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ON THE EXISTENCE OF NONNEGATIVITY DOMAINS 
OF SUBSETS OF GROUPS 

A b s t r a c t . A subset D of a subset A of an additive group X is called a nonnegativity 
domain of A if D is total and antisymmetric in the sense that A = D U (—D) and 
D fl (-D) C {0}. Moreover, the nonnegativity domain D of A is called additive and 
normal if D + D C D and D + x C x + D for all x 6 A, respectively. 

The most important particular cases of the main results of this paper say that: A 
subset A of the group X has a nonnegativity domain if and only if A is symmetric and 
2-cancellable. Moreover, A has an additive nonnegativity domain if and only if A is sym-
metric and perfectly cancellable. In addition, it is shown that a commutative subset of X 
is perfectly cancellable if and only if it is infinitely cancellable. 

Here, the set A is called n-cancellable for some natural n if nx = 0 implies x = 0 for 
all x € A. In particular, A is called infinitely cancellable if it is n-cancellable for all n. 
Moreover, A is called perfectly cancellable if for any additive antisymmetric subset B of 
A and any x € A \ (B U ( - B ) ) we have either 0 ^ Fg(x) or 0 ^ Fg(—x), where Fg(x) is 
the additive hull of (B U {a:}) \ {0}. 

The results obtained are illustrated here only with the help of additive and multi-
plicative groups of complex numbers. Their applications to odd, additive and translation 
relations are postponed to subsequent papers. We do not compare our results with the 
more complicated results of P. Conrad, R. Botto Mura and A. Rhemtulla on the extensions 
of partial right-orders to total ones in multiplicative groups. 

1. A few basic facts on families of sets and subsets of groups 
A family A of sets is called chained if for any A, B G A we have either 

A C B or B C A. The family A is called directed if for any A, B 6 A there 
exists C € A such that A C C and B C C. 

A subfamily B of a family of sets A is called bounded above in A if there 
exists A € A such that B C A for all B € B. Moreover, the family A is 
called inductive if each chained subfamily of A is bounded above in A. 
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An element A of a family of sets A is called maximal if A c B implies 
A = B for all B G A. A particular case and an equivalent of Zorn's lemma 
[4, p. 4] says that each nonvoid inductive family of sets has at least one 
maximal element. 

If X is a group, then for any x G X and n G N, we define nx = x if n = 1 
and nx = (n — \)x + x if n > 1. Moreover, for any sequence (a^)®^ in X, 
we define x i = x i if n = 1 and x» — X ^ i * xi + xn if n > 1. 

For any A,B C X, we define —A = {—x : x G A} and A + B — {x + y : 
x E A, y G B}. Moreover, if x G X, then we simply write x + A and A + x 
in place of { x } + A and A + {re}, respectively. 

A subset A of the group X is called symmetric and antisymmetric if 
-A C A and A fl (—A) C { 0 } , respectively. Moreover, a subset B of A is 
called total in A if A = B U (-B). 

A subset A of X is called commutative if x + y = y + x for all x, y E A. 
Moreover, a subset B of A is called normal in A if B + x C x + B for all 
x € A. Thus, each subset of a commutative set is normal. 

A subset A of X is called additive if A+A C A. Moreover, for any A C X, 
we denote by A& the intersection of all additive subsets of X containing A. 
Thus, A# is an additive subset of X 

Moreover, for any x e X, we have x 6 A* if and only if x — nixi 
for some finite families (ni)^ = 1 and in N and A, respectively. And if 
X is commutative, then = { n a + mx : a € A, n, m G N u { 0 } } . 

2. Nonnegativity domains of subsets of groups 

DEFINITION 2.1. A total and antisymmetric subset D of a subset A of a 
group X is called a nonnegativity domain of A. 

EXAMPLE 2.2. Clearly, Rffi = R + U {0 } , where R + = ]0, +oo[, is an additive 
nonnegativity domain of the additive group R of all real numbers. 

EXAMPLE 2.3. Moreover, we can easily see that D = (R f f i) U ( - R + ) x R + 

is an additive nonnegativity domain of the additive group C of all complex 
numbers. 

To check the additivity of D, note that if (x, y), (z, w) £ D, then because 
of the obvious additivity of ( R e ) and (—R +) x R + we may, for instance, 
assume that (x, y) G ( R e ) and (z ,w ) G (—K+) x R + . Hence, in particular, 
it follows that 0 < y and 0 < w, and thus 0 < y + w. This already implies 
that (x, y) + (z, w) = (x + z, y + w) G D. 

