
DEMONSTRATIO MATHEMATICA 
Vol. XXXVII No 3 2004 

Jarosiaw Lazuka 

GLOBAL SOLUTION TO T H E INITIAL VALUE P R O B L E M 
F O R NONLINEAR S Y S T E M OF EQUATIONS OF 

THERMODIFFUSION W I T H O U T DISPLACEMENTS 

Abstract. In the paper we shall present the proof of global-in-time solution to the 
initial value problem for nonlinear partial differential equations describing physical proc-
cesses of thermodiffusion without displacements. Time decay of global solution will be 
also shown. 
1. Introduction 

The aim of this paper is to prove the existence and uniqueness of global-
in-time solution to the initial value problem for a nonlinear partial differ-
ential equation (pde) system describing a special case of thermodiffusion of 
solids in three-dimensional space. In these solids we have the field of tem-
perature 0\ and chemical potential 62 without displacements [8], [9]. 

The equations describing this type of solid have form 

(1.1) ( f c A - c d t ) 0 i = ddt02, 

(1.2) ( D A - ndt) 62 = ddt6\ 

with the initial conditions 

(1.3) 0 i (O,x) = 0°(:r), 

(1.4) e2{<ò,x) = e02{x), 

where are temperature and chemical potential respectively, both de-
pending o n t e R + and x 6 R 3 . 

The system (1.1)—(1.2) is nonlinear because the physical parameters 
k, D, c, n, d depend on actual states (61,02) of described material. They de-
note respectively: the coefficient of thermal conductivity, the coefficient of 
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diffusion and quantities n, c, d are the coefficients of thermodiffusion. These 
parameters satisfy the following inequality cn — d2 > 0. 

The pde system (1.1)—(1.2) may be easily rewritten in the equivalent 
form 

(1.5) dt6! - hA6X + fc2A02 = 0, 

(1.6) d te2 + fc3A0i - fc4A02 = 0, 

(1.7) 01(O,x) = 0f(z), 

(1.8) 02(O,*) = 0°(x), 
where 

r _ nk r _ dD t _ dk r _ 
= ~~ M > = — 39 ' 3 = — J9 ' 4 -cn — d2' cn — d2' cn — d 2 ' cn — d2 

Because of cn — d2 > 0, that we have 
kD 

(1.9) - > 0. 
cn — a-2 

We assume that given functions fcj have the following property 
(1.10) fci € C°°(R2), ki(U) — ki = 0(\U\X) as |U| —> 0, A € N, i = 1,2,3,4, 
where 
(1.11) fci = fci(0,0). 

In the paper we will use notations: 

3 t = f , = A = ¿ 0 ? , V = (^ ,02,03) , = 

T ( KI -k2 \ f H -k2 

Using the above notations we may write the system (1.5)—(1.8) in the form 
(1.12) dtU - AAU = 0, 

(1.13) U(0, x) = U°(x) 
or in the equivalent form 
(1.14) dtU - AAU = F, 

(1.15) U{0,x) = U°(x), 
where F - (A- A) AU. 
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THEOREM 1. (Main theorem—global existence and asymptotic behaviour). 
Let s, A, Np e N , s > 8, \ ( l + j ) < §, q = 2A + 2, J + J = 1, Np > 

3 ( l - i f U ° e W"-2(R3) n W M ^ 3 ) and ||C/°||s2 + ||tf°||„piP < 6 
(J sufficiently small), then problem (1.1)—(1.4) (or (1.14)—(1.15)) has a 
unique solution U e C° ([0,00), WS>2(R3)) n C 1 ([0,00), W S ~ 2 ' 2 ( R 3 ) . ) More-

This paper is organized as follows. In section 2 we prove the LP — Lq 

time decay estimates. Section 3 presents the existence and uniqueness of 
local solution. In sections 4 and 5 we prove the energy estimates and a priori 
estimates. Main theorem 1 is proved in section 6. The procedure indicated 
below has been applied for example in [2], [3], [5] and [10], for the nonlinear 
wave equations, the nonlinear heat equation, the nonlinear thermoelasticity. 

2. LP—Lq t ime decay estimates of solution to the linearized problem 
In this section we construct a solution to the Cauchy problem (2.1), 

(2.2) for linear system of equations describing linear termodiffusion without 
displacements 

Using this solution we present the LP — L9decay estimates to the linearized 
problem. 

