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ON THE WAVE EQUATION WITH A DISSIPATION 
AND A SOURCE OF CUBIC CONVOLUTION TYPE IN R N 

Abstract. We study the interaction between a dissipative term and a source term 
of cubic convolution type for the wave equation in . These terms have both the same 
form and involve convolutions with a singular kernel. The investigation will depend on the 
coefficient of the source term which is a function of the time variable. Some results on the 
boundedness of the solutions are proved. Moreover, we establish an asymptotic stability 
result. 

1. Introduction 
We consider the following problem 

(1) { Utt + m u + * u t ) - A u + A h ( t ) u ( V y * u2), in (0, T ) x RN 

[ u(0, x) = uo(x), ut(0, x) = ui(x), x 6 M n 

where Vy = | x | - 7 , (V ,̂ * w)(x) = Vy(x — y)w(y)dy, 0 < 7 < N and m, 
H, A > 0. The potential h(t) € C^R4",!"1") and A stands for the Laplacian 
in Rn. 

In case = 0 and h(t) is constant, some global existence, scattering 
(existence of asymptotically free solutions) and global non existence results 
are shown in Perla Menzala and Strauss [9], In fact, a blow up result has 
been proved but only for large enough initial data. For small initial data we 
cite the result of Hidano [3] established in case N = 3 and provided that 
the initial data are in addition spherically symmetric. 

When A = 0, some global existence results may be found in [5, 8, 10]. As 
for the asymptotic behavior we mention the work of Mochizuki and Motai in 
[7]. There the authors, using a weighted energy norm, obtained some results 
on the decay of the classical energy and determined its rate of convergence. 
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They also established a non-decay result. It has been proved that one can 
find initial data for which the energy never decays at infinity. 

In the present work we consider the case where both /i and A are differ-
ent from zero {¡JL ^ 0, A ^ 0) and a non constant potential h(t). Using more 
or less standard arguments one can prove several existence theorems. These 
results will depend on the space dimension N, the parameters m (m > 0 
or m = 0) and 7, and the regularity of the initial data (UQ, UI). In particu-
lar, we have global existence of a solution in C([0,00); H1) fl C1([0,00); L2) 
in case (uo,ui) E Hl x L2 with some restriction on N (if m = 0 we 
consider initial data with compact support). The restriction on N may 
be relaxed by assuming more regular initial data (for instance (UQ, U\) € 
H2 x n L6N/(3N~21^). Here we shall not be concerned about these re-
strictions as our results are valid for all (uo, ui) € H1 x L2 (provided that 
we have existence) and some conditions only on 7. In this paper, our main 
interest is to investigate the balance between the dissipation and the source 
terms. To this end we shall follow closely the work of Georgiev and Milani 
[2] where a different problem was treated. Namely, they studied the wave 
equation in a bounded domain with dissipation and source terms of poly-
nomial type (ut |u t | p _ 1 and u\u\p~l respectively). We will rely on some of 
their estimates. 

The deal with the difficulties generated by the unboundedness of the 
spatial region, the nonlocal nature of the dissipation and the source terms 
as well as the singularity of the kernel represents the feature of our present 
investigation. 

As we shall see, we obtain essentially the same results as in [2]. Namely, 
when h(t) = 0 ( (1 + t)~s) as t —* +00 and 0 < S < 3 there are initial data 
yielding polynomial growth of the energy as t —• +00. If 6 > 3, the energy 
is uniformly bounded for any choice of the initial values. In addition, an 
asymptotic stability result is proved. The power S = 3 is then the critical 
exponent. Roughly, this means that the cubic convolutions behave as power 
nonlinearities of order 3. Finally, we mention here that in case of a polyno-
mial source of the form u with p > 5 the author proved in [11] a blow 
up result in finite time. 

2. Polynomial growth 
In this section we state and prove our first result. It asserts that we 

can find initial data for which the corresponding energy goes to infinity as 
t —> +00, provided that the potential is weakly decaying. The rate of growth 
is polynomial. Although we assume m > 0, the results remain valid (under 
additional hypotheses) for the case m = 0 (see the Remarks 3 and 4 below). 
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LEMMA 1 (Hardy-Littlewood-Sobolev inequality, see [4] or [6]). Let u 6 
LP(RW) (p> 1), 0 < 7 < N and ft > then (1/ |x|7)*u € L<I(Rn) with 
I = # + ¿-1. Also the mapping from u € IS(RN) into (1/ |x|7)*u e Lq(RN) 
is continuous. 

