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ON THE EXISTENCE OF NONNEGATIVITY DOMAINS
OF SUBSETS OF GROUPS

Abstract. A subset D of a subset A of an additive group X is called a nonnegativity
domain of A if D is total and antisymmetric in the sense that A = D U (-D) and
D n(-D) c {0}. Moreover, the nonnegativity domain D of A is called additive and
normal if D+ D C D and D+ C =+ D for all z € A, respectively.

The most important particular cases of the main results of this paper say that: A
subset A of the group X has a nonnegativity domain if and only if A is symmetric and
2-cancellable. Moreover, A has an additive nonnegativity domain if and only if A is sym-
metric and perfectly cancellable. In addition, it is shown that a commutative subset of X
is perfectly cancellable if and only if it is infinitely cancellable.

Here, the set A is called n-cancellable for some natural n if nz = 0 implies = = 0 for
all z € A. In particular, A is called infinitely cancellable if it is n-cancellable for all n.
Moreover, A is called perfectly cancellable if for any additive antisymmetric subset B of
A and any z € A\ (B U (—B)) we have either 0 ¢ Fg(z) or 0 ¢ Fg(~z), where Fp(z) is
the additive hull of (B U {z}) \ {0}.

The results obtained are illustrated here only with the help of additive and multi-
plicative groups of complex numbers. Their applications to odd, additive and translation
relations are postponed to subsequent papers. We do not compare our results with the
more complicated results of P. Conrad, R. Botto Mura and A. Rhemtulla on the extensions
of partial right-orders to total ones in multiplicative groups.

1. A few basic facts on families of sets and subsets of groups

A family A of sets is called chained if for any A, B € .A we have either
A C Bor B C A. The family A is called directed if for any A, B € A there
exists C € A such that AC C and B C C.

A subfamily B of a family of sets A is called bounded above in A if there
exists A € A such that B C A for all B € B. Moreover, the family A is
called inductive if each chained subfamily of A is bounded above in A.
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An element A of a family of sets A is called maximal if A C B implies
A = B for all B € A. A particular case and an equivalent of Zorn’s lemma
[4, p. 4] says that each nonvoid inductive family of sets has at least one
maximal element.

If X is a group, then for any z € X andn € N, we definenz =zrifn=1
and nz = (n — 1)z + z if n > 1. Moreover, for any sequence (z;)32; in X,
we define ) jr; =z ifn=1and ) . o= 2?2—11 z; + T, if n > 1.

For any A,B C X, we define —A={-z:z€ Aland A+ B={z+y:
z € A, y € B}. Moreover, if z € X, then we simply write z+ A and A+ z
in place of {z} + A and A + {z}, respectively.

A subset A of the group X is called symmetric and antisymmetric if
—-A C A and AN (—A) C {0}, respectively. Moreover, a subset B of A is
called total in A if A = BU(-B).

A subset A of X is called commutative if x +y =y + z for all z,y € A.
Moreover, a subset B of A is called normal in A if B+ z C 4 B for all
x € A. Thus, each subset of a commutative set is normal.

A subset A of X is called additive if A+ A C A. Moreover, for any A C X,
we denote by A% the intersection of all additive subsets of X containing A.
Thus, A# is an additive subset of X

Moreover, for any = € X, we have z € A# if and only if z = Zle n;x;
for some finite families (n;)%_; and (z;)%_, in N and A, respectively. And if
X is commutative, then (AU{a:})# ={na+mz:a € A4, n, meNU{0}}.

2. Nonnegativity domains of subsets of groups

DEFINITION 2.1. A total and antisymmetric subset D of a subset A of a
group X is called a nonnegativity domain of A.

EXAMPLE 2.2. Clearly, R, = R, U{0}, where R_ = |0, +o0], is an additive
nonnegativity domain of the additive group R of all real numbers.

EXAMPLE 2.3. Moreover, we can easily see that D = (]R@)2 U(-R,) xR,
is an additive nonnegativity domain of the additive group C of all complex
numbers.

