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GLOBAL SOLUTION TO THE INITIAL VALUE PROBLEM
FOR NONLINEAR SYSTEM OF EQUATIONS OF
THERMODIFFUSION WITHOUT DISPLACEMENTS

Abstract. In the paper we shall present the proof of global-in-time solution to the
initial value problem for nonlinear partial differential equations describing physical proc-
cesses of thermodiffusion without displacements. Time decay of global solution will be

also shown.
1. Introduction

The aim of this paper is to prove the existence and uniqueness of global-
in-time solution to the initial value problem for a nonlinear partial differ-
ential equation (pde) system describing a special case of thermodiffusion of
solids in three-dimensional space. In these solids we have the field of tem-
perature 6; and chemical potential §; without displacements [8], [9].

The equations describing this type of solid have form

(11) (kA - Cat) 01 = d6t02,
(1.2) (DA — néy) 62 = do,0,
with the initial conditions

(13) 01 (0) I) = 0?(2:)’
(1.4) 82(0, z) = 63(x),

where 6, 0, are temperature and chemical potential respectively, both de-
pendingont € Ry and z € R3.

The system (1.1)-(1.2) is nonlinear because the physical parameters
k,D,c,n,d depend on actual states (1, 62) of described material. They de-
note respectively: the coefficient of thermal conductivity, the coefficient of
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diffusion and quantities n, ¢, d are the coefficients of thermodiffusion. These
parameters satisfy the following inequality cn — d? > 0.

The pde system (1.1)-(1.2) may be easily rewritten in the equivalent
form

(1.5) 8,01 — k1 A0y + kaAGy = 0,
(1.6) 8405 + k30 — kyAfy =0,
(L.7) 61(0,z) = 6(),
(1.8) 65(0, z) = 63(x),
where
B = nk D _ _dk eD

m—at T m-2 =t T -2
Because of cn — d? > 0, that we have

(1.9) Elk‘; - E2E3 = > 0.

—d2
We assume that given functions k; have the following property
(1.10) k; € C®(R2), ki(U)—k; = O(JU[) as |[U[ > 0,Ae N, i=1,2,3,4,

where

(1.11) ki = k;(0,0).
In the paper we will use notations:
0 = -g—t, 8i=— A= Z V = (81,8,83), D*=0{852853,
- kl —E2 k —k2
U=(61,0)7, U°=(62,63)°, A= , A= )
(61, 02) (1 2) k3k4 ks ke

= (oim) 7= Crmin)
0 ko/k3 ~ky k2k4/k3

Using the above notations we may write the system (1.5)-(1.8) in the form

(1.12) 8, U — AAU =0,
(1.13) U(0,z) = U%z)
or in the equivalent form

(1.14) 6 U — AAU = F,
(1.15) U(0,z) = U%z),

where F = (4 — A) AU.
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THEOREM 1. (Main theorem—global existence and asymptotic behaviour).

Let s,\,N, € N, s > 8, %(1+§) < %,q=2/\+2,%+§ =1, N, >

3(1-2), if U° € W*3(R®) n WNP(R%) and [[U°, 5 + [U°ly,, < &
(6 sufficiently small), then problem (1.1)-(1.4) (or (1.14)—(1.15)) has a
unique solution U € C° ([0, 00), W*2(R3))NC! ([0, 00), W*~22(R3).) More-
over

@)l = O=>¥2+2)
Iy = 0(1)

This paper is organized as follows. In section 2 we prove the LP — L9
time decay estimates. Section 3 presents the existence and uniqueness of
local solution. In sections 4 and 5 we prove the energy estimates and a priori
estimates. Main theorem 1 is proved in section 6. The procedure indicated
below has been applied for example in [2], [3], [5] and [10], for the nonlinear
wave equations, the nonlinear heat equation, the nonlinear thermoelasticity.

hold as t — oo.