In the paper [6] there was constructed the matrix of fundamental solution 
to the differential operator 

over 
11^)11, = o r 3 A / 2 A + 2 ) 
\\U(t)\\2 = 0(l) 

hold as t —» 00. 

(2.1) 

(2.2) 

dtU - AAU = 0, 

U( 0, x) = U°. 

(2.3) 

Viae fnmn PYf r \ — t»^ wVioro wli oro 

i,j = 1,2, H(t)—the Heaviside function, 

7m = t? — (—l)mcr, 

<Pij = ^ui^ihj - kiôij) + Ô2i{k30ij - k\Ô2j), 

0 = î—t» — cD)2 + 4d2Dk, v = ^ 
en — er v cri — a1 (•nk - cD)2. 
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If U° e CfP(R3) then problem (2.1), (2.2) has unique solution 

(2.5) U(t,x) = E(t,x--)*U°{-), 

where (u * v)(x) = J u(x — y)v(y)dy is the convolution of the functions u 
R? 

and v. 
From (2.4) and (2.5) we get 

2 2 2 

(2.6) Ui(t, x) = £ Eijit, X - •) * *?(•) = £ £ CijmEmit, X--)* 0°(-), 
j=1 m=lj'=l 

« = 1,2, 
2 2 

(2.7) Ui(t, x)=J2H djmWjm(t, x), ¿ = 1,2, 
m=l j=l 

where 

(2-8) *»<*•=(ct̂  exp (iS) f°r i > ^6 r3' 
W im(t, x) = Em(t, x--)* 0°( •); j, m = 1,2, 

Cjjm denoted some constants depending on physical parameters. We have 
the following representations for functions Wjm(t,x) = Em(t,x — •) * 

(29) ^ ^ ( ¡ ^ j M ^ f l ^ tor<>0 
or 

(2.10) Wjm{t, x) = ^ ) 3 / 2 J exp ( ^ f ^ J ~ Stz)dz for t > 0. 

Let (u, v) = J u{x)v(x)dx be the standard inner product in the Hilbert 
R? 

space L2(R3). 
We first shall derive the V — Lq estimates for functions Wjm. It is easy 

to show that functions Wjm satisfy equations 

(2.11) dtWjm - ^ A W j m = 0. 

Taking in (2.11) the inner product in L2 with Wjm we obtain 

(Wjmdtwjm) - AWjm) = 0, 

~ < WirnWjm > ~ < VWjm, VWjm > = 0, 
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or 

\\Wjm(t)\\l + lrn\\\^Wjm(T)\\ldT = 

which implies 

( 2 - 1 2 ) \\Wjm(t)\\2 < 

For i > 0 we obtain from (2.9) 

(2.13) \ W j m ( t , x ) \ < c t - V 2 

From (2.10) we also have for t > 0 

for t > 0. 

(2.14) Wjm{t ) \L ^ 0° 
1 

° ° ( 2 7 T 7 m ) 3 / 2 
\ exp 

R3 

- z 

27r, 
dz < c 

Using Sobolev imbedding theorem [1] we get from (2.14) 

< c (2.15) | | W W t ) I L < c 

From (2.13) and (2.15) we conclude 

(2.16) | | ^ m ( i ) l l o o < ^ ( l + 0 " 3 / 2 

3,1 

3,1 

for t > 0. 

for t > 0. 

Thus we have obtained L2 — L2 and W3'1—L°° estimation for functions W j m , 
if U° € C q ° ( R 3 ) . Notice that formula ( 2 . 5 ) has sense for U° € W 3 , 1 ( R 3 ) . 

From the imbedding V F 3 , 1 ( R 3 ) <—• W 1 , 2 ( R 3 ) and above remark we can 
obtain corresponding results for U° € W 3 , 1 ( R 3 ) by approximation with 
(U°) C C q ° ( R 3 ) . By interpolation (cf. [10 , 11 ] ) we get from ( 2 . 1 2 ) and 
( 2 . 1 6 ) Lp — Lq decay for W j m 

(2.17) \\Wjm(t)\\ < c ( l + t ) 
NP,p 

for t > 0, 

where \ + \ = 1, Np > 3 ( l - f ) or Np = 3 (1 - 2/q) if p € {1,2}. 