To check the additivity of D, note that if (z,y), (2, w) € D, then because
of the obvious additivity of (]R@)2 and (—R,) x R, we may, for instance,
assume that (z,y) € (]R@)2 and (z,w) € (—R,) xR, . Hence, in particular,
it follows that 0 < y and 0 < w, and thus 0 < y + w. This already implies
that (z,y) + (z,w) = (z + z,y + w) € D.

Concerning nonnegativity domains, we can also easily establish the fol-
lowing basic theorems.
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THEOREM 2.4. If D is a nonnegativity domain of a subset A of a group X,
then 0 € D if and only if 0 € A. Therefore, if 0 € A, then DN (—D) = {0}.
Moreover, if in addition D is additive, then D + D = D.

Proof. If0 € D, then since D C A we also have 0 € A. On the other hand, if
0 € A, then since A = DU (~D) we have either 0 € D or 0 € —D. However,
0 € D implies0 = -0€ —D, and 0 € —D implies 0 = -0 € —(—D) = D.
Therefore, {0} € D N (=D). And, thus by the antisymmetry of D, the
corresponding equality is also true. Moreover, if 0 € D, then we also have
D =0+ D c D+ D. Therefore, if D is in addition additive, then the
corresponding equality is also true.

THEOREM 2.5. If D is a nonnegativity domain of a subset A of a group X,
then A is a symmetric subset of X. Moreover, if in addition D is normal in
AjthenD+z =24+ D and A+x=xz+ A for allz € A.

Proof. By using the function ¢ defined by ¢(u) = —u for all u € X, we can
at once see that —A4 = ¢(4) = ¢(DU(~-D)) = ¢(D)U¢(-D)=-DUD =
D U (-D) = A. Therefore, A is symmetric.

Moreover, if D is in addition normalin A,i.e., D+z Cc z+Dforallz € A,
then by using the symmetry of A we can also easily see that D + (—z) C
—z+D,and hence z+ D =+ (D+(-z))+z Cz+(~z+D)+x=D+zx
for all z € A. Therefore, the corresponding equality is also true.

Hence, it is clear that for each z € A we also have —D+2z = —(—z+D) =
—(D+(—z)) = z+(—D). Moreover, by using the functions ; and v, defined
by 9, (u) = v+ z and ¥,(u) = z + u for all u € X, we can at once see that
A+z=191(A) = $1(D U (-D)) = 91(D) U¢h1(~D) = ¢2(D) Ut2(~D) =
$2(DU(-D)) = a(A) =z + A.

THEOREM 2.6. If D is a nonnegativity domain of a subset A of a group X,
B is a symmetric subset of A and E = D N B, then E is a nonnegativity
domain of B. If D and B are additive (normal in B), then E is also additive
(normal in B).

Proof. By using the injective function ¢ defined above, we can at once see
that —E = ¢(F) = ¢(DNB) = p(D)N¢(B) = -DN(-B) =~-DNB, and
thus B=ANB = (DU(-D))NB=(DNB)u(-DNB) =EU(-E)
and EN(-E)=(DnNB)N(-DnB)=(Dn(-D))nBc {0}nBc {0}
Therefore, F is a nonnegativity domain of B.

If D and B are additive, then we can at once see that E+FE=(DNB)
+(DnNnB)c (D+D)Nn(B+ B) C DN B = E. Therefore, E is also
additive. While, if D and B are normal in B, then for any fixed z € B
by using the injective functions 1, and 1), defined above we can easily see
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that E+z = ¢, (E) = ¥, (DN B) =1+, (D) Ny, (B) = ¢,(D) N¢,(B) =
¥,(DNB) =,(E) =z + E. Therefore, F is also normal in B.

EXAMPLE 2.7. By Example 2.2 and Theorem 2.6, it is clear that Z, =
ZNR, and Q, = QNR, are additive nonnegativity domains of the additive
groups Z and Q of all integer and rational numbers, respectively.