2. LP—-L9 time decay estimates of solution to the linearized problem

In this section we construct a solution to the Cauchy problem (2.1),
(2.2) for linear system of equations describing linear termodiffusion without
displacements

(2.1) 8U — AAU =0,
(2.2) U(,z) =

Using this solution we present the LP — L%decay estimates to the linearized
problem.
In the paper [6] there was constructed the matrix of fundamental solution
to the differential operator
8 — k1A koA >

2.3 P(8;,0) =
(23) (0,9) (kgA 8, — kaA

which has form E(t,z) = (Ei;(t, x))2x2, where

(- ) s CD™ G + i) (—le2)
24) E(t,zx H(t exp
24) Bylt) = Dy oy —
i,j = 1,2, H(t)—the Heaviside function,

m=n~-(-1)"0c
pij = 81i(kabo; — k4d1;) + 02i(k3d1; — k182;),

\/(nk — cD)? + 4d2Dk, n=

1 7 P (nk — cD)2.
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If U® € C°(R3) then problem (2.1), (2.2) has unique solution

(25) U(tv :E) = E(taz - ) * UO(')*)

where (u *xv)(z) = | u(z — y)v(y)dy is the convolution of the functions u
R3

and v.
From (2.4) and (2.5) we get

2
(26) Uit,z) =) Eij(t,z—-)*63() = Z Z%m En(t,z =)+ 63(),
i=1 |

m=1j=
i=1,2,
2 2
(2.7) Ui(t,z) = Z qumufjm(t, z), 1=12,
m=1 j=1

where
(2.8) En(t,z) = 1 exp —lol’ fort >0, z € R®

mAn (27 ymt)3/2 2y mt ’ !

Wim(t,z) = Em(t,z =) 65+ ); j,m=1,2,

cijm denoted some constants depending on physical parameters. We have
the following representations for functions Wjn(t,z) = En(t,x — ) * 0?(-)

1 —|z - y|2 0
20) Wintz)=—— {exp [ Z2"Y ) 90()dy fort >0
or
1 z

Let (u,v) = § u(a:)z‘;(a:)dx be the standard inner product in the Hilbert
RS

space L2(R3).
We first shall derive the LP — L9 estimates for functions Wjp,. It is easy
to show that functions W, satisfy equations

(2.11) O Wim — 72ﬂAij =0.

Taking in (2.11) the inner product in L? with W;,,, we obtain
(Wim, 0eWim) — "’—’"(W,-m, AWjm) =0,

2
1
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'Ym
L Wl + TRl =0,

or

IWjm (0)]I3 + va) 19 Wsem(r) 27 = |62]],

which implies

(2.12) IWim®)ll, < ||e»;?||2 for t > 0.
For t > 0 we obtain from (2.9)

(2.13) [Wim(t, )| < ct-3/2||0;?||1.

From (2.10) we also have for ¢t > 0
@10 WOl < [0 o § evr (S ) o= < ol

Using Sobolev imbedding theorem [1] we get from (2.14)
(2.15) IWim@llo, < c||49;?||oo < cue;’”3 | fort>0.
From (2.13) and (2.15) we conclude

(2.16) IWim(®)lly, < c(1+8)~%2 ||e§?||3 | fort>0.

Thus we have obtained L2 —L? and W31~ L* estimation for functions Wim,
if U® € C$°(R3). Notice that formula (2.5) has sense for U° ¢ W31(R3).
From the imbedding W3!(R3) < W112(R3) and above remark we can
obtain corresponding results for U? € W31(R3) by approximation with
(U%) c C§(R3). By interpolation (cf. [10, 11]) we get from (2.12) and
(2.16) LP — L9 decay for Wi,

1) Wyl <c+n (70 far]

fort > 0,
p’P

where 1 +1=1,N, >3(1—-) or N, =3(1—2/q) if pe {1,2}.

From (2.17) and formula (2.7) we get LP — L9 decay estimations for
solution to the problem (2.1) and (2.2).
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THEOREM 2. Let U° € WMeP(R3), then solution to the Cauchy problem
(2.1), (2.2) has the following LP — L9 decay estimations

_3(;.2
(218) U@, <CA+1) H-3) |, .~ fort>0,
Np:p
where%+%= 1,Np>3(1— %) or Ny =3(1-2/q) if pe{l,2}.

3. Local solution

Now, we present the local existence theorem to the initial value prob-
lem for nonlinear thermodiffusion without displacements. It will be proved
that the system is a particular case of well known second-order symmetric
hiperbolic-parabolic system for which a local solution exists (cf. [4]).

