

Jacek Dziok, R. K. Raina

FAMILIES OF ANALYTIC FUNCTIONS ASSOCIATED
WITH THE WRIGHT GENERALIZED
HYPERGEOMETRIC FUNCTION

Abstract. By introducing a new class of analytic functions with negative coefficients which involves the Wright's generalized hypergeometric function, we investigate the coefficient bounds, distortion theorems, extreme points and radii of convexity and starlikeness for this class of functions.

1. Introduction & preliminaries

Let \mathcal{A} denote the class of functions f of the form:

$$(1) \quad f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

which are *analytic* in $\mathcal{U} := \mathcal{U}(1)$, where

$$\mathcal{U}(r) := \{z : z \in \mathbf{C} \text{ and } |z| < r\}.$$

A function f belonging to the class \mathcal{A} is said to be *convex* in $\mathcal{U}(r)$ if and only if

$$\mathbf{R} \left(1 + \frac{zf''(z)}{f'(z)} \right) > 0 \quad (z \in \mathcal{U}(r); 0 < r \leq 1).$$

A function f belonging to the class \mathcal{A} is said to be *starlike* in $\mathcal{U}(r)$ if and only if

$$(2) \quad \mathbf{R} \left(\frac{zf'(z)}{f(z)} \right) > 0 \quad (z \in \mathcal{U}(r); 0 < r \leq 1).$$

We denote by \mathcal{S}^c the class of all functions in \mathcal{A} which are convex in \mathcal{U} and by \mathcal{S}^* we denote the class of all functions in \mathcal{A} which are starlike in \mathcal{U} .

1991 *Mathematics Subject Classification*: Primary 30C45, 26A33; Secondary 33C20.

Key words and phrases: analytic functions, Wright's generalized hypergeometric function, linear operator, convex functions, starlike functions.

For analytic functions

$$f(z) = \sum_{n=0}^{\infty} a_n z^n \quad \text{and} \quad g(z) = \sum_{n=0}^{\infty} b_n z^n,$$

by $f * g$ we denote the *Hadamard product (or convolution)* of f and g , defined by

$$(f * g)(z) := \sum_{n=0}^{\infty} a_n b_n z^n.$$

Let \mathcal{B} be a subclass of the class \mathcal{A} . We define the radius of starlikeness $R^*(\mathcal{B})$ and the radius of convexity $R^c(\mathcal{B})$ for the class \mathcal{B} by

$$R^*(\mathcal{B}) = \inf_{f \in \mathcal{B}} (\sup \{r \in (0, 1] : f \text{ is starlike in } \mathcal{U}(r)\})$$

and

$$R^c(\mathcal{B}) = \inf_{f \in \mathcal{B}} (\sup \{r \in (0, 1] : f \text{ is convex in } \mathcal{U}(r)\}),$$

respectively.

Let $\alpha_1, A_1, \dots, \alpha_q, A_q$ and $\beta_1, B_1, \dots, \beta_s, B_s$ ($q, s \in \mathbb{N} := \{1, 2, \dots\}$) be positive real parameters such that

$$1 + \sum_{n=1}^s B_n - \sum_{n=1}^q A_n \geq 0.$$

The Wright generalized hypergeometric function [12] (see also [11])

$$\begin{aligned} {}_q\Psi_s[(\alpha_1, A_1), \dots, (\alpha_q, A_q); (\beta_1, B_1), \dots, (\beta_s, B_s); z] \\ = {}_q\Psi_s[(\alpha_k, A_k)_{1,q}; (\beta_k, B_k)_{1,s}; z] \end{aligned}$$

is defined by

$$\begin{aligned} {}_q\Psi_s[(\alpha_k, A_k)_{1,q}; (\beta_k, B_k)_{1,s}; z] \\ := \sum_{n=0}^{\infty} \left\{ \prod_{k=1}^q \Gamma(\alpha_k + A_k n) \right\} \left\{ \prod_{k=1}^s \Gamma(\beta_k + B_k n) \right\}^{-1} \frac{z^n}{n!} \quad (z \in \mathcal{U}). \end{aligned}$$

