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ON THE WAVE EQUATION WITH A DISSIPATION
AND A SOURCE OF CUBIC CONVOLUTION TYPE IN R

Abstract. We study the interaction between a dissipative term and a source term
of cubic convolution type for the wave equation in R¥. These terms have both the same
form and involve convolutions with a singular kernel. The investigation will depend on the
coefficient of the source term which is a function of the time variable. Some results on the
boundedness of the solutions are proved. Moreover, we establish an asymptotic stability
result.

1. Introduction
We consider the following problem

) uge + mu + pug(Vy * u?) = Au+ M(t)u(V, x u?), in (0,T) x RN
(0, z) = uo(), ue(0,2) = wi(z), x € RY

where V, = |z|77, (Vy * w)(z) = {gv Vy(z — y)w(y)dy, 0 < v < N and m,
By A NZ 0. The potential h(t) € C1(R*,R*) and A stands for the Laplacian
in R™.

In case p = 0 and h(t) is constant, some global existence, scattering
(existence of asymptotically free solutions) and global non existence results
are shown in Perla Menzala and Strauss [9]. In fact, a blow up result has
been proved but only for large enough initial data. For small initial data we
cite the result of Hidano [3] established in case N = 3 and provided that
the initial data are in addition spherically symmetric.

When X\ = 0, some global existence results may be found in {5, 8, 10]. As
for the asymptotic behavior we mention the work of Mochizuki and Motai in
[7]. There the authors, using a weighted energy norm, obtained some results
on the decay of the classical energy and determined its rate of convergence.
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They also established a non-decay result. It has been proved that one can
find initial data for which the energy never decays at infinity.

In the present work we consider the case where both u and X are differ-
ent from zero (u # 0, A # 0) and a non constant potential h(t). Using more
or less standard arguments one can prove several existence theorems. These
results will depend on the space dimension N, the parameters m (m > 0
or m = 0) and +, and the regularity of the initial data (ug,u;). In particu-
lar, we have global existence of a solution in C([0, 00); H') N C([0, o0); L?)
in case (ug,u;) € H' x L? with some restriction on N (if m = 0 we
consider initial data with compact support). The restriction on N may
be relaxed by assuming more regular initial data (for instance (uo,u1) €

H? x (H 1N LSN/BN ‘2’7))). Here we shall not be concerned about these re-

strictions as our results are valid for all (up,u;) € H' x L? (provided that
we have existence) and some conditions only on +. In this paper, our main
interest is to investigate the balance between the dissipation and the source
terms. To this end we shall follow closely the work of Georgiev and Milani
[2] where a different problem was treated. Namely, they studied the wave
equation in a bounded domain with dissipation and source terms of poly-
nomial type (ug |us|P~! and w|ulP~! respectively). We will rely on some of
their estimates.

The deal with the difficulties generated by the unboundedness of the
spatial region, the nonlocal nature of the dissipation and the source terms
as well as the singularity of the kernel represents the feature of our present
investigation.

As we shall see, we obtain essentially the same results as in [2]. Namely,
when h(t) = O((1 +t)~%) as t — +oo and 0 < § < 3 there are initial data
yielding polynomial growth of the energy as t — +o00. If § > 3, the energy
is uniformly bounded for any choice of the initial values. In addition, an
asymptotic stability result is proved. The power § = 3 is then the critical
exponent. Roughly, this means that the cubic convolutions behave as power
nonlinearities of order 3. Finally, we mention here that in case of a polyno-
mial source of the form u |ulP ~1 with p > 5 the author proved in [11] a blow
up result in finite time.

2. Polynomial growth

In this section we state and prove our first result. It asserts that we
can find initial data for which the corresponding energy goes to infinity as
t — +o00, provided that the potential is weakly decaying. The rate of growth
is polynomial. Although we assume m > 0, the results remain valid (under
additional hypotheses) for the case m = 0 (see the Remarks 3 and 4 below).
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LEMMA 1 (Hardy-Littlewood-Sobolev inequality, see [4] or [6]). Let u €
PRY) p>1),0<y< N and § > 1—%, then (1/ |z|) xu € LI(RN) with
; = 7’64—%—1. Also the mapping fromu € LP(RN) into (1/ |z|")*u € LI(RVN)
s continuous.

THEOREM 1. Let m > 0 and 0 < v < 4. Suppose that h(t) is not constant
and is such that

(2) —ah(t)s <K(t) <0, a> 0.