From (2.17) and formula (2.7) we get LP — Lq decay estimations for 
solution to the problem (2.1) and (2.2). 
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THEOREM 2. Let U° e WnP'P (R 3 ) , then solution to the Cauchy problem 

(2.1), (2.2) has the following LP — Lq decay estimations 

(2.18) ||C/(t)|L < C ( 1 + ||c/t> ^ for t >0, 

where 1 + I = 1,NP > 3 ( l - or Np = 3 (1 - 2/q) if p e { l , 2 } . 

3. Local solution 
Now, we present the local existence theorem to the initial value prob-

lem for nonlinear thermodiffusion without displacements. It will be proved 
that the system is a particular case of well known second-order symmetric 
hiperbolic-parabolic system for which a local solution exists (cf. [4]). 

THEOREM 3. Let s 6 N , S > 3, U° € WS ' 2 (R 3 ) , then problem 

(3.1) dtU - A(U)AU = 0, 

(3.2) U( 0, x) = U° 

has unique local solution 

(3.3) U € C° ([0, T]; W S ' 2 ( R 3 ) ) n Cl ([0, T]; W S ~ 2 ' 2 ( R 3 ) ) 

n L 2 ( [ 0 , T ] ; W s + 1 ' 2 ( R 3 ) ) , 

(3.4) sup \\U(t)\\l2 + j \mr)\\l+h2dr < c||c/°||2 Vi € [0,T], 
o<r<t 5 ' 

P r o o f . Now we will show that the system (3.1)-(3.2) has properties which 
are described in [4]. Multiplying equation (3.1) by symmetric and positive 

defined matrix A% = f _ | we obtain 
V 0 kt/h J 

(3.5) AQ2dtU - B(U)AU = 0, 

where 

1 0 \ / h - k 2 \ ( h - h \ 

0 k2/h J V h J \ k2h/h J 

Since ki > 0, det B = & (fcifc4 - k2k$) > 0) the matrix B (U) is symmetric 
and positive definite. 

If we take BJ2k{U) = SjkB{U), f2(U, DXU) = 0 we conclude that system 
(3.5), (3.2) has the properties described in [4]. Thus we obtain that problem 
(3.1)—(3.2) equivalent to (3.5), (3.2) has unique local solution with properties 
(3.3) and (3.4). q.e.d. 

B(U) = A°2A(U) = 
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4. Higher energy estimate 
In this section we establish a priori estimates for higher-order derivatives 

of the solution to the problem (1.14), (1.15) by an energy method. 

T H E O R E M 4. Let s e N and s > 4, U° € WS,2(R3). Then there is a constant 
C which is independent of T and U° such that the local solution U satisfies: 

(4.1) ||C/(i)IU,2 < c||C/°||S(2exp \c\F(T)||^i00dr} W € [0,T], 
^ o } 

Proo f . We have A(U) = A + A(U) and then the equation 

(4.2) dtU - A(U)AU = 0 

can be written in the form 

(4.3) dtU - AAU = A(U)AU, 

where A{U) = A{U) - A = { a i ^ ^ i j e C°°(R2), aij(U) = 0(|C/|A) as 
\U\ —• 0, A G N. We use the standard energy method with the help of 
mollification. Here we use following notations 

U£ = J.(U) =je*U=\ je(x - y)U{y)dy, Uf = DaUe. 
R3 

Proving some energy estimate for Ue and finally letting e tend to zero we 
obtain the estimate for U. Applying the Friedrichs mollifier to the both sides 
of equations and |a | < s, we get 

(4.4) dtUf - A0AU? 
= D°{Je * (A(U)AU) - A(Ue)AUe} + D°(A(Ue)AU£) 

and then taking the inner product in L2(R3) with Uf we obtain 

(4.5) (dtU?,U?) - {A0AU?,Uf) 
= {Ga

x, U f ) + {D»{A{Ue)AUe), U f ) =1 + 11 

hence 

(4-6) i i \ m l + (AoVU?,VU?) < | / | + \II\. 

The first term I is estimated as follows: 

(4.7) | / | = | ( ^ , C / 7 ) | < | G f | | 2 | | ^ | | 2 

< || J . * (A(U)AU) - A(U£)AUe\\s_1<2\\Ue\\s+1<2 

where | 7 | = |a| + 1, |/3| = | a | - . l . 
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The second term II is estimated with the help of Moser type inequalities 
(cf. [2, 10]) 

(4.8) \II\ < \{D"(A(Us)AUe), Ug}\ = \(DP(A(U£)AUe),U?)\ 

< \{D£(A(Ue)AUe)-A(Ue)AU?,U2)\ + \(A(Ue)AUP,U?) 