If $A_k = 1$ ($k = 1, \dots, q$) and $B_k = 1$ ($k = 1, \dots, s$), we have the relationship:

$$(3) \quad \omega_q \Psi_s[(\alpha_k, 1)_{1,q}; (\beta_k, 1)_{1,s}; z] = {}_qF_s(\alpha_1, \dots, \alpha_q; \beta_1, \dots, \beta_s; z),$$

where ${}_qF_s(\alpha_1, \dots, \alpha_q; \beta_1, \dots, \beta_s; z)$ is the generalized hypergeometric function and

$$(4) \quad \omega = \left(\prod_{k=1}^q \Gamma(\alpha_k) \right)^{-1} \left(\prod_{k=1}^s \Gamma(\beta_k) \right).$$

The Wright generalized hypergeometric functions were invoked in the geometric function theory (see [6]–[9]).

In [4] Dziok and Srivastava, using the generalized hypergeometric function, introduced a linear operator. Now we extend the linear operator by using the Wright generalized hypergeometric functions. First we define a function ${}_q\phi_s [(\alpha_k, A_k)_{1,q}; (\beta_k, B_k)_{1,s}; z]$ by

$${}_q\phi_s [(\alpha_k, A_k)_{1,q}; (\beta_k, B_k)_{1,s}; z] = \omega z {}_q\Psi_s [(\alpha_k, A_k)_{1,q}; (\beta_k, B_k)_{1,s}; z]$$

and consider the following linear operator

$$(5) \quad \Theta [(\alpha_k, A_k)_{1,q}; (\beta_k, B_k)_{1,s}] : \mathcal{A} \rightarrow \mathcal{A},$$

defined by the convolution

$$\Theta [(\alpha_k, A_k)_{1,q}; (\beta_k, B_k)_{1,s}] f(z) = {}_q\phi_s [(\alpha_k, A_k)_{1,q}; (\beta_k, B_k)_{1,s}; z] * f(z).$$

It readily follows from (1) that

$$(6) \quad \Theta [(\alpha_k, A_k)_{1,q}; (\beta_k, B_k)_{1,s}] f(z) = z + \sum_{n=2}^{\infty} \omega \sigma_n a_n z^n,$$

where

$$(7) \quad \sigma_n := \frac{\Gamma(\alpha_1 + A_1(n-1)) \cdots \Gamma(\alpha_q + A_q(n-1))}{\Gamma(\beta_1 + B_1(n-1)) \cdots \Gamma(\beta_s + B_s(n-1))(n-1)!}.$$

Equation (6) yields the following relationship after some elementary calculations

$$(8) \quad \alpha_1 \Theta [\alpha_1 + 1] f(z) = z A_1 \Theta' [\alpha_1] f(z) + (\alpha_1 - A_1) \Theta [\alpha_1] f(z)$$

where, for the sake of convenience we denote

$$\Theta [\alpha_1] f(z) = \Theta \left[(\alpha_1, A_1), \dots, (\alpha_q, A_q); (\beta_1, B_1), \dots, (\beta_s, B_s) \right] f(z).$$

In view of the relationship (3), the linear operator (5) includes the Dziok-Srivastava linear operator [4] (see also [3] and [5]). Further, the linear operator defined by Raina [6] is contained in (5).

Let us denote by $W(q, s; A, B)$ the class of functions f of the form:

$$(9) \quad f(z) = z - \sum_{n=2}^{\infty} a_n z^n \quad (a_n \geq 0; \quad n = 2, 3 \dots),$$

which also satisfy the following condition:

$$(10) \quad \alpha_1 \frac{\Theta[\alpha_1+1]f(z)}{\Theta[\alpha_1]f(z)} + A_1 - \alpha_1 \prec A_1 \frac{1+Az}{1+Bz} \quad (0 \leq B \leq 1, -B \leq A < B).$$

In particular, for $q = s + 1$ and $\alpha_{s+1} = A_{s+1} = 1$, we write

$$W(s; A, B) = W(s + 1, s; A, B).$$

Classes of functions of the form (9) defined by some linear operators were investigated by (among others) Choi, Kim and Srivastava [1], Srivastava and Aouf [10] and Dziok [2].

Now using techniques due to Dziok and Srivastava [4] we investigate the coefficient estimates, distortion properties and radii of convexity and starlikeness for the class $W(q, s; A, B)$.