THEOREM 3. Let s € N, s > 3, U € W%2(R3), then problem
(3.1) 8, U — A(U)AU =0,

(3.2) U@©,z) =U°

has unique local solution

(83) Uec® (0,7 w*3(R%)nc ([0, T, w*—2*(R3))
n L2 ([0, T W*2(R%)

t
2
(34)  sup [U@)2,+ [ IV 0dr < 00|, Ve [0,T).
0<7<t ! 0 ’ 5,2

Proof. Now we will show that the system (3.1)-(3.2) has properties which
are described in [4]. Multiplying equation (3.1) by symmetric and positive

defined matrix A% = 1 - O_ we obtain
0 ko/ks
(3.5) A38,U — B(U)AU =0,

where

. 10 ki —ke ( ki —ko >
B(U) = AJA(U) = - - = . - ).
(0) = 440) ( 0 FEay/ks ) < —ks k4 ) —ky koka/ks
Since k; > 0,det B = % (IE1E4 - EgEg) > 0, the matrix B(U) is symmetric
and positive definite.
If we take B%k(U) = 6;:B(U), fo(U, D:U) = 0 we conclude that system
(3.5), (3.2) has the properties described in [4]. Thus we obtain that problem

(3.1)-(3.2) equivalent to (3.5), (3.2) has unique local solution with properties
(3.3) and (3.4). g.ed.
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4. Higher energy estimate

In this section we establish a priori estimates for higher-order derivatives
of the solution to the problem (1.14), (1.15) by an energy method.

THEOREM 4. Let s € N and s > 4, U® € W52(R3). Then there is a constant
C which is independent of T and U® such that the local solution U satisfies:

t
@) Ul <l laexe {e] U 3wdr} Ve (0,7
0

Proof. We have A(U) = A + A(U) and then the equation

(4.2) oU — A(U)AU =0
can be written in the form
(4.3) o U — AAU = A(U)AU,

where A(U) = A(U) ~ A = (aij)2x2,0ij € C®°(R2),a;;(U) = O(|U|’\) as
[U] — 0, A € N. We use the standard energy method with the help of
mollification. Here we use following notations

Ue=J.(U)=je*xU= S Je(z = y)U(y)dy, UZ = D°U..
R3

Proving some energy estimate for U, and finally letting ¢ tend to zero we
obtain the estimate for U. Applying the Friedrichs mollifier to the both sides
of equations and D2, |a| < s, we get

(44) QU — AAU?
= D2{Je x (A(U)AU) - A(Uc) AU} + D7 (A(Ue)AU)
and then taking the inner product in L2(R3) with U* we obtain
(4.5) (B UZ,UZY — (A AUS, US)
= (GZ,Ug) + (D2 (A(Ue)AUE), U) =T + 11

hence

(4.6) FEINUSIS + (A0VUZ, VUE) < | + 1],
The first term I is estimated as follows:

@7 1=|(c2 )| < e8] w2,

< e * (A(U)AV) — A(Ue) AUel| 51 2l Uell 41,2
= “He||s_1,2||UE||s+1,2a
where [v] = |a] + 1, || = Ja| - 1.
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The second term II is estimated with the help of Moser type inequalities
(cf. [2, 10))

(48) |I1] < {D(AU)AU,), Ug)| = [ DE(AU:)ATL), U7 )

< |(DE(AW)AVL) - AU AUZ,UZ)| + |( AW AU, U2)|
= |I1.a| + |11.B|,

(49) |15 < [|AUL)] || AU

< Nl NTE N3 41,2

(4.10) |IL.a|= |<D£(A(UE)AUE) — A(U)AUE, UY)
< ||pfcawa)ave) - A
< C{IVAW) o |V A, +||v'ﬂ'A|| |AVe o § 1071

Sz AT AT A LA

4 (1 N0l I W0l 100} 10l

< CUellz0llUelly o1 Uel 1,2
< ClUe 3 00{ ZNUel25 + ol1Uel241,2}

The inequalities (4.7)-(4.10) together with (4.6) imply

(4.11) JUel, +CS T (341,

, +Clo, 77)5 IT(r) 41,207

+C§ e (T ls-1,21Ue (T4, 2dT+§|IU (NI 00 IUE(T)II3 207,

where we use [|U]|, o, < 7.