THEOREM 2.8. If A and B are symmetric subsets of the groups X and Y,
respectively, E is a nonnegativity domain of B and f is an odd function of
A into B such that 0 ¢ f(A\ {0}), then D = f~Y(E) is a nonnegativity
domain of A.

Proof. Since f is odd, for any = € A, we have z € f~1(-E) < f(z) €
-F < -fzr) € FE < f(-z) € F < -z¢€ fY{F) =
z € —f~1(E). Since, 0 ¢ f(A\ {0}), we can see that z € f~1({0}) = 0
= f(z) = = ¢ A\ {0} = z = 0. Therefore, f71(—E) = —f~(E) and
F7({0}) < {o}.

Since E is a nonnegativity domain of B, it is already quite obvious
that A = f~}(B) = f"Y(EU (-E)) = f"(E)U [ (-E) = fT(E)U
(=f"1(E)) = DU(=D) and DN(-D) = f~HE)N(~f"1(E)) = fHE)N
f~H-E)=f"Y(En(-E)) c f7}({0}) c {0}. Therefore, D is a nonnega-
tivity domain of A.

Now, as a useful consequence of this theorem, we can also state

COROLLARY 2.9. If A and B are symmetric subsets of the groups X and
Y, respectively, D is a nonnegativity domain of A and f is an odd injective
function of A onto B such that f(0) = 0 if 0 € A, then E = f(D) isa

nonnegativity domain of B.

THEOREM 2.10. If D is a nonnegativity domain of a subset A of a group X
and f is an injective additive function of X into a group Y, then E = f(D)
is a nonnegativity domain of B = f(A). Moreover, if D is additive (normal
in A), then F is additive (normal in B).

Proof. Since f is additive, we have f(0)+ f(0) = f(0), and hence f(0) = 0.
We also have f(z) + f(—z) = f(0) = 0, and hence f(—z) = —f(z) for all
z € X. Now, since —B = —f(A) = f(—A) = f(A) = B, by Corollary 2.9 it
is clear that F is a nonnegativity domain of B.

To prove the remaining assertions, note that if D is additive, then E +
E=f(D)+ f(D) = f(D+ D) C f(D) = E. Therefore, F is also additive.
While, if D is normal in A, then E + f(z) = f(D) + f(z) = f(D+<z) =
f(z+ D)= f(z) + f(D) = f(z) + E for all z € A. Hence, since B = f(A4),
it is clear we also have E +y = y + E for all y € B. Therefore, F is normal
in B.
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REMARK 2.11. Note that if f is an anti-additive function of X into Y in
the sense that f(z +y) = f(y) + f(z) for all z,y € X, then f is an additive
function of X into the dual group Y (&), where 2w = w+z forall z,w € Y.

Moreover, if F is an additive (normal) nonnegativity domain of a subset
B of Y(@®), then E is also an additive (normal) nonnegativity domain of B
as a subset of Y. Therefore, as a useful consequence of Theorem 2.10, we
can also state

COROLLARY 2.12. If D is a nonnegativity domain of a subset A of a group
X, then E = —D is also a nonnegativity domain of A. Moreover, if D is
additive (normal in A), then E is also additive (normal in A).

ExAMPLE 2.13. By Example 2.7 and Corollary 2.12, it is clear that ~Z_,
-Q, and —R, are also additive nonnegativity domains of Z, Q and R,
respectively.

THEOREM 2.14. If D and E are nonnegativity domains of a subset A of a
group X, with 0 € A, such that D C E, then D = FE.

Proof. If £ € E, then since E C A = DU (—D) we have either z € D or
x € =D. If x € —D, then since D C E we also have z € —F. Hence, it
follows that z € EN (—F) C {0}, and thus z = 0. Therefore, by Theorem
2.4, we also have z € D. Consequently, the inclusion F C D is also true.

ExaMPLE 2.15. If D is an additive nonnegativity domain of the additive
group Z of all integers, then either D =Z_  or D = —Z,.

