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ON THE RATE OF POINTWISE STRONG SUMMABILITY 
OF FOURIER SERIES 

Abstract. There is introduced a modified local modulus of continuity as a measure 
of pointwise strong summability. The approximation versions of known results PuTraing 
Wang [6] and A. A. Zakhaxov [8] are obtained. 

1. Introduction 
Let LP (1 < p < oo) [resp.C] be the class of all 27r-periodic real-valued 

functions integrable in the Lebesgue sense with p-th power [continuous] over 
Q = [-7T, 7r] and let X = Xp where Xp = LP when l < p < o o o r X p = C 
when p = oo. Let us define the norm of f e Xp as 

I f ( x ) \p d x j w h en 1 < p < oo, 

. suPze<2 I f ( x ) I w h e n P = oo. 
Consider the trigonometric Fourier series 

n ( f \ oo oo 
Sf(x) = + X ) ( ° f c ( / ) c o s k x + M / ) s inkx) = £ Ckf(x) 

fc=0 Jk=0 

and denote by S k f , the partial sums of S f , and let 

xp = \\m\\xp = 

HU (x) :=
 {^TT P0

 lSkf (x)
 ~
 f (l)r }5' {q>0)' 

The pointwise characteristic 

®£/(*):= sup {l\\<px(t)\>>dt) i /P, 
o<h<6 I h 5 J 

where ipx (t) := f (x + t) + f (x — t) — 2 / (x) constructed on the base of 
definition of Lebesgue points (L-points) was firstly used as a measure of 
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approximation, by S. Aljancic, R. Bojanic and M. Tomic [1], This charac-
teristic was very often used, but it appears that such approximation cannot 
be comparable with the norm approximation beside when X = C. In [4] 
there was introduced the slight modified quantity 

f 1 ? 1 1 / p 

im-.= {-s\\fX(t)\pdtj . - U 
o 

On the base of definition of the indefinite integral differentiability points 
(D-points) it was considered the quantity 

h 
w*xf(S) := sup 

0<h<6 
1 
- \ ipx (t) dt 
ho 

(see [2]) 

wxf(S) '•= SUP 0<h<S 

and in [5] was introduced the following also slight modified quantity 
1h 
-\<px(t)dt . 
So 

We can observe that for p G [1, oo) and / € C 
wPxf(S)<vfxf(S)<u;cf(S) 

and 
w*xf(6)<w*J(5)<ujcf(S) 

and also, with p > p for / e Xp, by the Minkowski inequality 

(1) I K / W I I ~ < I K / W I I -
XP XP XP 

and 
(2) ||u*7(i)|| ~ < ||u7f/(<i)|| - < a , - . / ( J ) , XP XP XP 
where u>xf is the modulus of continuity of / in the space X = Xp defined 
by the formula 

uXf{S):= sup \\f(- + h)-f(.)\\x. 0<\h\<S 
It is well-known that H%f (x) means tend to 0 at the D—points of / e LP 

(1 < p < 2). In [2] this fact was presented in the approximation version with 
the quantity w%f as a measure of such approximation. Here for estimation 
of the H%f (x) means both the new measures of approximation are used in 
the approximation version of the result of A. A. Zaharov [8]. We will also 
consider the case when p = 1 and prove the approximation version of the 
result of Fu Triang Wang [6] with the following characteristic 

(*) w ^ m = s u p J \ V x ( t ) \ d t . 
0<h<6 n n 
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By K we shall designate either an absolute constant or a constant de-
pending on the indicated parameters, not necessarily the same of each oc-
currence. 

2. Statement of the results 
We start with a theorem, for the case p = 1. 

T H E O R E M 1. If f e L 1 , then with a > 

( 1 71 r _ 1211/4 
Hlf (*) < K {wxf (tfB) + v f r f i - Y n ) } + E [^fi^rT)J } 

where Sn = -yn = ^(n + 1) 1 , and tojj* is defined 

by (*) for all real x and every positive integer n. 

Next, we consider the case p > 1. 

