, = k7 and (n + 1) dr supgs<s, wy [f] (6) < i
Thus, the sequence 4y, satisfying (4) and (5), is constructed.

With such a sequence we can estimate the second term in Theorem 2 in
the following way:

(n+1) Z % <(n+1) sup wz{fl(9) Z

k=[n/6n} k=[r/éx)

< w sup w; [f](6) =0z(1) asn— o0
T 0<6<6,

and if |w? [f](8)] < K for § > 0, the first one can be estimated as follows:
{m/6n] (wpf( T ))P 1 [r/dn]-1 1 1/p
e S AL (R S N
{( ) ,;, (k+1)*7 (n+1) kz::O (k +1)2-p
< S S— T
{(n+1) 8,17
by condition (4). Thus, from our theorems the results of [8] and [6] follow.

COROLLARY 1. Let f € L? (1 < p £2) and % + % = 1. Ifz € R is such that
wyf (8) = 0z (1) and wif (t) = Oz (1) ast — O,

= 0,(1) asn — oo

then
Hif(z)=0.(1) asn — o0
and if f € L}, wiogf(ﬁ) = 0, (1), with a > % ast — 04, then
HXf (z) = 0, (1) as n— oo.
Now, using the relations (1) and (2), we can derive norm approximation
corollaries from Theorem 2.

COROLLARY 2. If f€ X = XP (P € (1,00) and > p € (1,2, then

[r/dn] Py 1/p
I flx < K{(n+ 1)onwx f(6)} + K{(n +1)7 Y (__f_(___)_)_}

k=0 (k+1)2_p
and, when 6, = 7y, then
P
wxt (g1)) (V7
H3 <K{ n+1)"7P (—————————-}
1Hflx < K{ (n+ 1)} kzo i

for every positive integer n.
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In the proof of Theorem 1 we will need the following modified result of
E. Hille and G. Klein [3].

LEMMA 1. If g € L' and v is a continuous decreasing function in [0, 7],
then

v (t)sinp,tdt < Kv(0) (1 1) Wyt
§g<)<> p © (1 + lgllzwng ()

where e.g. pn, =n or p, = n+% andn=20,1,2, ...

V() = { (2sin§)”

1=l
(2sin %)

Putting

for t€[0,4]
for t e [4,7] ’
and p, =n+ % with ¢, instead of g we obtain

COROLLARY 3. If f € L! then for all real  and § € (0, 7],

17 sm—mil-L 1 7r

PP —dt<K 1 ),

e 055 5@+l onf ()
wheren =0,1,2,.

3. Proofs of the results

3.1. Proof of Theorem 1. Let as usually
2

1 1T s1n g2k+1 1/2
2
_ 2 2 <
Hy.f (=) {n+1z 77(8)% 2sin £ at } S Ant Bt Coy
where
1 n 1 'n SIHM 1/2
e (B T ),
Tl o sin §
2
1 n Tn sin (2k+1)t 1/2
Bo= {5 i 0 |
n+ k=0|™ 4, 2sm§
and
n x 2k+1 2,12
Cn___{_l_zlg  Sin dt } :
n+1k=0 o 2s1n2
12
with &, = 77 and v, = {‘/(n +1)7 T [wn F(5)] -
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Then
8n
4 s G frowonaf = uts ()]
< %—l [wifgf('yn)]2 for 6, < Y.

For the quantity B,, we construct the special estimate

n Tn

(n+1)B25;r13§ SM

3 U o1 v
i b 8sin 5 Sin 5

X i [cos(u-}-%) (u—v)—cos(u+ )(u+v)] dudv

27"

=37
T 8w i b
n u—

X Z [cosu(u — V) cOoS

v=0

S ¢z (u) @z (v)
sin % sin 5

v L uU—v
—sinv (u — v) sin

+ —cosu(u+v)cosu+v+sinz/(u+v)sinu+v]dudv

_ LT e ) [(1, sinBge) | u—
472 66 sin § sin § 2 2sin ¥5Y 2
B lcotu—v _cos 2"+12u_v sin LY
22 2sin &2 )
1 + singwﬂ2 . u+v
27 " 2sme )P
1 u+v cosQ—"—’L—l?xﬂ‘—’l utv
- §cot 5 — ;_ sin 5 dudv
1 7Y oo(u)ex(v) [sin(n+1)(u—v) sin(n+1)(u+v)
——2S§ — v —uty dudv
4r i, 5, Sngsing 7 2sin >
=B, +B,.