Namely, by Theorem 2.4, we have 0 € D. Moreover, since Z = DU(-D),
have either 1 € D or —1 € D.If 1 € D, then since D + D C D we also have
N C D. Therefore, Z, = {0} UN C D. Hence, by Theorem 2.14, it is clear
that D = Z,. While, if ~1 € D, then we can similarly see that D = ~Z_.

3. The existence of nonnegativity domains

DEFINITION 3.1. A subset A of a group X is called n-cancellable for some
n € Nif nz = 0 implies z = 0 for all z € A.

REMARK 3.2. By using the notation X,, = {z € X : nz = 0}, the above
condition can be briefly expressed by writing that A N X,, C {0}.

Hence, it is clear that X is n-cancellable if and only if X,, = {0}. Besides,
it can be easily seen that {0} U (X \ X,) is the largest n-cancellable subset
of X.

The following theorem shows that an arbitrary group need not have a
nonnegativity domain.

THEOREM 3.3. If a subset A of a group X has a nonnegativity domain,
then A is 2-cancellable.
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Proof. Let D be a nonnegativity domain of A, and assume that x € A such
that 2z = 0. Then, since 2z = x + z, we also have £ = —z. Moreover, since
A = DU (—D) we have either z € D or z € (—D).

If x € D, then since —z = z, we also have —z € D, and hence z € —D.
Quite similarly, if z € —D, then since —z = z, we also have —z € —D,
and hence z € D. Consequently, we have z € DN (—D) C {0}, and hence
z = 0. Therefore, the required assertion is true.

EXAMPLE 3.4. If A is a subset of the multiplicative group of all nonzero
complex numbers such that —1 € A, then A has no nonnegativity domain.

To check this, by the multiplicative form of Theorem 3.3, it is enough to
note only that (—1)? = 1, but —1 # 1. Thus, 4 is not 2-cancellable.

A standard application of Zorn’s lemma gives the existence of a nonneg-
ativity domain of a 2-cancellable group. More generally, we can prove the
following

THEOREM 3.5. If A is a symmetric and 2-cancellable subset of a group X

and B is an antisymmetric subset of A, then there exists a nonnegativity
domain D of A such that B C D.

Proof. Let D be the family of all antisymmetric subsets D of A such that
B c D. Then, B € D, and thus D # (. Moreover, since the union of a
directed family of antisymmetric subsets of X is also antisymmetric, it is
clear that D is, in particular, inductive.

Therefore, by Zorn’s lemma, there exists a maximal element D of D. Now,
since D is an antisymmetric subset of A such that B ¢ D and DU(-D) C
AU (—-A) = A, it remains only to show that A C D U (-D). For this,
assume on the contrary that there exists z € A such that z ¢ D and
—z ¢ D. Define E = DU {z}. Then, we evidently have B C E C A.
Moreover, if y € EN(—FE), i. e, y € DU {z} and —y € DU {z}, then
by examining the four possible cases and using the assumptions z ¢ D
and —z ¢ D, we can see that either y € DN (—D) or 2y = 0 can hold.
Hence, by the antisymmetry of D and the 2-cancellability of A, it follows
that y = 0. Therefore, E N (—FE) C {0}, and thus E € D. Hence, by using
the maximality of D and the inclusion D C F, we can infer that £ = D,
which is a contradiction. Therefore, the required assertion is true.

Now, as an immediate consequence of Theorems 2.5, 3.3 and 3.5, we can
also state

THEOREM 3.6. If A is a subset of a group X, then the following assertions
are equivalent:
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(1) A has a nonnegativity domain;
(2) A is symmetric and 2-cancellable;

(3) each antisymmetric subset of A can be extended to a nonnegativity
domain of A.

Hint. To prove the implication (2)=(1), note that B = (} is an antisymmetric
subset of A. Therefore, if the assertion (2) holds, then Theorem 3.5 can be
applied to get the assertion (1).