= \II.a\ + \II.b\, 

(4.9) |JJ.fc| < W A m W ^ A U ^ i m , < ||C/e||^||C/É ells+l,2> 

m\2 
(4.10) \II.a\ = \(D?(A(Ue)AUe) - A(Ue)AU?, U?) 

< \\DP(A(Ue)AUe) - A{Ue)AU^\V2 

< c{| |Vi4(J7.) | |0 0 |vl«-1At/. | |2 + | | v ^ y | A ^ | | T O } | | £ / 7 | | 2 

<c{ | |V^ . ) | | 0 0 | |% | | i B - 1 | |V i7« | | 0 0 | | l / « |L | 2 

+ ( i + i m u * - x W e i t 1 \ m s , 2 m \ 2 t 0 0 } i i î / ê | | s + 1 i 2 

< c\\ue\\lj\ue\\sjue\\s+h2 

The inequalities (4.7)-(4.10) together with (4.6) imply 

(4.11) 11^11^2 + c j ll^e(r)lls+l,2^r — \ + C{*,v)\\\U t(T)\£+lf ldT 
0 M 0 

+ C\ | | iîe(r)| | s_1)2 | |C/e(r)| | s+ l i2dr + J 11^)11* J l ^ l ^ r , 
o o 

where we use ||f/||2 ^ < rj. 
Choosing <7 and rj (resp.||f/°||s 2) sufficiently small we can achieve 

C(a,r]) < c. Therefore we obtain from (4.11) and above conclusion that 

(4.12) Udells,2 < ^° | [ ) 2 + l l ^ ( r ) | | s - i ) 2 l l ^ ( r ) | | s + 1 ) 2 dr 

+ \\\Ue(r)\\lJ\UE(r)\\l2dr. 

Hence, using Gronwall's inequality we get 
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(4.13) \\UE\\L2 < {||D?||2i2 + Cj||ff,(r)||-_li2||^(T)||H.lia 

o 

X ( H l ^ C O C ^ d r J - e x p j i l l C / . M I I ^ d r } . 

From mollification properties we have 
(4.14) lim||He(i)||._li2 = 0 Vt 6 [0,T]. 

Using these properties and Lebesgue's dominated convergence we get 
t T 

(4.15) l u n j j ||iie(r)||s_1)2||t/e(r)||s+1)2(S -||f/£(Oil2,00^)^} = 0. 

Letting tend e to zero in (4.13) and using (4.15) we obtain 

( 4 . 1 6 ) \\U(t)\\L2<C Ul 
«.2 '{ill̂ O exp \||i/(r)||2Vr V t € [ 0 , T ] . q.e.d. 

5. Weighted a priori es t imates 
Besides the energy estimate which we proved in Theorem 4 we shall 

prove a priori estimate which is essential for the proof of global existence 
theorem. 

'si+JVp THEOREM 5 . Let sI > , s > Si + NP + 2, si , s, NP € N, 

d = 3 / 2 ( l - f ) , p = § ± f , g = 2A + 2, 

U° € Ws'2(R3) n W S ' P (R 3 ) , u° + U° 
s,2 s,q 

<Si. 

Then there exist Mo > 0 and ¿i > 0, both independent of T and U°, such 
that for the local solution U the following estimate holds 

(5.1) M(T)= sup ( l + i)d||C/(i)||Siig<M0. 
te[o,T] 

P r o o f . Using classical formula we can represent the solution of problem 
(1.1)—(1,2) or (1.14)—(1.15) in the form 

t 

(5.2) U ( i , X ) = E(t, x - •) * U°(-) + \E(t- T,X - •) * F(U(T, •))dr. 
o 

Prom (5.2) and Theorem 2 we get 

(5.3) \\U(t)\\suq < \ \ m •) * + J P ( t - r, •) * F(U(r))\\suqdr 
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Now we prove Lemma 1, which we use in this section. 

LEMMA 1. Let a : R 2 -> R, a e C°°(R2), a(U) = 0( | i / |A) for \U\ -» 0, 

51 > 
'si + Np 

2 
1 1 A 1 1 

, s>si + Np + 2, - + - = 1 and - + - = - , 
p q q 2 p 

then for all U e W S ' 2 ( R 3 ) D W S ' P (R 3 ) we have 

Mu^djuw, < c\\u\\x
nju\\.t2. 