Concerning nonnegativity domains, we can also easily establish the fol-
lowing basic theorems. 
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THEOREM 2.4. If D is a nonnegativity domain of a subset A of a group X, 

then 0 € D if and only ifOeA. Therefore, ifO G A, then D n (-D) = {0}. 
Moreover, if in addition D is additive, then D + D — D. 

P r o o f. If 0 G D, then since D C Awe also have 0 € A. On the other hand, if 
0 G A, then since A = D U (-D) we have either 0 G D or 0 e —D. However, 
0 G D implies 0 = - 0 G -D, and 0 G -D implies 0 = - 0 G -(-D) = D. 

Therefore, {0 } C D fl (—D). And, thus by the antisymmetry of D, the 
corresponding equality is also true. Moreover, if 0 G D, then we also have 
D = 0 + D C D + D. Therefore, if D is in addition additive, then the 
corresponding equality is also true. 

THEOREM 2.5. If D is a nonnegativity domain of a subset A of a group X, 

then A is a symmetric subset of X. Moreover, if in addition D is normal in 

A, then D + x = x + D and A + x = x + A for all x G A. 

P r o o f. By using the function (f> defined by <f>(u) = —u for all u G X, we can 
at once see that -A = tf>(A) = <f>(DU ( - D ) ) = <f>(D) U<p{-D) — -DUD — 

D U (-D) = A. Therefore, A is symmetric. 
Moreover, if Z) is in addition normal in A, i. e., D+x c x+D for all x G A, 

then by using the symmetry of A we can also easily see that D + (—x) C 
—x + D, and hence x + D = x+(D + (-x))+xCx+(-x + D) + x = D + x 

for all x G A. Therefore, the corresponding equality is also true. 
Hence, it is clear that for each i £ i w e also have —D+x = —(—x+D) — 

— (D+(—x)) = x+(—D). Moreover, by using the functions tpi andi/^ defined 
by (u) = u + x and ip2 (u) = x + u for all u G X, we can at once see that 
A + x = i>1(A)=ip1(Du(-D)) =MD)UM-D) = MD)UM~D) = 

ifo(Du(-D)) = ip2(A) = x + A. 

THEOREM 2.6. If D is a nonnegativity domain of a subset A of a group X, 

B is a symmetric subset of A and E = D fl B, then E is a nonnegativity 

domain of B. If D and B are additive (normal in B), then E is also additive 

(normal in B). 

P r o o f . By using the injective function <f> defined above, we can at once see 
that -E = 4>(E) = <f)(D nB) = 4>{D) n <t>{B) = - D f ) (-B) = -Df)B, and 
thus B = AOB = (DU (-D)) n ß = ( D n ß ) U (-D DB) = EU (-E) 

and En (-E) = (D n B) n (-D n B ) = (D n (-D)) n ß c { 0 } n 5 c {0} . 
Therefore, E is a nonnegativity domain of B. 

If D and B are additive, then we can at once see that E+E — (DnB) 
+ (D n B) C (D + D) n (B + B) C D n B = E. Therefore, E is also 
additive. While, if D and B are normal in B, then for any fixed x G B 
by using the injective functions ipi and ip2 defined above we can easily see 
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that E + x = Vi(E) = x/f^DHB) = ^(D)n^(B) = i>2(D) n ^2{B) = 
•02 (jD n B) = V,2(-£;) = a; + E. Therefore, E is also normal in B. 

EXAMPLE 2.7. By Example 2.2 and Theorem 2.6, it is clear that Z e = 
ZflRffi and Q e = Q f l R e are additive nonnegativity domains of the additive 
groups Z and <Q> of all integer and rational numbers, respectively. 

THEOREM 2.8. If A and B are symmetric subsets of the groups X and Y, 
respectively, E is a nonnegativity domain of B and f is an odd function of 
A into B such that 0 ^ \ {0}) , then D = f~1(E) is a nonnegativity 
domain of A. 

Proof . Since / is odd, for any x € A, we have x E f~1(—E) f(x) € 
-E - / ( x ) 6 E ^ / ( - x ) € E •<==>• - x 6 f-\E) 
x € —/_1(iE7). Since, 0 $ f(A \ {0}) , we can see that x € / - 1 ( { 0 } ) 0 
= f(x) x £ A \ {0} =» x = 0. Therefore, f-^-E) = -f'^E) and 
f-'m) c { o > . 