T H E O R E M 2 . If f e I f (1 < p < 2) and ± + A = 1, then 

for some positive Sn tending to zero, all real x and every positive integer n. 

From [8] we can deduce the possibility of existence of a sequence 8n for 
which we have 

R E M A R K 1. If / e L1 and x e R is such that 

(3 ) w*xf(t) = o x ( l ) , 

then there exists 6n —> 0+ such that 
(4) (n + 1) <5n / " oo 
and 
(5 ) 5n s u p w*xf{5n) = o x ( l / n ) . 

o<<5<<$„ 
The construction of Sn goes in the following way: Condition (3) im-

plies that there exists a minimal n\ 6 N such that for n > n\ we have 
w* [/] ( ^ i ) < 1 and also it follows that we can find a minimal ni 6 N 

such that ^ < 5 and for n > n-i it is w* [/] (^fx) < ^ now we 

put 6n = for ni < n < ri2 — 1, we obtain for these n the relation 
(n + 1) 8n sup0<5<5n w* [/] (i) < 1. Now, again by (3) we can point at such 
a minimal 713 that ^ < 3 and for n > «3 it is w* [/] ( ^ f j ) < p and 
if we put Sn = for «2 < n < «3 — 1 we will have for these n also 
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(n + 1) 8n s u p 0 < ( 5 < ( 5 n w* [/] (S) < Repeating this argument we can find a 
subsequence of natural numbers n^ —• oo such that for n fulfilling n^ < n < 
n f c + 1 - 1 we will have (n + 1) Sn = kn and (n + 1) Sn sup0<(j<an [/] ( i ) < 
Thus, the sequence Sn, satisfying (4) and (5), is constructed. 

With such a sequence we can estimate the second term in Theorem 2 in 
the following way: 

00 in* f (—"l 0 0 1 
( » + D E ~ ^ < ( n + l ) snp K I M * ) £ ¿ 2 

k=[n/Sn] K *=[*/*»] K 

(n +1) 5n *rn/'i\ 
< sup wx [/J (d) = ox (1) as n —> oo 

7T 0«5<5n 

and if \VJP [/] (5)| < K for 5 > 0, the first one can be estimated as follows: 

( ( n + l ) 1 ^ V h i i ( n + i ) i -P V T T - W - l 
r t o { k + l ? ~ p J - l V t o (k + 1 ) 2 - p i 

K . . 
< -rr = o z ( l ) as n —> oo 
" {(n + l ) J n } V 9 

by condition (4). Thus, from our theorems the results of [8] and [6] follow. 

COROLLARY 1. Let f e L? (1 < p < 2 ) and ± + ^ = 1. Ifx e R is such that 
w*xf (t) = ox (1) and uPxf (t) = Ox (1) as t —• 0+, 

then 
Hnf (x) = °x (1) as n —y oo 

and if f € L1, = ox (1), with a > ^ as t —• 0+, then 
H„f (x) - ox (1) as n -» oo. 

Now, using the relations (1) and (2), we can derive norm approximation 
corollaries from Theorem 2. 

COROLLARY 2. Iff e X = X?(pe ( l ,oo) andp>pe (1,2], then 
e t'r/<inI (UJY f(-JL-))p } Vp 

\\HM\\x<K{(n + l)5nu,xf(Sn)} + K{(n + l)i-r £ (fc + i^-p } 

and, when 6n = then 

for every positive integer n. 
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In the proof of Theorem 1 we will need the following modified result of 
E. Hille and G. Klein [3]. 

LEMMA 1. If g € Ll and v is a continuous decreasing function in [0,7r], 
then 

7T , 
\g(t)v ( i ) s i n pnt dt < K v ( 0 ) ( 1 + \\g\\Li)wLig ( -^—r 

where e.g. pn = n or pn = n+ \ and n = 0,1,2, . . . 