If we observe that (cf. [8] p. 78)

_1
u(u—v)

1
uY

1 1
u—v v

1 —
v(u—v)

1
v(u—v)

1
Tu




Pointwise strong summability

ez (V)| Isin(n+ 1) (u—v

) dudv

oz ()] [sin (n + 1) (u - v)| mdudv
70 e (W) T lez ()] (sin(n+1) (u—v)]
- § 6§, u an Uu ( uU—v +

+ |sin (n + 11)) (u— v)|> dudy

7T ez (w)] 1 1z (v)] (n+1)(U~v) 1
< —8_55,, = JS,, o ( s 5—) dudv
n o u

B 8 JS,.U on

and

pr (v)| sin (n + 1) (u + v)|

SZutv dudv
T 2

Tnou
|B|—471r28§|(p1()

‘II'/ u

< g S Iﬂoz(u)”%(de dv

- 2
86n6,. uy

7r(n + 1) 7r§2 I(Pz

S loz (v)] dudv.
on

Consequently,

7 (n ™ loe (W) Y
n n
T(n+1) T |z ()| wsf ()
s 4 S tlog® 1/t dt

By,

I

0n
m(n+1) 4 " s (/)]
—7 Y= f(vn) | wlog® u/m

o= (t)]
tlog*1/t

<

w/mn

=K(n+D)wsf(m) |
wf(n+1)

607
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wzf(t) ]”/m" +

loga l/t 7/(n+1)

o e LT wlef)
tlog?* 1/t —e | tlog?*t11/t

m/(n+1) 7/(n+1)

<Kl e ot )

2a
log®m, /7 W/(nﬂ)tlog 1/t

= K (n+ 1) w8 f (1) {[

+

<K (n+1) [wbsf(3)]

where m,, = [m/vn).
Finally, by Corollary 3,

(n+1)(Co)? < Z [K’Yi A+ llp) wia f (k )]

k=0 n
with v, = </(n + 1)1 S olwn f ()]
Collecting our estimates we obtain the thesis in the case 6, < yy,.
If o, < 6, then, again by Corollary 3, we get

(v DS < (4 D+ K g 171 S st ()]

<K= 2(1+IlfIIL1) Z [le (5

n+1

e f @) + K (1 + 1 fll1)? kgo [lef ( >]

and our thesis follows.
3.2. Proof of Theorem 2. Let

<

EENEE: sin (2k+1) q) /4
Hif (I) = Pz (t) —dt < Ap + Dy,
n+1 Z (SJ 2sin £ 3
where
n on !2k+1! ay /g n 1/q
1 1 sin 1
= z ={ T |7
An {n+1’§7r§)90() 2sm; } {n+1,§)I kl}
and ”
q
1 T sm 2k+1
D, = - dt
{n Z T S 2s1n

with some 6, > 0.
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Applying estimate
on
+
0
1 %0 2ktl oo Zetlysin 4t — 1 cos 1tsin -t !

S 2
2 H (sin 5t)2

sin 2k+1)t

—'—2—_—S‘Pz( )d

8 g n (2k+1)
T < (—
2sin = 5 0

¥

) S 0z (u) dudt

251112

< 2w f(8n) +

S oz (u)dudt

)
T k+1
<2uif (5)+ 3 | T

0

w(k+1
++_£_2+_)§)

N mk+1) T 1 , (7
<outf )+ =D | Gty (D)
/6

o k+l_ wp(m
S2w;f(5n)+——7r2(k+1) > ————w’fz(u)du

2 k=ln/bn] k

<2wif(Gn)+K(k+1) Y w’;(z)
k=[r/6y)

we obtain immediately that

o wif (%)
A, <K +1 — 7N
{(n )kz[%n] Gt 1)
Q}l/q

The second term we give as a sum
q } 1/q

1 n
Dn < {n+ 1 Z
” 1/p
Ru<K(n+1)7% {S s (t)l”dt} < K (n+1)75udf ()

Scp,,,.(u du{dt < 2w} f (&)

wyf (t)dt

S P (t) t sin ktdt

cos ktdt

17 ¢:
= S P 2(t)

on
=Pn+}?fm

and using the Hausdorff-Young inequality we obtain

1
+{n+lz
Jn
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1
<K (n+_1)1—1’[7§l] _(wgf (&))"

<K {(n+ 1) @l f (m)}) ET
k=0

and similarly

™

|

p Y1/p
dt}
O

1
B [n/82) wgf T Py
SKf@+'™ 3 (2t ()" (k+(f)fl_)p) ,

by partial integration. Thus our result is proved.

Pz (1)

PnSK(n+1)-%{ :
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