THEOREM 1. Let m > 0 and 0 < 7 < 4. Suppose that h(t) is not constant 
and is such that 
(2) - ah(t)% < h'(t) < 0 , a > 0. 

Then, there exists ao > 0 and { i to,«i}€ H1 x L2 such that if a < c*o> the 
solution of (1) grows polynomially as t —• +00. 

Proof . A multiplication of the equation (1) by ut and an integration over 
Rn yield 

(3) i (uf + mu2 + |Vu|2) d x } + n J u2{Vy*u2)dx 

= Ah(t) J utu(Vy * u2)dx. 
RN 

We denote by 

£(i) = i j (y2 + mu2 + | Vu| 2 ) dx 
RN 

the classical energy and by 

E^(t) = E(t) - ip(t) J utudx 

the modified energy. Here is a C1-function to be precised later. Clearly, 

(4) ^ M l = 5 utudx-m J u 2 d x - m j uttudx 
d d t RN RN RN 

and multiplying the equation in (1) by it we get 

(5) J uttudx = — J |Vu|2dx — m J u2dx-p J utu(V1 *u2)dx 
RN RN RN RN 

+ Xh(t) \ u2{V^*u2)dx. 

Inserting (5) and (3) into (4) we find 
(6) j u2{V^u2t)dx+xl>(t) j t$dx+\il>(t)h(t) \ u2(Vy*u2)dx 

RN RN RN 

= Ah(t) \ utu(Vy*u2)dx+fj,i(;(t) \ utu(Vy*u2)dx+ip(t) \ |Vu|2 dx 
RN RN RN 
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+mip(t) j u2dx — ip'(t) J utudx. 
JJJV 

This will be our reference equality for this proof and the next ones. Note 
that h(t) JRJv u1(V1 * u2)dx is a C1—function and 

jt(h{t) \ u2(Vy*u2)dx 
MN 

= h'(t) \ u2(Vy *u2)dx + 2h(t) \ Ufii^ * u2)dx + 2h{t) J u2(Vy *utu)dx 
H N RN JIN 

— h'(t) \ u2(Vy * u2)dx + Ah{t) \ utu(V-y*u2)dx. 
U JV ¡rjv 

Therefore (5) may be written as 

(7) f E^(t) - jh(t) J u2(Vy * u2)dx ) + n J u?(V7 * u2)dx 
M\ RN J rn 

+ Xip(t)h(t) j u2(V1*u2)dx + ^j(t) J u2dx 
mn Rn 

= /iV>(i) \ utu{v7 * u2)dx + ip(t) \ |Viz|2 dx + mip(t) \ u2dx 

A,/ 
mN 

— —h'(t) j * u2)dx — ip'(t) j utudx. 

By the Parseval equality, the Cauchy-Schwarz inequality and the convo-
lution property enjoyed by the kernel V7 (see [4, Chapter 7.1 and 3.4]), we 
have 

2 i ~ r 2 ' 1 
(8) j utu(Vy * u2)dx < J (Vn+-t * uf} dx \ * (utu)) dx 

"RN -RJV 

< 
2 -12 

J (yN+I * u2) dx J (VN+7 * tt2) dx\ . 
RN 2 2 J 

Now Young's inequality allows us to write 

(9) ip(t) \ utu(V7 * u2)dx 
RN 

< j I (vIi±L*^ydx + ^ \ (Vn+2 * u2jz dx. 
Kn 2 RN 2 

We put 

F(t) = E^(t) - -h(t) J ti2(F7 * u2)dx. 
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From (7), (9) and the equality 

J (Vn+t *uj dx = J u(Vy * u)dx 
jIN 2 

which follows from the argument 
2 _ 

547 

^ u(Vy * u)dx = j u V 7 * udx = ^ u 
RN R N RN 

we get 

Vn+j 
2 

udx = j (Vn+2 * u^ dx, 
RN 2 

+ 5 ut (^7 * u2)dx + ijj{t) J u2dx + (t) \ utudx 

+ 
l J RN 

< t p i t ) \ |Vu| 2 dx + mrp(t) \ u2dx. 
RN 

We may write 

( 1 0 ) ^ < k(t)F(t) - ( M + I u2tdx + ( m - M ) J |Vu| 2 dx 

+ m ( t p ( t ) - ^ \ \ u2dx+ (k(t)xlj(t) -V'(i)) \ utudx 
RN r n 

- { a x(;(t)h{t) + jh\t) - - jk(t)h(t)\ 5 u2{V1*u2)dx 
l 4 4 4 J R N 

for some function k(t). Setting 

ip(t) = ah*(t) a n d k(t) = bh*(t), a < 1 

with 2a < b < 4a and ^ ^ > ^ (this is satisfied if we choose, for instance, 
b such that 2a < b < 3a and a so that a 3 < A//x), we get 