4. Infinitely cancellable subsets of groups

DEFINITION 4.1. A subset A of a group X is called infinitely cancellable if
it is n-cancellable for all n € N.

REMARK 4.2. By using the notation X, = (J,-; X», the above condition
can be briefly expressed by writing that A N X, C {0}.

Hence, it is clear that X is infinitely cancellable if and only if X, = {0}.
Moreover, it can be easily seen that {0} U (X \ X ) is the largest infinitely
cancellable subset of X.

Analogously to Theorem 3.3, we can also easily prove the following

THEOREM 4.3. If a subset A of a group X has an additive nonnegativity
domain, then A is infinitely cancellable.

Proof. Let D be an additive nonnegativity domain of A, and assume on
the contrary that there exist n € N and = € A such that nz = 0, but =z # 0.
Then, we necessarily have n > 1. Moreover, since A = D U (-D), we have
either z € D or —z € D. If £ € D, then by using the assumptions nz = 0
and D + D C D, we can infer that —z = (n — 1)z € D. While, if —z € D,
then by using the above assumptions, we can infer that z=(n—1)(—z) € D.
Consequently, we have z € D N (—D) ¢ {0}, and hence z = 0. This contra-
diction proves the theorem.

EXAMPLE 4.4. If A is a subset of the multiplicative group of all nonzero
complex numbers such that ¢ € A, then A has no multiplicative nonnega-
tivity domain.

To check this, by the multiplicative form of Theorem 4.3, it is enough to
note only that i = 1, but ¢ # 1. Thus, A is not 4-cancellable.

ExaMPLE 4.5. If A is finite subset of a group X such that A ¢ {0}, then
A has no additive nonnegativity domain.

To check this, assume on the contrary that D is an additive nonnegativity
domain of A. Then, since DU (-D) = A ¢ {0}, there exists z € D such
that = # 0. Moreover, since D+ D C D, we havent € D C Afor alln € N.
Hence, by using the finiteness of A, we can infer that there exist k,l € N,
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with k <, such that kz = [z, and hence (I — k)z = 0. Hence, by Theorem
4.3, it follows that £ = 0. This contradiction proves the required assertion.

By using Theorem 4.3, we can also easily prove the following

THEOREM 4.6. If D is an additive nonnegativity domain of a subset A of
a group X, then nz =y implies x € D foralln€ N,z € A andy € D.

Proof. Assume on the contrary that there exist n e Nyz € Aandy € D
such that nz = y, but z ¢ D. Then, since A = D U (—D), we necessarily
have z € —D, and thus —z € D. Hence, by using the assumptions nz = y
and D + D C D, we can infer that —y = n(—z) € D, and hence y € —D.
Therefore, y € D N (—D) C {0}, and hence y = 0. Consequently, nz = 0,
and hence, by Theorem 4.3, z =0 = y € D. This contradiction proves the
theorem.

EXAMPLE 4.7. If D is an additive nonnegativity domain of Q, then either
D=Qg,orD=-Q,.

Namely, by Theorem 2.4, we have 0 € D. Moreover, since Q = DU(—D),
we have either 1 € D or —1 € D. If 1 € D, then by using the equality
n(1) =1 and Theorem 4.6 we can see that 1 € D for all n € N. Hence, since
D+ D C D, it is clear that k(1) € D for all n,k € N. Therefore, Q, C D.
Hence, by Theorem 2.14, it is clear that D = Q.. While, if —1 € D, then
we can similarly see that D = —Q,.

EXAMPLE 4.8. If D is a closed and additive nonnegativity domain of R,
then either D =R, or D = —R.

Namely, by Theorem 2.6, £ = DNQ is an additive nonnegativity domain
of Q. Moreover, by Example 4.7, we have either E = Q, and F = —Q,.
If E = Qg, then Q, C D. Hence, by using the denseness of Q and the
closedness of D in R, we can infer that Ry = (Q,)~ € D™ = D. Therefore,
by Theorem 2.14, we have D = R . While, if E = —Q,, then we can
similarly see that D = —Rg.