2. Coefficient estimates

The following lemmas follow easily:

LEMMA 1. *If $\alpha_k = \beta_k$, $A_k = B_k$ ($k = 1, \dots, s$), then*

$$W(s; 1, -1) \subset S^*.$$

LEMMA 2. *If $A_1 \leq A_2$ and $B_1 \geq B_2$, then*

$$W(q, s; A_1, B_1) \subset W(q, s; A_2, B_2) \subset W(q, s; 1, -1).$$

THEOREM 1. *A function f of the form (9) belongs to the class $W(q, s; A, B)$ if and only if*

$$(11) \quad \sum_{n=2}^{\infty} \delta_n a_n \leq \Omega \quad \left(\delta_n = ((B+1)n - A - 1)\sigma_n; \quad \Omega = \frac{B - A}{\omega} \right),$$

where ω and σ_n are defined by (4) and (7).

Proof. Let a function f of the form (9) belong to the class $W(q, s; A, B)$. By (10) and the definition of subordination, we have

$$\alpha_1 \frac{\Theta[\alpha_1 + 1] f(z)}{\Theta[\alpha_1] f(z)} + A_1 - \alpha_1 = A_1 \frac{1 + Au(z)}{1 + Bu(z)},$$

where $u(0) = 0$ and $|u(z)| < 1$ for $z \in \mathcal{U}$. Thus we obtain (for $z \in \mathcal{U}$)

$$(12) \quad \left| \frac{\alpha_1 \{\Theta(\alpha_1 + 1)f(z) - \Theta(\alpha_1)f(z)\}}{\alpha_1 B \Theta(\alpha_1 + 1)f(z) - (AA_1 + (\alpha_1 - A_1)B)\Theta(\alpha_1)f(z)} \right| < 1.$$

Hence, by (6), we have

$$\left| \frac{\sum_{n=2}^{\infty} (n-1)\sigma_n a_n z^{n-1}}{\Omega - \sum_{n=2}^{\infty} (Bn - A)\sigma_n a_n z^{n-1}} \right| < 1 \quad (z \in \mathcal{U}),$$

where ω, σ_n are defined by (4) and (7), respectively. Putting $z = r$ ($0 \leq r < 1$), we obtain

$$\sum_{n=2}^{\infty} (n-1)\sigma_n a_n r^{n-1} < \Omega - \sum_{n=2}^{\infty} (Bn - A)\sigma_n a_n r^{n-1},$$

which, upon letting $r \rightarrow 1-$, readily yields the assertion (11).

In order to prove the converse, let a function f of the form (9) satisfy the condition (11). Then, in view of (12), it is sufficient to prove that

$$\begin{aligned} & \alpha_1 |\Theta(\alpha_1 + 1)f(z) - \Theta(\alpha_1)f(z)| \\ & - |\alpha_1 B \Theta(\alpha_1 + 1)f(z) - (AA_1 + (\alpha_1 - A_1)B)\Theta(\alpha_1)f(z)| < 0 \quad (z \in \mathcal{U}). \end{aligned}$$

Indeed, letting $|z| = r$ ($0 < r < 1$), we have

$$\begin{aligned} & \alpha_1 |\Theta(\alpha_1 + 1)f(z) - \Theta(\alpha_1)f(z)| \\ & - |\alpha_1 B \Theta(\alpha_1 + 1)f(z) - (AA_1 + (\alpha_1 - A_1)B)\Theta(\alpha_1)f(z)| \\ & = A_1 \left| \sum_{n=2}^{\infty} (n-1)\omega \sigma_n a_n z^n \right| - A_1 \left| \Omega - \sum_{n=2}^{\infty} (Bn - A)\omega \sigma_n a_n z^n \right| \\ & \leq A_1 \left(\sum_{n=2}^{\infty} (n-1)\omega \sigma_n a_n r^n - \Omega + \sum_{n=2}^{\infty} (Bn - A)\omega \sigma_n a_n r^n \right) \\ & = r A_1 \left(\sum_{n=2}^{\infty} \delta_n a_n r^{n-1} - \Omega \right) < A_1 \left(\sum_{n=2}^{\infty} \delta_n a_n - \Omega \right) \leq 0, \end{aligned}$$

whence $f \in W(q, s; A, B)$.