dF(t) 

dt 
< bh3 (t)F{t) + (t) j u2dx + (a - (t) j |Vu|2 dx 

V2 / r n V 2 / r N 

o 
+ m i a - ^ J u2dx + i 

r n 2 

- ( 4 A a - / x a 4 - A b ) / i 3 ( i ) + A/i'(i)| j u2(V7 * u2)dx. 
I- raw 

j u2dx + J u2dx 
RN 

RN 

Observe then that ao = 4Aa — (ia4 — Xb > 0 so that if a < ao the 
condition (2) on h(t) implies that the coefficient of J u2{V1 *u2)dx in (10) 

RN 
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is negative. Moreover, choosing a sufficiently small so that 

\ o(36 + a ) ' V o(36 + a) J J ' 
(recall that h(t) < h(0)) we obtain 

abhl(t) - ^h-%(t)ti(t) 
o 

= abh%(t) - ^h~%(t)ti(t) 
o 

- ° ? ) - a ( 6 + ? ) - 2a)h3(i). 
Also, 

O 
The inequality (10) reduces to 

< k(t)F(t). 

uN 

Now letting H(t) = - F ( i ) , we see that H'(t) > k(t)H(t). 
If H(0) > 0, that is 

^ \ (uj + mul + \Vuo\2)dx-ah%(0) J u0uidx-jh(0) \ ul(Vy*ul)dx 
2 RJV RW 
then, 

tf(i) > tf(0)exp{jifc(s)dsj. 

Clearly from (2), 
V L I 
jk(s)ds = b\h3(s)ds > 3bh*(0) \ 

ds 

Hence, 

o 3 + a/is (0)s 

> ^ |in (3 + ahk (0)t) - In 3 } > ^ In ( l + | h h (0)t) . 

/ 
H(t)>H(0) (i + ^hko)ty. 

On the other hand, 

(12) H{t) = jh(t) \ u2(Vy*u2)dx + i>(t) j utudx 

~ \ \ {ut + m u 2 + I'Vul2) d x 
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2 
2 N 

2N-i 

< j h ( t ) \ U 2 (V 7 * u2)dx + p2{t) - m) J u2dx. 

Clearly, by our previous assumption on a 

a2hl{t)<ahHQ)<m{*~la) <m 0 + 3 
which implies that ip2(t) — m < 0. Consequently, 

H(t) < \ u2(Vy * u2)dx. 
R N 

By (2) and the Hardy-Littlewood-Sobolev inequality (Lemma 1) 

(13) H{t)<jh{0) J { V ^ t u 2 ) 2 dx<jh{Q)C 
R" 2 

4 2 N—I 
Next, if 7 < 4 the Sobolev embedding H1 C I 9 for 2 < q < ^ if N > 2 
and q < oo if N < 2, implies 
(14) H(t) <C\\ufHl 

for some positive constant C. We conclude that |M|#i goes to infinity poly-
nomially as t —* +oo. • 
REMARK 1. It is easy to see, using some Sobolev embeddings and (3) (see 
also [9]), that if the initial data ui(x) and U2(x) are of compact support, 
(say supp ui(i) U supp U2(x) c {|a:| < R], for some R > 0), then the 
solution u(x,t) is also of compact support ( s u p p u(t,.) C {|x| < R + t}, for 
any t < Tm, where Tm is the maximal time of existence). 
REMARK 2. If the initial data are of compact support, then the following 
hold for the solutions of (1) 

(i) if N = 1, we have (by Poincaré inequality) ||u||2 < C(R + t) ||Vu||2 

(ii) if N > 3, we have (by [1, Theorem IX.9]) ||u||p. < C ||Vu||2, ± = 
\ — therefore 

IM|2 < C{R + t) ||u||p. < C{R +1) ||Vu||2 

(iii) if N = 2, we have (by [1, Corollary IX.ll), ||u||2 < C ||Vu||2 . 
REMARK 3. The result of Theorem 1 is still valid in case M = 0 with 
initial data of compact support. To see this we use Remarks 1, 2 and an 
additional condition. Namely, we need the boundedness of (R + t)hi (t). 
This condition is not needed in case N = 2. Observe that this condition is 
not in contradiction with the assumption (2) on h(t). Briefly, we shall point 
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out here the main modifications to introduce in the proof of Theorem 1. 
Firstly, we adopt the estimates 