Then, there ezists ag > 0 and {ug,u;}€ H' x L? such that if o < ag, the
solution of (1) grows polynomially as t — +oo.

Proof. A multiplication of the equation (1) by u; and an integration over
R¥ yield

d(1
(3) —{— { (ut + mu? + |V )dx}+u | w(Vy xuf)dz
dt 2 5y RN
= Ah(t) S ugu(Vy * u)dz.
RN
We denote by
_ 1 2 2 2
E(t) = 3 S (ut + mu® + |Vu| )d:c

RN
the classical energy and by
Eu(t) = E(t) — ¥(2) S ugudz
RN
the modified energy. Here 1(t) is a C!-function to be precised later. Clearly,
dE,(t) dE(t
o 4B _ 2B

0 S ugudz — P(t) S uldz — 1P(t) S ugeudr

and multiplying the equation in (1) by u we get
(5) S ugudr = — S [Vu|2dr —m S uldr — S wpu(Vy * ul)dz

RN RV RN RN
+ Ah(t) S (V. * u?)dz.
RN
Inserting (5) and (3) into (4) we find
(6) dE‘”(t)+ | wd(Vyrud)dz+p(t) | vldz+dp(t)n(t) | vd(Vyru?)dz
dt RN RN RN

= M(t) | veu(Voru?)do+pp(t) | weu(Vorud)dz+y(t) | |Vulde
RN RN RN
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+myp(t) | vide - ¥ (t) S ugudz.
RN RN
This will be our reference equality for this proof and the next ones. Note
that h(t) {gv u?(V, *x u?)dz is a C'—function and

%(h(t) RSN BV, % u2)d:c)

=h'(t) S u?(Vy * u?)dz + 2h(t) S ug(Vy * u?)dz + 2h(t S u?(Vy * wgu)dz

]RN ]RN RN
=h'(t) | w?(Vy*u?)dz +4h(t) | wu(Vy *u?)dz.
RN RN

Therefore (5) may be written as

(7) d (E¢(t)——h(t) { u2(V7*u2)dz) +u | ul(Vy*ul)de

dt
RN RN
+ Mp(t)ht) | v (Vy xu?)dz +(t) | uide
RN RN
= u(t) S wgu(Vy * u?)dz + (t) S |Vul? dz + map(t) S uldx
RN RN RN
- 2hl(t) S u?(V, * u?)dz — 0 | wudz.
RN RN

By the Parseval equality, the Cauchy-Schwarz inequality and the convo-
lution property enjoyed by the kernel V, (see [4, Chapter 7.1 and 3.4]), we
have

(8) RSN wu(Vy * u?)dz < [RSN (Vﬁzﬂ * ug)2 dz] 2 [RSN (vg%l * (utu))2 da:]

[

3 1
2 % 2 11
< [ § (Vi ) dx]4[ | (Vaay *u?) dx]4.
2 2
RN RN
Now Young’s inequality allows us to write
9) () S wu(Vy * u?)dz
RN
4 2
S (VN+1 * u?) dr + —— ¥ (t) S ( Nty * u2) dz.
RN 2 RN

<

] o

We put

F(t) = Ey(t) — %h(t) [ w(Vy xu?)dz.
RN
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From (7), (9) and the equality

2
[ (Ve xu) do= | u(Vyxu)de
RV~ C RN
which follows from the argument

[ w(Vyswde= | @Vyrude= | @ [Vags|

2

udz = S (V&l*uydz,

2

RN RN RN RN
we get
-d—F(;E—t) -i— S 2(Vy * u2)dz + (t) S uldz + 9 (t) S uiudz
RN RN
4
+ {Av,b(t)h(t) + %h'(t) - u'ﬁf) } RgN w?(V, * u?)de
< Y(t) S |Vul? dz + map(t) S uldz.
RN RN
We may write
dF(t) k(t) 2 k(2) 2
10) LY < kyre) - (E 4 p0)) Juddn+ (wie) - (Vul? da
z (7 +900) Jtae (000 -5) |
(,/,(t)_@) [ wde+ (k@p(®) ~ ¢/ (1) | veuds
RN RN