5. Perfectly cancellable subsets of groups

DEFINITION 5.1. For any point z and any subset A of a group X, we define

Fa@ = ((au )\ )"

The usefulness of this notation is apparent from the following two theo-
rems.

THEOREM 5.2. If A is a subset of a group X, then the following assertions
are equivalent:
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(1) A is infinitely cancellable;
(2) 0 ¢ Fy(z) for all z € A.

Proof. If the assertion (2) does not hold, then there exists z € A such that

0 € Fp(z) = ({z} \ {0})#. Therefore, z # 0 and there exists n € N such
that 0 = nz. Thus, the assertion (1) does not hold.
While, if the assertion (1) does not hold, then there exist n € N and

z € A such that nz = 0, but = # 0. Therefore, 0 € ({z} \ {0})# = Fy(z),
and thus the assertion does not hold.

THEOREM 5.3. If B is a subset of a subset A of a group X such that B is
contained in some additive nonnegativity domain of A, then for each x € A
we have either 0 ¢ Fg(z) or 0 ¢ Fp(—x).

Proof. Let D be an additive nonnegativity domain of A such that B C D,
and assume on the contrary that there exists £ € A such that 0 € Fg(x)
and 0 € Fg(—z). Then, since z € A = D U (—D), we have either z € D or
—z € D. Moreover, since 0 € Fp(z) = (BU{z})\ {0})#, there exist finite
families (n;)%_, in N and (w;)%; in (BU{z})\ {0} such that 0 = "% . nu;.
Hence, since {u;}%_; ¢ A\ {0}, by Theorem 4.3 it is clear that k > 1.
Therefore, we also have njpu; = “Zf=—11 n;u;. Now, if z € D, then by
using the inclusion {u;}%.; C D and the additivity of D, we can see that
ngur € DN (—D) C {0}, and thus nrux = 0. Hence, since ur € A, by
Theorem 4.3 it follows that u, = 0, which is a contradiction.

Moreover, to complete the proof, we can quite similarly see that the
inclusions —z € D and 0 € Fg(—z) also lead to a contradiction.

REMARK 5.4. Since the operation # is increasing and A = () implies B = 0,
it is clear that in addition we also have 0 ¢ Fg(0).

Moreover, by Theorem 5.3, we may also naturally introduce the following

DEFINITION 5.5. A subset A of a group X is called perfectly cancellable if
for any additive and antisymmetric subset B of A and any z € A\ (BU(~B))
we have either 0 ¢ Fp(z) or 0 ¢ Fg(—x).

The relationship between infinite and perfect cancellability can be
cleared up by the following two theorems.

THEOREM 5.6. If A is a perfectly cancellable subset of a group X, then A
is in particular infinitely cancellable.

Proof. If A is not infinitely cancellable, then by Theorem 5.2 there exist
z € A such that 0 € Fyp(z). Thus, since Fy(—z) = —Fp(z), we also have
0 € Fp(—z). Hence, since B = is an additive and antisymmetric subset of
A such that A = A\ (BU(—B), it is clear A cannot be perfectly cancellable.
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THEOREM 5.7. If A is a commutative subset of a group X, then the following
assertions are equivalent:

(1) A is perfectly cancellable;
(2) A is infinitely cancellable.

Proof. By Theorem 5.6, we need only to prove the implication (2)=>(1). For
this, assume on the contrary that the assertion (2) holds, but the assertion
(1) does not hold. Then, there exist an additive and antisymmetric subset
B of A and an z € A such that 0 € Fg(z) and 0 € Fg(—z).

From the first inclusion, because of Fp(z) = ((BU{z}) \ {O})#, it fol-
lows that there exist finite families (n;)¥_, in N and (u;)%_; in (BU{z})\{0}
such that 0 = Ele n;u;. Hence, by the assertion (2), it is clear u; € B\ {0}
for some i =1, ..., k. Moreover, by using a similar argument as in the proof
of Theorem 5.3, we can also easily see that u; = z # 0 for some i =1,...,k.