Since the expression δ_n defined with (11) is a decreasing function with respect to β_k ($k = 1, \dots, s$) and an increasing function with respect to α_l ($l = 1, \dots, q$), from Theorem 1 we obtain

COROLLARY 1. *If $l \in \{1, \dots, q\}$, $j \in \{1, \dots, s\}$, $0 < \alpha'_l \leq \alpha_l$, $0 < A'_l \leq A_l$ and $\beta'_j \geq \beta_j$, $0 < B'_l \leq B_l$ then the class $W(q, s; A, B)$ (for the parameters $(\alpha_k, A_k)_{1,q}; (\beta_k, B_k)_{1,s}$) is included in the class $W(q, s; A, B)$ for the parameters*

$$\begin{aligned} & (\alpha_1, A_1), \dots, (\alpha_{l-1}, A_{l-1}), (\alpha'_l, A'_l), (\alpha_{l+1}, A_{l+1}), \dots, (\alpha_q, A_q); \\ & (\beta_1, B_1), \dots, (\beta_{j-1}, B_{j-1}), (\beta'_j, B'_j), (\beta_{j+1}, B_{j+1}), \dots, (\beta_s, B_s). \end{aligned}$$

By Theorem 1, we also have

COROLLARY 2. *If a function f of the form (9) belongs to the class $W(q, s; A, B)$, then*

$$a_n \leq \frac{\Omega}{\delta_n} \quad (n = 2, 3, \dots),$$

where δ_n and Ω are defined by (11). The result is sharp, the functions f_n of the form:

$$(13) \quad f_n(z) = z - \frac{\Omega}{\delta_n} z^n \quad (n = 2, 3, \dots)$$

being the extremal functions.

3. Distortion theorems

THEOREM 2. *Let a function f of the form (9) belong to the class $W(q, s; A, B)$. If the sequence $\{\delta_n\}$ is nondecreasing, then*

$$(14) \quad r - \frac{\Omega}{\delta_2} r^2 \leq |f(z)| \leq r + \frac{\Omega}{\delta_2} r^2 \quad (|z| = r < 1).$$

If the sequence $\{\frac{\delta_n}{n}\}$ is nondecreasing, then

$$(15) \quad 1 - \frac{2\Omega}{\delta_2} r \leq |f'(z)| \leq 1 + \frac{2\Omega}{\delta_2} r \quad (|z| = r < 1),$$

where δ_n and Ω are defined by (11). The result is sharp, with the extremal function f_2 of the form (13).

Proof. Let a function f of the form (9) belong to the class $W(q, s; A, B)$. If the sequence $\{\delta_n\}$ is nondecreasing and positive, by Corollary 2 we have

$$(16) \quad \sum_{n=2}^{\infty} a_n \leq \frac{\Omega}{\delta_2}$$

and if the sequence $\{\frac{\delta_n}{n}\}$ is nondecreasing and positive, by Corollary 2 we have

$$(17) \quad \sum_{n=2}^{\infty} n a_n \leq \frac{2\Omega}{\delta_2}.$$

Using conditions (9) and (16) we can write

$$\begin{aligned} |f(z)| &= \left| z - \sum_{n=2}^{\infty} a_n z^n \right| \leq r + \sum_{n=2}^{\infty} a_n r^n = r + r^2 \sum_{n=2}^{\infty} a_n r^{n-2} \\ &\leq r + r^2 \sum_{n=2}^{\infty} a_n \leq r + \frac{\Omega}{\delta_2} r^2 \end{aligned}$$

and

$$\begin{aligned} |f(z)| &= \left| z - \sum_{n=2}^{\infty} a_n z^n \right| \geq r - \sum_{n=2}^{\infty} a_n r^n = r - r^2 \sum_{n=2}^{\infty} a_n r^{n-2} \\ &\geq r - r^2 \sum_{n=2}^{\infty} a_n \geq r - \frac{\Omega}{\delta_2} r^2. \end{aligned}$$

Thus we have (14). Using conditions (9) and (17) we have

$$\begin{aligned} |f'(z)| &= \left| 1 - \sum_{n=2}^{\infty} n a_n z^{n-1} \right| \leq 1 + \sum_{n=2}^{\infty} n a_n r^{n-1} = 1 + r \sum_{n=2}^{\infty} n a_n r^{n-2} \\ &\leq 1 + r \sum_{n=2}^{\infty} n a_n \leq 1 + \frac{2\Omega}{\delta_2} r \end{aligned}$$

and

$$\begin{aligned} |f'(z)| &= \left| 1 - \sum_{n=2}^{\infty} n a_n z^{n-1} \right| \geq 1 - \sum_{n=2}^{\infty} n a_n r^{n-1} = 1 - r \sum_{n=2}^{\infty} n a_n r^{n-2} \\ &\geq 1 - r \sum_{n=2}^{\infty} n a_n \leq 1 - \frac{2\Omega}{\delta_2} r. \end{aligned}$$

Thus we have (15).