_ {)«/}(t)h(t) + —:—h’(t) _ 20 21\-k(t)h(t)} [ w(V, * u?)de

4 RN
for some function k(t). Setting
$(t) = ah3(t) and k(t) = bh3(t), a< 1

with 2a < b < 4a and 4 4“' > & (this is satxsﬁed if we choose, for instance,
b such that 2a < b < 3a and a so that a® < A\/u), we get

d’; ®) < brd ey Ft) - (b + a) 10 RgN w2dz + (a - g) B (2) RgN Vu|? dz
+m (a - g) ]RSN ulde + % abh? (t) - %h_% (t)h’(t)' (RSN uldz + RSN u2dz>

- %{ (47a— pat - Xb) A3 (1) + Ah’(t)} [ w2V »u?)de.
RN
Observe then that ap = 4Xa — pa? — Ab > 0 so that if o < ag the
condition (2) on h(t) implies that the coefficient of § w?(V, * u?)dz in (10)
RN
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is negative. Moreover, choosing a sufficiently small so that
1
1 . [3(b+2a) [3m(b-— 2a))§
<
ha(0) < mm{a(3b+ a)’ ( a(3b + o) }
(recall that h(t) < h(0)) we obtain

abh () %h—%(t)h'(t)l = b (t) - Sh=H ()R (1)

a (b+ %) hi(t) <a (b+ %) h3 (t)h3(0) < (b — 2a)h3 (2).
Also,

abh3 () — gh—%(t)h’(t)| <a (b+ ‘;‘) 13(0) < m(b — 2a).
The inequality (10) reduces to
(1) O < kwyF).

Now letting H(t) = —F\(t), we see that H'(t) > k(t)H(t).
If H(0) > 0, that is

A
% S (u%+mug+]Vuo|2)da:—ah%(0) S uoulda:—zh(O) S ud(Vy*ud)dz < 0

RN R¥N RN
then,
t
H(t) > H(0)exp { { k(s)ds}.
0
Clearly from (2),
; by y, ds
{k(s)ds = b h3(s)ds > 3bh3 (0) | ————
0 0 03+ ah3(0)s
3b

>= {im(3+ ah%(0)t) —In3} > 37:’-111 (1 + %h% (O)t) .

Hence,

o2

H(t) > H(0) (1 + %h%(O)t>
On the other hand,
(12) H@) = %h(t) | w®(Vyxu?)dz + o(t) | woudz
RN RN

- % { (uf + mu? + |Vu|2> dz
RN



On the wave equation 549

< éh(t) S u?(Vy * u?)dz + l(1/)2(t) —m) S u’dz.
4 RN 2 RN
Clearly, by our previous assumption on a
2hi() < ant(0) < 202 <

3
which implies that ?(t) — m < 0. Consequently,

H(t) < %h(t) | w2V, xu?)dz.

RN
By (2) and the Hardy-Littlewood-Sobolev inequality (Lemma 1)
A 2)2 A 2|2
(13) H(t) < Zh(0) RSN (VN_2+1 +u?) do < Zh(O)CHu "

: ;
< JhOC Julltge

Next, if v < 4 the Sobolev embedding H! c L9 for 2 < g < 7%1_\’—2 if N >2
and ¢ < oo if N < 2, implies

(14) H(t) < Cllullgn

for some positive constant C. We conclude that [jul| g1 8oes to infinity poly-
nomially as t — +00. =

REMARK 1. It is easy to see, using some Sobolev embeddings and (3) (see
also [9]), that if the initial data u;(z) and ua(z) are of compact support,
(say supp ui(z) U supp us(z) C {|z| < R}, for some R > 0), then the
solution u(z,t) is also of compact support (supp u(t,.) C {|z| < R + t}, for
any t < Ty, where T}, is the maximal time of existence).

REMARK 2. If the initial data are of compact support, then the following
hold for the solutions of (1)
(i) if N = 1, we have (by Poincaré inequality) |u|ly < C(R + t) || Vull,
(ii) if N > 3, we have (by {1, Theorem IX.9)) |lull,,. < C||Vul,, ;% =