Since E is a nonnegativity domain of B, it is already quite obvious 
that A = f~x(B) - f~l(E\J (-E)) = f-i(E)Uf-\-E) = f'^E) U 
{-f-\E)) = D\J(-D) and Dn(-D) = f-1(E)n(-f~1(E)) = f~l(E)n 
/-!(-£) = f-1 [E n ( - £ ) ) C / _ 1 ( { 0 } ) C {0}. Therefore, D is a nonnega-
tivity domain of A. 

Now, as a useful consequence of this theorem, we can also state 

COROLLARY 2.9. If A and B are symmetric subsets of the groups X and 
Y, respectively, D is a nonnegativity domain of A and f is an odd injective 
function of A onto B such that / (0) = 0 if 0 € A, then E — f{D) is a 
nonnegativity domain of B. 

THEOREM 2.10. If D is a nonnegativity domain of a subset A of a group X 
and f is an injective additive function of X into a group Y, then E = f(D) 
is a nonnegativity domain of B = f(A). Moreover, if D is additive (normal 
in A), then E is additive (normal in B). 

P r o o f . Since / is additive, we have /(0) + /(0) = /(0), and hence /(0) = 0. 
We also have / (x ) + /(—x) = / (0) = 0, and hence /(—x) = — / (x ) for all 
x G X. Now, since -B = -f(A) = f(-A) = f(A) = 5 , by Corollary 2.9 it 
is clear that E is a nonnegativity domain of B. 

To prove the remaining assertions, note that if D is additive, then E + 
E = f(D) + f(D) = f(D + D) C f{D) = E. Therefore, E is also additive. 
While, if D is normal in A, then E + f(x) = f(D) + f(x) = f{D + x) = 
f(x + D) = f(x) + f(D) = f(x) + E for all x 6 A. Hence, since B = f{A), 
it is clear we also have E + y = y + E for all y 6 B. Therefore, E is normal 
in B. 
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REMARK 2.11. Note that if / is an anti-additive function of X into Y in 
the sense that f(x + y) = f(y) + f(x) for all x, y € X, then f is an additive 
function of X into the dual group y(©), where z®w — w+z for all z,w EY. 

Moreover, if E is an additive (normal) nonnegativity domain of a subset 
B of 7 ( 6 ) , then E is also an additive (normal) nonnegativity domain of B 
as a subset of Y. Therefore, as a useful consequence of Theorem 2.10, we 
can also state 

COROLLARY 2.12. If D is a nonnegativity domain of a subset A of a group 
X, then E = —D is also a nonnegativity domain of A. Moreover, if D is 
additive (normal in A), then E is also additive (normal in A). 
EXAMPLE 2.13. By Example 2.7 and Corollary 2.12, it is clear that - Z e , 
—Qe and —Mffi are also additive nonnegativity domains of Z, Q and R, 
respectively. 

THEOREM 2.14. If D and E are nonnegativity domains of a subset A of a 
group X, with 0 6 A, such that D C E, then D = E. 
P r o o f . If x e E, then since E C A = D U ( - D ) we have either x e D or 
x 6 —D. If x € —D, then since D C E we also have x £ — E. Hence, it 
follows that x e E fl (-E) C {0}, and thus x = 0. Therefore, by Theorem 
2.4, we also have x € D. Consequently, the inclusion E C D is also true. 
EXAMPLE 2.15. If D is an additive nonnegativity domain of the additive 
group Z of all integers, then either D = Zffi or D = —Zffi. 

Namely, by Theorem 2.4, we have 0 € D. Moreover, since Z = D u ( - D ) , 
have either 1 € D or —1 6 D. If 1 € D, then since D + D C D we also have 
N CD. Therefore, Z e = {0} U N c D. Hence, by Theorem 2.14, it is clear 
that D = While, if —1 £ D, then we can similarly see that D = —Zffi. 

3. The existence of nonnegativity domains 
DEFINITION 3.1. A subset A of a group X is called n-cancellable for some 
n e N if nx = 0 implies x = 0 for all x 6 A. 
REMARK 3.2. By using the notation Xn = {x € X : nx = 0}, the above 
condition can be briefly expressed by writing that A fl Xn C {0}. 