COROLLARY 3. *Let a function f of the form (9) belong to the class $W(s; A, B)$. If $\beta_k \leq \alpha_k, B_k \leq A_k$ ($k = 1, 2, \dots, s$), then the assertion (14) and (15) holds true.*

Proof. If $q = s$, and $\beta_k \leq \alpha_k, B_k \leq A_k$ ($k = 1, 2, \dots, s$), then the sequences $\{\delta_n\}$ and $\{\frac{\delta_n}{n}\}$ are nondecreasing. Thus, by Theorem 2, we have Corollary 3.

4. The radii of convexity and starlikeness

THEOREM 4. *The radius of starlikeness for the class $W(q, s; A, B)$ is given by*

$$(18) \quad R^*(W(q, s; A, B)) = \inf_{n \geq 2} \left(\frac{\delta_n}{n\Omega} \right)^{\frac{1}{n-1}},$$

where δ_n and Ω are defined by (11). The result is sharp.

Proof. By (2), the function f of the form (9) is starlike in the disk $\mathcal{U}(r)$, if

$$(19) \quad \left| \frac{zf'(z)}{f(z)} - 1 \right| < 1 \quad (z \in \mathcal{U}(r); 0 < r \leq 1).$$

Since

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| = \left| \frac{\sum_{n=2}^{\infty} (n-1) a_n z^n}{z + \sum_{n=2}^{\infty} a_n z^n} \right| \leq \frac{\sum_{n=2}^{\infty} (n-1) a_n |z|^{n-1}}{1 - \sum_{n=2}^{\infty} a_n |z|^{n-1}},$$

putting $|z| = r$, the condition (19) is true if

$$(20) \quad \sum_{n=2}^{\infty} n a_n r^{n-1} \leq 1.$$

By Theorem 1, we have

$$\sum_{n=2}^{\infty} \frac{\delta_n a_n}{\Omega} \leq 1,$$

where δ_n and Ω are defined by (11). Thus the condition (20) is true if

$$nr^{n-1} \leq \frac{\delta_n}{\Omega} \quad (n = 2, 3 \dots),$$

that is, if

$$r \leq \left(\frac{\delta_n}{n\Omega} \right)^{\frac{1}{n-1}} \quad (n = 2, 3 \dots).$$

It follows that any function $f \in W(q, s; A, B)$ is starlike in the disk $\mathcal{U}(R^*(W(q, s; A, B)))$, where $R^*(W(q, s; A, B))$ is defined by (18).

COROLLARY 5.

$$R^*(W(s; A, B)) = \begin{cases} 1 & (\alpha_k \geq \beta_k, A_k \geq B_k; k = 1, \dots, s) \\ \min_{n \geq 2} \left(\frac{\delta_n}{n\Omega} \right)^{\frac{1}{n-1}} & (\alpha_k < \beta_k, A_k < B_k; k = 1, \dots, s), \end{cases}$$

where δ_n and Ω are defined with (11). The result is sharp.

Proof. By Corollary 1, Lemma 1, and Lemma 2, we have

$$W(s; A, B) \subset S^* \quad (\alpha_k \geq \beta_k, A_k \geq B_k; k = 1, \dots, s).$$

By Theorem 4, any function $f \in W(s; A, B)$ is starlike in the disk $\mathcal{U}(r)$, where

$$r = \inf_{n \geq 2} (d_n)^{\frac{1}{n-1}} \quad \left(d_n = \frac{\delta_n}{n\Omega} \right).$$

Since, for $\alpha_k < \beta_k, A_k < B_k$ ($k = 1, \dots, s$), we have

$$\lim_{n \rightarrow \infty} d_n = d < 1, \quad \lim_{n \rightarrow \infty} (d_n)^{\frac{1}{n-1}} = 1, \text{ and } d_n > 0 \quad (n = 2, 3 \dots),$$

the infimum of the set $\left\{ (d_n)^{\frac{1}{n-1}} : n \geq 2 \right\}$ is realized for an element of this set for some $n = n_0$. Moreover, the function

$$f_{n_0}(z) = z - \frac{\Omega}{\delta_{n_0}} z^{n_0},$$

belongs to the class $W(s; A, B)$, and for $z = (d_{n_0})^{\frac{1}{n_0-1}}$, we have

$$\operatorname{Re} \left(\frac{zf'_{n_0}(z)}{f_{n_0}(z)} \right) = 0.$$

Thus the result is sharp.