3 — 4, therefore
ully < C(R+ ) [[ull» < C(R+t)|Vul,
(iii) if N = 2, we have (by (1, Corollary IX.11), |jully < C'||Vul|,.
REMARK 3. The result of Theorem 1 is still valid in case m = 0 with

initial data of compact support. To see this we use Remarks 1, 2 and an

additional condition. Namely, we need the boundedness of (R + t)h% (t).
This condition is not needed in case N = 2. Observe that this condition is
not in contradiction with the assumption (2) on h(t). Briefly, we shall point
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out here the main modifications to introduce in the proof of Theorem 1.
Firstly, we adopt the estimates
R3(t) | uudz < hE(R)h3(t) | wude
RN RN
% (t) S u d:n—}-lh(t) | v?dz
2 RN
) g dz+%h(t)02(R+t)2 | (Vul?dz.
RN

l\DIr—d l\.‘JIv—a

Then, we choose a small enough so that
a (b + %) < (b+2a) and a <b+ ) R($)CP(R +1)? < (b—2a)h3 (2)
i€
o (07 2 2
a b+-§ < (b+2a) and a b+§ Ch3(t)(R+t) (b — 2a).
In this way, we may control (k(t)z,b(t) - wl(t)) {ryv usudz in (10) by the

negative terms in {pv u?dz and {pn |[Vul®dz in the same inequality. We
obtain (11).
Secondly, in (12) we use the estimate

%b(t)sutudzgls dz+¢()s

RN 2 RN RN
< L S uldr + la2C'2h§ (t)(R+t)? S |Vul? dz.
2 RN 2 RN

Here again we need the boundedness of (R + t)h% (t) and a should be small
enough so that a2C2h3 O(R+1)? <1

3. Boundedness
In this section and the forthcoming one we take A = u for simplicity.

THEOREM 2. If m > 0 and the potential h(t) satisfies

’ 1
(15) K ()< —ah3B(t) <0, a>0, 0<B< 3
then for all such o, B and initial data {uo,u1} € H' x L?, the classical
energy is uniformly bounded.

Proof. Recall the reference equality (6)
dE(t
w(t) |

(16) p

A wd(Vyxud)dz +9(t) | uldz + Mp(t)h(t) | v?(V, xu?)da
RN RN RN
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= M(t) | wu(Vy +u?)dz + Mp(t) | weu(V,y * uf)de

RN RN
+ 9(t) S |Vu|? dz + ma(t) S wlde — ' (t) S upudz.
RN RN RN

By a similar argument to that in (8) and (9) , we may consider the estimates

(17) h(t) § weu(Vy xu?)dz < %h%(t) | (Vargs xu M2z 4 = g (Vargs * u?)%dz

RN RN IR
and
Pi(2) 212 3 272
(18) ¥(t) S wpu(Vy * ul)dz < | (Viiy xu?)?de + S (VNiy *x uy)*dz.
RN 4 gy 2 4]RN 2
Taking into account (17) and (18) in (16), we find
dEy(t
;t( ) 1 hd(t) | dde
RN
< {Exh%(t) — Mp(t)h(t) + l,\¢4(t)} { (VN+ * u2)2d:1:
~ 14 4 A
1 3 2\ 2 2
+(A+320=2) | (Vg +uf) de+9y(0) § [Vufde
4 4 RN 2 RN
+ ma(t) S udz — ' (t) S ugude.
RN RN
Let us set ¢(t) = h3 (t). We get
(19) dBu(t) | b4 3(t) | ulde
Tt
RN
<h(t) | (Vuftdz+mhd(t) | wlde — sh-3 (R (8) | weude
RN RN 3 RN
23 (HE(t) — Lh—% (O (2) | wey/mude.
\/_— ]RN
Recalling that k'(t) < 0, we obtain
(20) dE’”(t) +hd(t) | ulde

RN

1 ___ ’ 1 m
< 2R3 (t)E(t) - Th 3(t)h (t) (5 RSN uldr + 5 R§N quz)
< (2h%(t) - §—1ﬁh-%(t)h'(t)) E().
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On the other hand, as h(t) is decreasing to zero we may choose tg > 0
such that

h3(t) < %m for ¢ > to.

Therefore, for t > tg

(21) P(t) | wude <1 | wlde+h3(t) | ulds
RN 4 RN RN
1 2 1 2 1
<= | uldz+-m | W®dz < ZE(2).
4 N 4 N 2
Consequently,

Ey(t) == ‘ (ut + mu? + |V )dz ¥(t) | veudz > E(t)——E(t) = —E(t).
]R RN
Integrating (20) over (to,t), it appears that

—E(t><E¢<to)+s( ms) - g7=h O (9)) Ble)ds

i.€.