P r o o f . Let 1 < |a | < si + Np, then 

Da (a(U)didjU) = Da(^Vua(r1U)Udr1didjU^ 

= Da(\\ Vla{r2 • rxU)nU • Udr2dTididjUSj 

A i 
= Da ( j... \ Vyr-1a(r>_i • ... • nU)rx.2 • ... • rv 

V n n -0 0 

r A _3 • ... • n •... • riUx~ldrX-2 • ••• • dr&djU^ 

l l 
= j . . . J rA_2 •... • r j ^ t e - ' a ^ . ! •... • rxU) • ux~1didju)drx_l...dr1 

1 1 / 
= J ••• j r \ - 2 ' •••" r l ( £ c aV a °(V^ _ 1 a(r A _i • ... • r\U)-

o 0 Vl<|«o|+...+|aA|<iPi+iVp 

•S7aiU •... • Vax~lU • V^didjU^jdrx-i • ... • drv 

It is easy to see, that only one of the components of multiindex a is higher or 
equal to si. Let it be contrary «i > si and aj > si for some i, j e {0,1,..., A}, 
i j , then 

\a\ > cti + otj > 2si > si + Np > |a|, 

that is false. We consider the cases: 
1. ao > «1, using the above representations and Holder inequality with 

| + 3 = b w e &et 

||Da (a(U)didjU)\\p < c | | v " ° ( v * " 1 ^ ) ) \\2W^U\\q • ... 

• l l ^ - ^ H j i v - ^ a ^ H , 
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2. <*j > si for 1 < i < A — 1, then c*o < si, a i < si, 

\\Da (a(U)didjU)\\p < c||v*° ( v ^ ^ ^ l j l V ^ i / l l , •... • • ... 

• l i v ^ - ^ i y i v ^ ô i ô j - t / i i , 

< c\\u\\aj\\u\\ìlir 

3. q a > sx 

IID° w m W W p < c I v a o ( ^ ( l O ^ H V ^ n , •... 

• II V^-11711,11 Va*öiö,-t7||2 

From (5.3) and Lemma 1 we get 

( 5 . 4 ) \\U(t)\\suq 

<<*(! + t y d U ° l p + C 2 j (1 + t - r)-d||C/(r)||^9||C/(r)||Si2cir. 

q.e.d. 

Multiplying both sides of (5.4) by (1 + t)d and using (4.1) we get 

(5.5) ( l + i ) d F ( i ) I L "Si. 1 
t 

< Cl U° + C<i 5(1 + t - r ) - d ( l + i)d||^(r)|| 
s,p 

T 

X 
si,g U 

2 

xexp {\\\U(a)\\*da \ dr 

.0 

<Ci U° + C2 ¡ ( 1 + t - r ) ~ d ( 1 + t)d( 1 + T)~XdM(t)x 

S,p 

(t 

u 
s, 1 

xexp|5||^(a)||î|00der|(ir 

<Ci U 
s,p 

t 

+ c2 u 
s, 2 

M(t)x I j ( l + t - r)~d( 1 + t)d( 1 + r ) - A d ( i r | 

x e x p j J U t / ^ H ^ d a j . 

Now we use the inequality 
t 
5 ( 1 + t - r ) - d ( 1 + t)d( 1 + r)-XddT <C V i > 0 

where C is independent of t (cf. [10], p. 88). 
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T h u s f r o m (5 .5 ) w e g e t 

( 5 . 6 ) ( 1 + t)d\\U{t)\\Si g < ¿Ac, + C2M(t)x e x p f | | | ^ ( r ) | | J i 0 0 c i r ] } . 
1 Lo J ; 

S ince s i > 2 + there is a n i m b e d d i n g of W™>«(R 3 ) «-» C 2 ( R 3 ) (cf. [1]) 
a n d t h e n 

(5 .7) (1 + t)d\\U(t)\\Suq < iijcx + C2KM(t)xex p [jj | | [ / ( r ) | | A , / r ] } . 

There fore 

(5 .8) (1 + i ) d F ( * ) l l s l , 9 < sAci + C 2 / c M ( i ) A e x p \cM(t)x\ (1 + T)-Xddr] }. 
I L o J J 

t 
For Ad > 1 w e h a v e $ (1 + T)~XddT < j ^ , Vt € [0, oo) , t h a t f r o m (5 .8) 

o 
w e ge t 

(5 .9) (1 + t ) 1 t / ( i ) | | s i , g < S^C, + C2KM(t)xexp [ c M ( i ) A ] } , 

(5 .10) ( l + i ) d | | i 7 ( i ) | | s i ) 9 < C 5 i { l + / c M ( i ) A e x p [ c M ( i ) A ] } V i € [ 0 , T ] , 

There fore 

(5 .11) M(t) < C i i { l + M{t)x e x p [ c M ( i ) A ] } 

< C(5i{l + M(t)xexp [(cM(t) x ]} Vt 6 [0,T]. 