Putting 

_ J (2 sin for t e [0,5] 

\ (2 sin I ) " 1 for t e [<5, tt] 

and pn = n + 5 with <px instead of g we obtain 

COROLLARY 3. If f e L1 then for all real x and S € (0,7r], 

1 7 s sin i2n±HL 1 ^ f v 

5 

u{t) 

z \ V» w dt + H/lbW/ Z bill r> ns 

where n = 0 , 1 , 2 , . . . 

n + 1/ ' 

3. Proofs of the results 

3.1. P r o o f of T h e o r e m 1. Let as usually 

(2fc+l)t r 1 n 1 n sin ( 2 f c + 1 ) f 1 1/2 

where 

and 

n==<U + i j £ 
sin 

- VX (t) . \ dt 
0 2 s m l 

7n 

- j <Px(t) 
7T - J 

sin (2fc+l)t 

2 sin | 
-dt 

(2fc+l)t „ ; 1 " 1 ; s i n ^ f 
-dt 

1/2 

1/2 

1/2 

with sn = ^ and 7n = rf(« + l ) " 1 E L o 
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T h e n 

^ (n + 1) 3 

( n + l ) ^ ) 2 ^ ^ - ^ \\<Px(t)\dt 
o 

n + 1 ir 
n + 1 

< for Sn< 7„. 

For t h e q u a n t i t y Bn we c o n s t r u c t t h e specia l e s t i m a t e 

7n 7n , 1 f [ fx (u) fx {v) 
(n + l ) B n < - j \ \ 

s„ < 
n £ 

7r® / / 8 s in 7j sin * 
On On -S -i 
n 

x x 

i > = 0 

= J L T r v* ( u ) ^ (v) 
8tt2 .1 j s in S sin S 

On dn z ^ 

cos (1/ + ^ (u-v)- cos (v + ^ ) (u + v) dudv 

n 
« E 

f = 0 

it-u . u-v 
cos v(u — v) cos — sin i/(u — v) s in • 

H — cos i/ (u + v) cos 
u + v 

+ sin v (u + v) s in 

2 

u + v dudv 

^ 7n U 

~ 7^2 5 I 
fx (u) fx (v) 

47r2
 r

J
 r

J s in £ s in £ 
On On 

2 sin 
cos • 

u — v 

(X u _ v COS 
- - co t s 

I 2 2 2 s i n ^ 

u — V 
s in • 

/ 1 s in 
+ \ 2 + 2 sin 

(2n+l)(u+u) \ u + v 

cos 
^ J 2 

/ 1 u + u cos \ . u + v 
— I — cot =; s in 

\ 2 2 2 sin ^ y ^ J 2 
dudv 

_ J_"r1 r fx(u)fx(v) 
47r2 / / s in # s in £ 

On i z 

/ / / = Bn + Bn-

s i n ( n + l ) ( u — v ) s i n ( n + l ) ( u + t > ) 

2 s i n ^ 2 s i n ^ dudv 

If we obse rve t h a t (cf. [8] p . 78) 

1 

v (u — v) 
1 

v{u — v) 
1 1 + -

u — V V 
< 

u (u — v) 
1 

+ — uv 
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t h e n 

a n d 

B 
< 1 ] ? K W I K M M s i n ^ + D t u - » ) ! ^ 

4 - 7 r J J £ u £ v 
<5n ¿ n 7T 2 7T 2 

2 2 U — D 
7T 2 

= 5 T ^ r 1 1 J M l l s i n ( n + 1 ) ( « - « ) l z r r - ^ d u d v X •> 11 •> v (u — V) 
8 / u i On o 

< 7 T 7 f | y a ( u ) | " | y g ( v ) | ( | s i n ( n + 1 ) ( u — t > ) | 

~ 8 6 U 8 U 
u — v 

< . * K W I r K f c M i / ( » + ! ) ( « - » ) + n ^ 

8 / u / u V n — v ¿n / 
" n ° n 

7T ( n + 1 ) 7 f " I I I " | 
< } — ) \ipx{v)\dudv 

8 / s On On 

b: 
1 In U 

\fx (u) | Wx ( v ) I | s i n (n + 1 ) (u + v) \ 
4 t t 2 

¿ n ¿ n 

2 u 2 V 
7T 2 7T 2 

o 2 u + u 
Z 7 T 2 

dudv 

^ \ W A u ) \ W A v ) \ d u d v 

8 U 2 V 

< 

¿ n in 

n(n + l)w{2 \<px(u)\ ? 