Hence, it is clear that X is n-cancellable if and only if Xn = {0}. Besides, 
it can be easily seen that {0} U (X \ Xn) is the largest n-cancellable subset 
of X. 

The following theorem shows that an arbitrary group need not have a 
nonnegativity domain. 
THEOREM 3.3. If a subset A of a group X has a nonnegativity domain, 
then A is 2-cancellable. 



510 T. Glavos i t s , A. Szaz 

P r o o f . Let D be a nonnegativity domain of A, and assume that x G A such 
that 2x = 0. Then, since 2x = x + x, we also have x = —x. Moreover, since 
A = D U (-D) we have either x G D or x G (-D). 

If x G D, then since — x = x, we also have —x G D, and hence x G —D. 
Quite similarly, if x G — D, then since —x = x, we also have — x € — D, 
and hence x G D. Consequently, we have x G D fl (—D) C {0}, and hence 
x = 0. Therefore, the required assertion is true. 

EXAMPLE 3 . 4 . If A is a subset of the multiplicative group of all nonzero 
complex numbers such that —1 G A, then A has no nonnegativity domain. 

To check this, by the multiplicative form of Theorem 3.3, it is enough to 
note only that ( -1) 2 = 1, but —1 ^ 1. Thus, A is not 2-cancellable. 

A standard application of Zorn's lemma gives the existence of a nonneg-
ativity domain of a 2-cancellable group. More generally, we can prove the 
following 

THEOREM 3.5. If A is a symmetric and 2-cancellable subset of a group X 
and B is an antisymmetric subset of A, then there exists a nonnegativity 
domain D of A such that B C D. 

P r o o f . Let V be the family of all antisymmetric subsets D of A such that 
B C D. Then, B € T>, and thus V ^ 0. Moreover, since the union of a 
directed family of antisymmetric subsets of X is also antisymmetric, it is 
clear that V is, in particular, inductive. 

Therefore, by Zorn's lemma, there exists a maximal element D of P . Now, 
since D is an antisymmetric subset of A such that B C D and D U (—D) C 
A U (->1) = A, it remains only to show that A C D U ( -D ) . For this, 
assume on the contrary that there exists x G A such that x (£ D and 
-x £ D. Define E = D u { x } . Then, we evidently have B C E C A. 
Moreover, if y G E n (-E), i. e., y G D U {i} and -y € D U {x}, then 
by examining the four possible cases and using the assumptions x ^ D 
and —x £ D, we can see that either y € D rI (-D) or 2y = 0 can hold. 
Hence, by the antisymmetry of D and the 2-cancellability of A, it follows 
that y = 0. Therefore, E n (-E) C {0}, and thus E G V. Hence, by using 
the maximality of D and the inclusion D C E, we can infer that E = D, 
which is a contradiction. Therefore, the required assertion is true. 

Now, as an immediate consequence of Theorems 2.5, 3.3 and 3.5, we can 
also state 

THEOREM 3 . 6 . If A is a subset of a group X, then the following assertions 
are equivalent: 
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(1) A has a nonnegativity domain; 
(2) A is symmetric and 2-cancellable; 
(3) each antisymmetric subset of A can be extended to a nonnegativity 

domain of A. 

Hint. To prove the implication (2)=>(1), note that B = 0 is an antisymmetric 
subset of A. Therefore, if the assertion (2) holds, then Theorem 3.5 can be 
applied to get the assertion (1). 

4. Infinitely cancellable subsets of groups 

DEFINITION 4 . 1 . A subset A of a group X is called infinitely cancellable if 
it is n-cancellable for all n £ N. 

R E M A R K 4 . 2 . By using the notation X ^ — U^Li the above condition 
can be briefly expressed by writing that A fl X^ C {0}. 

Hence, it is clear that X is infinitely cancellable if and only if Xoo = {0}. 
Moreover, it can be easily seen that {0} U (X \ X ^ ) is the largest infinitely 
cancellable subset of X. 

Analogously to Theorem 3.3, we can also easily prove the following 

T H E O R E M 4 . 3 . If a subset A of a group X has an additive nonnegativity 
domain, then A is infinitely cancellable. 

P r o o f . Let D be an additive nonnegativity domain of A, and assume on 
the contrary that there exist n £ N and x £ A such that nx = 0, but x ^ 0. 
Then, we necessarily have n > 1. Moreover, since A = D U (—D), we have 
either x £ D or —x £ D. If x £ D, then by using the assumptions nx = 0 
and D + D c D, we can infer that —x = (n — l):r € D. While, if — x £ D, 
then by using the above assumptions, we can infer that x = (n — l)(—x) £ D. 
Consequently, we have x £ D fl (-D) C {0}, and hence x — 0. This contra-
diction proves the theorem. 