N o w w e cons ider t h e f u n c t i o n ipe : [0, oo) —• R de f ined b y 

(5 .12) <pe(x) = C e | l + x A e x p c x A j j - x. 

Since ip£ is c o n t i n u o u s a n d ¡¿>e(0) > 0, t h a t xo > 0 c a n b e c h o s e n suf f i c i ent ly 
smal l so t h a t 

(5 .13) <Pe(x)>0 V x e [ 0 , x 0 ] . 

If w e f ixed x = xo in (5 .12 ) , t h e n <ps(xo) it is l inear f u n c t i o n of p a r a m e t e r 
e, a n d it fo l lows f r o m (5 .13 ) a n d a b o v e remark, t h a t 0 < ¿i < s , a n d 
¥>¿1 (xo) = 0 t h e n 

(5 .14) ¥>*(* ) = C i i { l + xx e x p | c x A ] } - x > 0 Vx e [0, x 0 ) , 

(5 .15) M(0) = l i t / 0 < k | | c / 0 | | < KSI < x0. 
II 51,9 " 

T h e re lat ion (5 .11 ) i m p l i e s 

(5 .16) <psi ( M ( t ) ) > 0 , Vt € [0 ,T] , 
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which, together with (5.15) and a continuous dependence argument, leads 
to 
(5.17) M(t)<xo, Vf € [0, T]. 

This yields the claim of Theorem 5 with Mo := xq independent of T and U°. 
q.e.d. 

6. Global solutions to initial problem (1.1) and (1.2) 
Using results from section 2-5 we now prove the main theorem. 

T H E O R E M 6. For the local solution described in sections: 3, 4 and 5, there 
exists a constant K independent ofT and U°, such that 

U° (6.1) \\U(t)\\2<K 
a, 2 

Vi € [0, T], 

P r o o f . By using Theorem 4, imbedding theorems and Theorem 5 we suc-
cessively obtain the following inequalities 

(6.2) \ ; ' 
0 
t 

r W l k a < C||[/°| |Si2exp{cS | | tf(r) |ß i 0 0dr 
^ o 

Hence 

(6.3) \\U(t)\\s,2 < C 

< c 

u° 

u° 

t2exp^cM(t)x\{l + T)~XddT 

5 ) 2 e x p { c 3 M 0
A } < K | c / 0 

«,2 
v t e [o,T] 

This leads to 
(6.4) | | [ / ( i ) | | a , 2 <tf | | t f c 

with K := Cexp | c 3 M 0
A | independent of T and U°. 

If we choose 6 such that 0 < 6 < ^ we obtain 

q.e.d. 

(6.5) \\U(T)\\SÌ2<K U° 
5,2 

= KS < Si. 

Applying the local existence theorem ( Theorem 3) at initial time T, we con-
clude that 3U € C° ([T,T + Ti], W'*)C[CX ([T, T + Ti], Ws~2>2)r\L2([T,T+ 
7i], W s + 1 ' 2) for some positive number 7\ = 7i( i i ) . This leads to the con-
clusion that the solution exists on [0,T + Ti]. The inequality (6.4) applied 
for t € [0, T + Ti] implies 

U° =KS< Sx. (6.6) \\U(T + Ti)\\3t2<K 
«.2 
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Hence we may apply the same arguments once more at initial time t = T+T\ 
and proceeding like above we can continue solution onto [T + T\, T + 2T\] . 

Proceeding in this way we prove the existence of a global solution 

(6.7) U € C° ([0, oo], Ws-2) n C1 ([0, oo], Ws~2>2) n L2([0, oo], Ws+1'2). 

The applied method of proof gives two additional results 
(6.8) Vt 6 [0,oo) : ||tf(t)||,i2 < KS < ¿i 
and, with Sobolev's imbedding theorem and Theorem 5 
(6.9) Vi € [0, oo) : TOIL < c||i/(i)||si 9 < c(i+tydM(t) < cM0(l+t)-d. 

q.e.d. 
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