Now, by the commutativity of A and the additivity of B it is clear
that there exist n € N and y € B\ {0} such that 0 = nz + y. Moreover,
by the second inclusion 0 € Fg(—z), it is clear that there exist m € N and
z € B\{0} such that 0 = m(—z)+z. This implies that (nm)z = n(mz) = nz
and (nm)z = m(nz) = m(—y) = —my. Hence, by the additivity and the
antisymmetry of B, it follows that (nm)z € B N (—B) C {0}, and thus
(nm)z = 0. Therefore, by the assertion (2), we necessarily have either n = 0
or m = 0. This contradiction proves the required assertion.

6. The existence of additive nonnegativity domains
Analogously to Theorem 3.5, we can also prove the following

THEOREM 6.1. If A is a symmetric and perfectly cancellable subset of a
group X and B is an additive and antisymmetric subset of A, then there
ezists an additive nonnegativity domain D of X such that B C D.

Proof. Let D be the family of all additive and antisymmetric subsets D of
A such that B € D. Then, B € D, and thus D # 0. Moreover, since the
union of a directed family of additive and antisymmetric subsets of X is also
additive and antisymmetric, it is clear that D is, in particular, inductive.
Therefore, by Zorn’s lemma, there exists a maximal element D of D. Now,
since D is an additive and antisymmetric subset of A such that B € D and
Dn(-D) c An(—A) = A, it remains only to show that A C DU (-D).
For this, assume on the contrary that there exists z € A such that = ¢ D
and ~z ¢ D. Define D; = (DU {z})* and Dy = (DU {~z})*. Then, it
is clear that, for 7 = 1,2, D; is an additive subset of X such that D C D;,
but D; # D. Therefore, by the maximality of D in D, we necessarily have

D;n(-D;) ¢ {0}.
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Since Dy N(—D,) ¢ {0}, there exists yE D, such that —y€ Dy, but y#0.
Therefore, there exist finite families (n;)%_; and (mJ)J —1 in Nand (u;)k
and (v;)‘_; in DU {z} such that y = Zle nu; and —y = Zi.:l m;v;.
Since y # 0 and —y 7é 0, we may assume that u; #0foralli=1,...,k and
v; #0 for all j =1,...,1. Thus, we have

O=y+(— anu%+2m]v1 (DU{I})\{O}) = Fp(z).

By using Dy N (—D2) ¢ {0}, we can quite similarly see that 0 € Fp(—z).
Thus, since z € A\ (DU (—D)), the set A cannot be perfectly cancellable.
This contradiction proves the required assertion.

Now, as some immediate consequences of Theorems 2.5, 5.3 and 6.1, we
can also state the following two theorems.

THEOREM 6.2. If A is a subset of group X, then the following assertions
are equivalent:

(1) A has an additive nonnegativity domain,

(2) A is symmetric and perfectly cancellable;

(3) each additive and antisymmetric subset of A can be extended to an
additive nonnegativity domain of A.

THEOREM 6.3. If A is a symmetric and perfectly cancellable subset of a

group X, then for any additive and antisymmetric subset B of A and any
z € A we have either 0 ¢ Fp(z) or 0 ¢ Fp(—z).

From Theorems 6.1 and 6.2, by using Theorem 5.7, we can also imme-
diately get the following two theorems.

THEOREM 6.4. If A is a symmetric, commutative and infinitely cancellable
subset of a group X and B is an additive and antisymmetric subset of A,
then there ezists an additive nonnegativity domain D of X such that B C D.

THEOREM 6.5. If A is a commutative subset of a group X, then the following
assertions are equivalent:

(1) A has an additive nonnegativity domain;
(2) A is symmetric and infinitely cancellable.

REMARK 6.6. According to Fuchs [4, pp. 36 and 39], the A = X particular
cases of Theorems 6.5 and 6.4 have already been established by Levi [6] and
Lorenzen (7], respectively.
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