Choosing o and 7 (resp.|U°|,,) sufficiently small we can achieve
C(0,n) < c. Therefore we obtain from (4.11) and above conclusion that

(4.12) IUel52 <

t
Lo T CHIH(D) -1 2lUe(7)l 41,287
’ 0

t
+ [ V(D) IR oo IU(I12 dr.
0

Hence, using Gronwall’s inequality we get
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t
(413)  |Uellse < {IIUOII 2+ CHIH(Ds—12 1Ue(T) 11,2
0

T t
x (1= 0@ 6 )ar} - exp { UL 07}
0 0
From mollification properties we have
@14) B He(),-15 =0 V¢ € [0,T]

Using these properties and Lebesgue’s dominated convergence we get

t T

@15) 1ty {§IH oy oV g o N0 o )} =0
0 0

Letting tend € to zero in (4.13) and using (4.15) we obtain

9 t
(4.16) ||U(t)||§,2gC”UOHSQexp{s||U(T)||;‘,°°dr} Vte[0,T]. qed.
! 0

5. Weighted a priori estimates
Besides the energy estimate which we proved in Theorem 4 we shall

prove a priori estimate which is essential for the proof of global existence
theorem.

THEOREM 5. Let s; > [51—%1!2], s > s1+ N, +2, s1,5,N, € N,
d=3/2(1-2),p=3%, ¢=22+2,

U° e WH(RY) nWeP(R?), |U°

2t

Then there exist My > 0 and &, > 0, both independent of T and U°, such
that for the local solution U the following estimate holds

(5.1) M(T)= sup (1 +t)4|U®)],, , < Mo.
t€{0,T)

< 4.
s,q

“sl,q -

Proof. Using classical formula we can represent the solution of problem
(1.1)-(1,2) or (1.14)—(1.15) in the form

(52) Ul(t,z)=E(t,z—)*U°()+|E{t-r1z—")*x FU(r,")dr.
0
From (5.2) and Theorem 2 we get

31‘1

(53) (U0l < B )= V0, +§nEt—r)*F Uil
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Now we prove Lemma 1, which we use in this section.
LEMMA 1. Let a: R?2 - R, a € C®(R2), o(U) = O(|U[*) for |U| =0,

N, 1 1 A1 1
sl>[§-l—t——2], §>s1+Np+2, —+-=1land —+ 7 =-,
2 P g q 2 p

then for all U € W*2(R3) N W*P(R3) we have
[(@)2:0,U1l, < CIUIL, 4T, -
Proof. Let 1 < |a| < s1 + Np, then

1 |
D™ (a(U)8:8;U) = D* (g VUa(rlU)Udrlé‘i@jU)

0
e

-

TTA=Z "o TL " et TlU'\_ldT)\_g S drlaiajU>

QO ey

V3a(rs - riU)rU - Udr2drla,-ajv)

Vz\,“la(r,\_l v mU)ramg - ooy

|
|

O by

w\Ta_g .. -7 D® (Vf}“la(m_l ceemU) - UA_laiajU)d’r,\_l...drl

(=R B o A
O ey pit (O e b

A-1
A2 7‘1( Z Cavao(vU a(’!‘,\_l e -'rlU)-
1<lapl+...+Hax| <91+ Np

VA VA Ve S V"‘*B,-&,U))dr,\_l t et d7‘1.

It is easy to see, that only one of the components of multiindex « is higher or
equal to s1. Let it be contrary o; > s and a; > s; forsome,j € {0,1,..., A},
i#j, then

la| > o; +aj > 251 > 81 + Np > lee],

that is false. We consider the cases:

1. ap > s;, using the above representations and Hoélder inequality with

+%=%,weget

ID? @(@)a:3 ), < |72 (Vi a(@)) ||, IV=2U1l, - -
[ver-1Ul V89U
< cllU MU

51,9°

Q>
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2. a; > 81 for1 << A—1, then o9 < 51, a1 < 81,
|D* @@)2:B)|, < e[V (V3 'a(®))| 192U, - .- [V, -
v IV 8,801,
< e|Ull, U112

3. ay) > s -
ID* @@)8:8;U)l, < e[ Ve (V3 ') 9101,

[VE-2U | [IVE28:6,U |,

< C“U”s 2”U”51 a q.e.d.
From (5.3) and Lemma 1 we get
(5.4)  NU®)s1, . '
< G+ U+ G+ = ) UG, U2
’ 0

Multiplying both sides of (5.4) by (1 + t)% and using (4.1) we get
(55) (@+HUI

Slq

<o), +c2g<1+t_f> RARDRL(CTiM 1o I8

)