8 S 

C o n s e q u e n t l y , 

Sn in 

< 5 ( l o g " l / i 
On 

n + 1 

- d i 

4 J u l o g u / 7 r 
m „ 0 ' 

' / m n I M * ) I 

i l o g Q l / i 
dt 

7 r / ( n + l ) 
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= K(n+l)w^f(ln) 

V - n w , o g / ( i ) 

W. Lenski, B. Roszak 

wxf(t)^m" 

LlogQ 1 / i J 
7r/m„ 

dt — a j 

+ 
7r/(n+l) 

l°Sf(t) -dt 

2 r 1 ' r / m n 1 

7T/("+ 1) 
t log 1 / i 

-di 

<AT(n + l ) [ ^ / ( 7 n ) 

where m n - [^hn]-
Finally, by Corollary 3, 

(n + 1) (Cn)2 <53 K - (1 + ||/||L1) WLi/ — 
k=0 

7T \ 

U L l f \ i r h ) i n k=0 

with 7 n = ^ + i ) - 1 E L o k ' / ( ^ ) l 2 -
Collecting our estimates we obtain the thesis in the case 6n <jn-
If 7n < then, again by Corollary 3, we get 

(n + 1 ){Hlf{x)f < (n + l ) ^ ) 2 + + ||/||Li)2 £ 

n + 1 ! 

n fc=0 
n r 

^ L i / 
7T V 

1, 

< ^ [ ^ / ( M ] 2 + + I I / L O 2 ¿ J - w ( ^ y 2 

and our thesis follows. 

3.2. P r o o f o f T h e o r e m 2. Let 

HqJ (*) = n + 1 £ 
k=0 i " - w - s s f r -

dt 
1/9 

where 

M f̂i 
and 

- <Px (t) Zr—dt - J ^ w 2 sin I 7T 

9\ 1/9 

<An + Dn 

^ E i n r } 
V? 

n + 1 

n + 1 

with some <5„ > 0. 

1 7 ^ s i n i 2 ^ J 

- S fx (t) . . 2 , dt 
<5n 2 sin | 

Jk=o ; 

1/9 
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Applying estimate 

vr T k < 

s m i s t i l i t 
-— \ <px (u) du 

2sini Q 
+ 

S? d f s i n ( J h p ) i \ l 

o d t V 2 s i n 5 / o 
J J fx (u) dudt 

< 2w*f(6n) + 

1 «» 2fc±i c o s 2fc+l t s i n 11 _ 1 c o s 11 s i n 2fc±l t t 

27r S 0 (sin ¿i)2 
J <Px(u)dudt 

z o 1 
5 <px (u) du dt < 2w*f (Sn) 

+ ^ ) wxJ W 

2 / r « •K/On 

<2w*f(6n) + 
7T2 (fc + 1) oo k+1 

E 5 
k=[*/6n] fc 

u" 

/(f) 
fc2 

we obtain immediately that 

A n < * < ( n + 1 ) £ 
w: 

' ¿ ( m ) 

The second term we give as a sum 

Dn < 
1 

n+ 1 E 
k=0 

COS 4 
— \ V i (t) sin ktdt 71" Ocin I 

¿n 2 sin | 

<n 1/9 

I T ^ c o s ktdt 
7T . 2 

On 

1/9 

= Pn + 

and using the HausdorfF-Young inequality we obtain 

y/r 

R n < K ( n + 1 ) " | J | < p x ( t ) \ p d t \ <K(n + l)-iwPf(7r) 



610 W. Lenski, B. Roszak 

i f 1*/«»] ( w P f ( - S - ) Y ' 
<K{(n + l ) 1 - r ( w r f ( n ) y y < K { ( n + l)1-r £ V ' 

I fc=o \k + 

and similarly 

P n < K { n + i r u \ \ m > d t v < > 

Sn 

' V S (fc + D 2 - " 

by partial integration. Thus our result is proved. 

p . i r \ p 
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