2 r 1 1 r 

h.3(t) \ utudx < hë (t)hï (t) } utudx 

\ u2tdx + ]-h{t) \ u2dx 

<hà(t) J u2dx + hi(t)C2{R + t)2 5 |Vu|2dx. 
Then, we choose a small enough so that 

a (b + I ) < (b + 2a) and a (b + h{t)C2{R + tf <(b- 2a)h* (t) 

i.e. 

a(b + ^ <(b + 2a) and a (b + C2hi{t){R + tf <(b- 2a). 

In this way, we may control (jc(t)ip(t) — ijj (t)^j Jrat utudx in (10) by the 

negative terms in u2dx and |Vu|2 dx in the same inequality. We 
obtain (11). 

Secondly, in (12) we use the estimate 

ip{t) j utudx < - j u2dx j u2dx 
RW R^ RN 

<]- S u2dx + ^a2C2hl(t)(R + t)2 S |Vu|2dx. 
R̂V R N 

Here again we need the boundedness of (R + t)h% (t) and a should be small 
enough so that a2C2hi{t){R +1)2 < 1. 

3. Boundedness 
In this section and the forthcoming one we take A = ¡j, for simplicity. 

THEOREM 2. If m > 0 and the potential h(t) satisfies 

(15) ti(t) < -ah%~P{t) < 0, a > 0 , 0 < ( 3 < \ 
O 

then for all such a, (3 and initial data {uo>ui} € i/1 x L2, the classical 
energy is uniformly bounded. 

Proof . Recall the reference equality (6) 

(16) ^M^- + A j u2(F7 * u2)dx + V(i) J u2dx + \^{t)h{t) \ u2(Vy * u2)dx 
R N RW RN 
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= Ah(t) j utu(V.y * u2)dx + \ip(t) j utu(Vy * u2)dx 
JH N RN 

+ i>{t) J \Vu\2 dx + mip^) J u2dx-ip'(t) J utudx. 
RN RN RN 

By a similar argument to that in (8) and (9) , we may consider the estimates 
O 1 

(17) h{t) \ Utn{Vy * U2)dx < -hl(t) 5 (Vn+2 * U2)2dx + - 5 (Vn+2 * U2fdx 
rn RN 2 2 

and 

(18) V>(i) J utu(Vy * u2)dx < ^ ^ j (Vam^ * u2fdx + j J (VWij * u2fdx. 
RN RN 2 4RN 2 

Taking into account (17) and (18) in (16), we find 

+ \ u2dx 
RN 

< j^A/»s(i)- Xrp(t)h(t) + ^Xtl;4(t)\ j dx 

+ ( l A + I A _ A ) i {VN^*uff dx + W) J |Vu|2dx 
RN RN 

+ mip(t) j u2dx — ip (t) ^ utudx. 
RN RN 

Let us set tp(t) = h^(t). W e get 

(19) d-Mi + hHt)\u2dx 
RN 

<h?(t) \ \Vu\2dx + mh3(t) \ u2dx - -hr*(t)ti(t) j utudx 
RN RN RN 

<2h^{t)E{t)--^=h~i(t)h'(t) ( ut.y/mudx. 
3 Vrn RJ„ 

Recalling that ti (t) < 0, we obtain 

(20) ^ M l + h^t) \ u2dx 
d t

 RN 

< 2h$(t)E(t) - -l=h~%(t)h'(t) ( ^ \ u2dx + ^ \ u2dx 
3VRN \ RN 2 r n 

^ ( j M i i W - ^ f c - i W f c ' w ) E(t). 
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On the other hand, as h(t) is decreasing to zero we may choose io > 0 
such that 

2 1 /i3(t) < -m for t > to. 4 
Therefore, for t > to 

1 2 (21) ip(t) \ utudx<- \ u2dx + h* (t) J u2dx 
RN J{N KN 

< j \ u2dx + jm \ u2dx < |E(t). 
4
 R N R " 

Consequently, 

E^t) = | j (ttt
2 + mu2 + |Vu|2) dx—ip(t) \ utudx > E{t)-)-E{t) = ]:E{t). 

Integrating (20) over (¿o>0> ^ appears that 

±E{t) < E^to) + \ (2hi(s) - (s)h'(sfj E(s)ds 
to 

i.e. 

E(t) < 2E^(t0) + J ( ) - E(s)ds. 