E(t) < 2Ey(to) + | <4h% (s) — g-gﬁh—%(s)h’(s)) E(s)ds.

Observe now that

S ha(s)ds < —-= S hP=1(s)h (s)ds < —=2 R(0)
to to '3
and ,
— | A3 (s)R(s)ds < 3h3(0).
to
By Gronwall’s inequality we obtain

4hP(0)  2h3(0)
< t 2 to.
E(t) < 2E¢.(to) exp{ op + \/-Tﬁ ,t2t. m

REMARK 4. When m = 0, we need in addition to (15) the boundedness of
(R+ t)2h3"’(t) for some 0 < v < 1. For (19), by the Remarks 1 and 2 we
have

1 2 ’ 1 _2 ’ 1 2 1 2
—=h™3(t)h () S wudr < —=h73(t)h (t)| = S utdm+§ S u“dx

3 e 3 2 N e
h=3 )k (t)C(R + t)2E(t) < —h~3 (t)h' () ChY~5 (1) E(t)

<-
< -CRH ()R (t)
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and clearly,
t

— (K1 (s)H (s)ds < ~h7(0) < co.
0 7

We use also the estimate

hi(t) | wudz < h3(t) | ulde +h3TVORI() | wlde

RN RN RN
< h3(t) | uldz +h3TVRI(R)CHR + 1) | [VulPds
RN RN
<h3(t) | wdde+CRY(t) | |VulPdz.
RN RN

Choose tg > 0 such that ChY(t) < %, for all ¢ > tg. Assuming, without loss

of generality, that C > 1 we see that h3 ) < %, t > tp and hence (21) is
satisfied.

4. Asymptotic stability

THEOREM 3. Let 0 < v < 4 and assume the same hypotheses as in Theo-
rem 2. Then for alla > 0,0 < 3 < -:1; and initial data {ug,u;} € H' x L?
we have lim;_, 1 E(t) = 0.

Proof. Let us consider once more the reference equality (6). Taking ¥(t) =
—p(141t)7, for some p and § > 0 to be determined and using the estimates
(17) and (18), we find

d {l S (u'f +mu? + |V'u|2) dz + p(1 + t)_‘s S utuda:}

dt | 2 oy RN
+p(1+1)° S [Vul>dz + mp(1 +t)~¢ S uldzx
RN RN
3 4 1 4 -4 2 2
< (—/\ha(t)+—/\p (141¢) ) S (Vyﬂ*u) dz
4 4 RN 2
+p(1+1t)¢ S uldz — 6p(1 + )1 S ugudx
RN RN
+ 2p(1 + t)~%h(t) S u?(V, » u?)dz.
RN

From the Cauchy-Schwarz inequality and the fact that

2
| w2V xu?)dz = | (VL;_.L +u?) dz < Cllullfn <M
RN RN
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(by (13), (14) and Theorem 2) we obtain

dEy(t 3
0 4 o+ 7By (0) < o1+ )7 [ wlde 4 21407 | ude
RN RN

+ (gxh% (t) + i)\p‘l(l +1)™% 4 2p(1 4+ t)‘5h(t)> M

—8p(1 + )71 S ugude.
RN
Using again the previous result that the classical energy is uniformly
bounded, we get

22) @it(t_) +p(1+8)Ey(t) < ar(1+)7° + ag(1+1)7% + aghi (1)

d
+ag(1+ )" 4 as(1 +t)~%h(t)
< by(1+1)"% + byh (t) + bs(1 + )~ h(2)

for some positive constants a; and b;, i = 1,2, 3. If
¢ ¢

o(t) = *(S)iﬁ(S)ds = p(S)(l +5)%ds = % [(1 +)l - 1] :

it appears from (22) that

gt- (£ OBy (1)) < #® {ba(1+ )7 + bohd (t) + ba(1 + £)h(t)}.

Next, an integration over (0, t) yields

e? O Ey(t) — Ey(0) < §ev<s> (@ +9)7+ boh (s) + ba(1 + 5)h(s)} ds.
0

Now by some estimates proved in [2] we have for sufficiently small values

of é
¢
e [#() {b1 (1 + 5)™ + byh'(s) + ba(1 + 5)*h(s) } ds — 0
0
ast — +o00.
On the other hand, if p < 3@ then we can easily see that

Eyt) > -;—E(t), £>0.

Thus, lim; 400 E(t) = 0. This completes the proof. =
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