X exp { | ||U<a>||é,oodo} dr
M

<G o°],, + crf om0 an o
P 0 s,
X exp {g ||U(a)||3’ooda} dr
0
<aifor],, + cafve], d {ja o= -t oty
P 8, 0

t
X exp {S U (o) ||200 da}
0

Now we use the inequality
t
fa+t-na+t)a+7)Mdr<C Vvt>0
0

where C is independent of ¢ (cf. [10], p. 88).
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Thus from (5.5) we get
68) (14U, <6 {Cr+ CaME®* exp [§||U(T)||é,oodr} 2

Since s1 > 2 + %, there is an imbedding of W14(R3) — C?(R3) (cf. [1])
and then

6.7 (T+)UUEl,,, < 51{01 + CorM(t)* exp [éuU(T)nghqdr] }
Therefore

(5.8) A + YU, , < 51{01 + CokM (t)* exp [cM(t)*g (1+ T)—'\ddT] }

51,9 —
0

For Ad > 1 we have 5)(1 +7)7Mdr < 5, Vt € [0,00), that from (5.8)
we get

(59 A+, < 5 {CL+ ConM(®) exp [eM (1]},

(5.10) (1+ ) |U B,y q < CH {1+ xM(t) exp [cM (2]} Ve € [0,T).

Therefore
(511)  M(t) < Co{1+ M(t) exp [cM ()]}
< 061{1 + M(t)* exp [cM(t)A]} vt € [0, T).
Now we consider the function ¢ : [0,00) — R defined by
(6.12) pe(z) = C’e{l +z* exp [cm)‘]} - z.

Since ¢ is continuous and ¢.(0) > 0, that o > 0 can be chosen sufficiently
small so that

(5.13) we(z) >0 Vze|0,zo).

If we fixed = = z¢ in (5.12), then (o) it is linear function of parameter
e, and it follows from (5.13) and above remark, that 36; 0 < 6; < ¢, and
w5, (zo) = 0 then

(5.14) s, () = 061{1 + z* exp [c:c’\]} —~z>0 Vze[0,zg)),
(5.15) M(0) = ||U° < n”Uo

) < k3 < x0.

$1,9 8,

The relation (5.11) implies
(5.16) ps, (M()) >0, Ve € [0,T],
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which, together with (5.15) and a continuous dependence argument, leads
to

(5.17) M(t) < zo, Vte[0,T].

This yields the claim of Theorem 5 with My := z¢ independent of T" and U 0
q.e.d.

6. Global solutions to initial problem (1.1) and (1.2)
Using results from section 2-5 we now prove the main theorem.

THEOREM 6. For the local solution described in sections: 3, 4 and 5, there
exists a constant K independent of T and U°, such that

(6.1) 1@, < KJU°|,, veeo,T)

Proof. By using Theorem 4, imbedding theorems and Theorem 5 we suc-
cessively obtain the following inequalities

t
62) VOl < CIUN, pexp {103 ot}
0

t
< O, gexp { I, gt
0

Hence
t

(6.3) WO, < Ov°], exp {cM(t)*g (1+ T)_)‘ddT}

' 0

<ol o o) < ],

This leads to
(6.4) v, < K|U°),, vielo,T]
with K := Cexp {C;;Mé\} independent of T and U°. g.e.d.

If we choose § such that 0 < § < %& we obtain
(6.5) D)l < K“UolL , = Ks<ar.

Applying the local existence theorem ( Theorem 3) at initial time T, we con-
clude that 3U € C° ([T, T + T1], W*2)NC! ([T, T + Th], W*~22)nL2([T, T+
Ti), W+12) for some positive number Ty = Ti(d;). This leads to the con-
clusion that the solution exists on [0, T + T}]. The inequality (6.4) applied
for ¢t € [0, T + T3] implies

(6.6) IU(T + Ty)ll,, < K“U"”m =Ké< &
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Hence we may apply the same arguments once more at initial time t = T+T
and proceeding like above we can continue solution onto [T + T1,T + 271] .
Proceeding in this way we prove the existence of a global solution

(6.7) U e C®([0,00,, W?) nC* ([0, 00], W*~22) N L2([0, o0], W**12).

The applied method of proof gives two additional results

(6.8) vt € [0,00) : ||U(t)||s,2 <Kd<é

and, with Sobolev’s imbedding theorem and Theorem 5

(6.9) Vt € [0,00) : |[U(t)|lox < cllU(®) < c(1+t)_dM(t) < cM0(1+t)_d.
g.e.d.

I|S],q
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