Observe now that 

\ h*(s)ds < - - i h^1(s)h'(s)ds < ^ .J A ,J OLD 
to to ^ 

and 
T 

- J h~i{s)h'{s)ds < 3h3(0). 
to 

By Gronwall's inequality we obtain 

E(t) < 2E^(t0) exp | ^ ^ 

REMARK 4. When M = 0, we need in addition to (15) the boundedness of 
(R + t)2/i3-T(t) for some 0 < 7 < For (19), by the Remarks 1 and 2 we 
have 

- i / r f ( t ) / i ' ( i ) j utudx < ~h~i(t)h'(t)(^ J u}dx + l- \ 
RN 3 ^ RN 2 RAT / 

< -h~%(t)h'(t)C(R + t)2E(t) < -h~3(t)h\t)Ch^(t)E(t) 
< -CK'-1(t)ti(t) 
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and clearly, 
t 

- \h''-1(s)h'(s)ds < -/i7(0) < oo. 
6 T 

We use also the estimate 

fci(t) \ utudx<h3(t) j tt^dx + /i3-T(i)/*T(i) J u2da; 
RN RN RAT 

</l3(i) J + + j |Vtij2 dx 
RN RN 

</i3(i) 5 u2tdx + CW(t) S |V«|2dx. 
RN RN 

Choose ¿o > 0 such that C7i7(£) < for all t > to. Assuming, without loss 
of generality, that C > 1 we see that h${t) < t > to and hence (21) is 
satisfied. 

4. Asymptotic stability 

THEOREM 3. Let 0 < 7 < 4 and assume the same hypotheses as in Theo-
rem 2. Then for all a > 0, 0 < /? < g and initial data { u o , u i } G H1 x L2 

we have limt_»+00 E(t) = 0. 

Proof . Let us consider once more the reference equality (6). Taking ip(t) = 
—p(l + t)~s, for some p and 6 > 0 to be determined and using the estimates 
(17) and (18), we find 

Tt\ \ 5 (v% + mu2 + \Vu\2S) dx + p(l + t)~s J utudx 
( R" R" J 
+ p(l + t)~s \ |Vu|2 dx + mp(l + t)~s \ u2dx 

rN r N 

< (jXhi(t) + iAp4(l + i)~4i) 5 (Vn+2 * u2f dx 
\ / RN 

+ p(l + t)"6 \ v%dx-6p(l + t)-s-1 j utudx 
RN rat 

+ A/>(1 + t)~sh{t) \ u2(Vr*u2)dx. 

From the Cauchy-Schwarz inequality and the fact that 

\ u2(Vy*u2)dx= \ (Vn+z * u2}2 dx < C \\u\\4H1 < M 
R" R" 2 
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(by (13), (14) and Theorem 2) we obtain 

+ + + j u2
tdx + p2(l + t)-2S J utudx 

+ ( ^ ( i ) + 1 + t)~4S + A p ( l + t)~5h{t)j M 

- S p i l + t)-*'1 \ utudx. 

Using again the previous result that the classical energy is uniformly 
bounded, we get 

(22) + p( 1 + t ) " % ( i ) < ax(l + t)~5 + a2( 1 + t)~2S + a3hl(t) 

+ 0 4 ( 1 + i ) - 4 5 + 0 5 ( 1 + t)~5h(t) 

< 6 i ( l + i ) " 5 + b2h$(t) + 6 3 ( 1 + t)~sh(t) 

for some positive constants a; and 6t, 2 = 1,2,3. If 
t t 

<p(t) = - 5 il>(s)ds = p ¡ ( 1 + s)-5ds = [ ( 1 +1)1'6 - l ] , 
0 0 

it appears from (22) that 

j t ( f ® E t ( t j ) < e * ® {6i(l + t)~s + b2hi(t) + 63(1 + t)~5h(t)} . 

Next, an integration over (0, t) yields 
t 

e ^ E ^ t ) - E+i0) < 5 e ^ { ^ ( 1 + s)~6 + b2h$(s) + 6 3 ( 1 + s)-'h(s)}ds. 
0 

Now by some estimates proved in [2] we have for sufficiently small values 
of 8 

t 
e-v(t) j cvW | b l ( i + 8yS + ^ ( s ) + ^(i + s)~sh(s)} ds - » 0 

0 
as t —* +00. 

On the other hand, if p < then we can easily see that 

E*(t) > i E ( t ) , t > 0 . 

Thus, limt_»+oo E(t) = 0. This completes the proof. • 
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