THEOREM 5. *The radius of convexity for the class $W(q, s; A, B)$ is given by*

$$R^c(W(q, s; A, B)) = \inf_{n \geq 2} \left(\frac{\delta_n}{n^2 \Omega} \right)^{\frac{1}{n-1}},$$

where δ_n and Ω are defined with (11). The result is sharp.

Proof. The proof is analogous to that of Theorem 4, and we omit the details.

REMARK. The results presented in this paper extend the results obtained earlier by Dziok and Srivastava [4].

Acknowledgements

The second author would like to express his thanks to Council for Scientific and Industrial Research, Govt. of India (New Delhi) for financial support.

References

- [1] J. H. Choi, Y. C. Kim and H. M. Srivastava, *Starlikeness and convexity of fractional calculus operators*, *J. Fract. Calc.* 10 (1996), 75–89.
- [2] J. Dziok, *Classes of functions defined by certain differential-integral operator*, *J. Comput. Appl. Math.* 105 (1999), 245–255.
- [3] J. Dziok, H. M. Srivastava, *Certain subclasses of analytic functions associated with the generalized hypergeometric function*, *Integral Transform. Spec. Funct.* 14 (2003), 7–18.
- [4] J. Dziok, H. M. Srivastava, *Classes of analytic functions associated with the generalized hypergeometric function*, *Appl. Math. Comput.* 103 (1999), 1–13.
- [5] J. Dziok, H. M. Srivastava, *Some subclasses of analytic functions with fixed argument of coefficients functions associated with the generalized hypergeometric function*, *Adv. Stud. Contemp. Math.* 5(2002), 115–125.
- [6] R. K. Raina, *On certain classes of analytic functions and applications to fractional calculus operators*, *Integral Transform. Spec. Funct.* 5 (1997), 247–260.
- [7] R. K. Raina and T. S. Nahar, *A note on boundedness properties of Wright's generalized hypergeometric function*, *Ann. Math. Blaise Pascal* 4 (1997), 83–95.
- [8] R. K. Raina and T. S. Nahar, *On characterization of certain Wright's generalized hypergeometric functions involving certain subclasses of analytic functions*, *Informatica* 10 (1999), 219–230.
- [9] R. K. Raina and T. S. Nahar, *On univalent and starlike Wright's hypergeometric functions*, *Rend. Sem. Mat. Univ. Padova* 95 (1996), 11–22.
- [10] H. M. Srivastava and M. K. Aouf, *A certain fractional derivative operator and its applications to a new class of analytic and multivalent functions with negative coefficients, I and II*, *J. Math. Anal. Appl.* 171 (1992), 1–13; *ibid.* 192 (1995), 673–688.
- [11] H. M. Srivastava and P. W. Karlsson, *Multiple Gaussian Hypergeometric Series*, Halsted Press (Ellis Horwood Ltd., Chichester), John Wiley and Sons, New York, Chichester, Brisbane and London, 1985.

[12] E. M. Wright, *The asymptotic expansion of the generalized hypergeometric function*, Proc. London. Math. Soc. 46 (1946), 389–408.

Jacek Dziok
INSTITUTE OF MATHEMATICS
UNIVERSITY OF RZESZÓW
ul. Rejtana 16A
35-310 RZESZÓW, POLAND
E-mail: jdziok@univ.rzeszow.pl

R. K. Raina
DEPARTMENT OF MATHEMATICS
COLLEGE OF TECHNOLOGY & ENGINEERING
M.P. UNIVERSITY OF AGRI. & TECHNOLOGY
UDAIPUR 313 001, RAJASTHAN, INDIA
E-mail: rainark.7@hotmail.com

Received March 17, 2003; revised version October 1st., 2003.