E X A M P L E 4 . 4 . If A is a subset of the multiplicative group of all nonzero 
complex numbers such that i £ A, then A has no multiplicative nonnega-
tivity domain. 

To check this, by the multiplicative form of Theorem 4.3, it is enough to 
note only that i4 = 1, but i ^ 1. Thus, A is not 4-cancellable. 

E X A M P L E 4 . 5 . If A is finite subset of a group X such that A <£ { 0 } , then 
A has no additive nonnegativity domain. 

To check this, assume on the contrary that D is an additive nonnegativity 
domain of A. Then, since D U (-D) = A <f_ {0}, there exists x £ D such 
that x 0. Moreover, since D + D C D, we have nx £ D C A for all n £ N. 
Hence, by using the finiteness of A, we can infer that there exist k, I £ N, 
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with k < I, such that kx = Ix, and hence (I — k)x = 0. Hence, by Theorem 
4.3, it follows that x = 0. This contradiction proves the required assertion. 

By using Theorem 4.3, we can also easily prove the following 

THEOREM 4 . 6 . If D is an additive nonnegativity domain of a subset A of 
a group X, then nx = y implies x € D for alln € N, x E A and y E D. 

P r o o f . Assume on the contrary that there exist n E N, x E A and y £ D 
such that nx — y, but x £ D. Then, since A = D U (—D), we necessarily 
have x £ —D, and thus —x £ D. Hence, by using the assumptions nx = y 
and D + D C D, we can infer that — y = n(—x) € D, and hence y E —D. 
Therefore, y £ D n (—D) C {0}, and hence y = 0. Consequently, nx = 0, 
and hence, by Theorem 4.3, x — 0 = y E D. This contradiction proves the 
theorem. 

EXAMPLE 4.7. If D is an additive nonnegativity domain of Q, then either 

Namely, by Theorem 2.4, we have 0 € D. Moreover, since Q = DU(—D), 
we have either 1 E D or —1 E D. I f l E D, then by using the equality 
n(l) = 1 and Theorem 4.6 we can see that 1 6 D for all n E N. Hence, since 
D + D C D, it is clear that fc(l) € D for all n, k € N. Therefore, Q e C D. 
Hence, by Theorem 2.14, it is clear that D = Q e . While, if —1 e D, then 
we can similarly see that D = — Qffi. 

EXAMPLE 4.8. If D is a closed and additive nonnegativity domain of R, 
then either D = R e or D = - R e . 

Namely, by Theorem 2.6, E = DflQ is an additive nonnegativity domain 
of Q. Moreover, by Example 4.7, we have either E = (Q>e and E = -Q f f i . 
If E = Qe, then Qffi C D. Hence, by using the denseness of Q and the 
closedness of D in R, we can infer that R e = (Qffi)~ C D~ — D. Therefore, 
by Theorem 2.14, we have D = R e . While, if E = —Qffi, then we can 
similarly see that D — —R©. 

5. Perfectly cancellable subsets of groups 

DEFINITION 5 . 1 . For any point x and any subset A of a group X, we define 

The usefulness of this notation is apparent from the following two theo-
rems. 

THEOREM 5 . 2 . If A is a subset of a group X, then the following assertions 
are equivalent: 

D = Qffl or D = - Q , 
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(1) A is infinitely cancellable; 
(2) 0 £ F 0 (x) /or all xe A. 

P r o o f. If the assertion (2) does not hold, then there exists x £ A such that 
a 

0 € Fq,(x) = ( {x } \ {0}) . Therefore, x ^ 0 and there exists n G N such 
that 0 = nx. Thus, the assertion (1) does not hold. 

While, if the assertion (1) does not hold, then there exist n G N and 
x G A such that nx = 0, but x ± 0. Therefore, 0 6 ( {x } \ { 0 } ) # = F 0 (x) , 
and thus the assertion does not hold. 
THEOREM 5.3. If B is a subset of a subset A of a group X such that B is 
contained in some additive nonnegativity domain of A, then for each x € A 
we have either 0 ^ FB(X) or 0 ^ FB(—X). 

P r o o f . Let D be an additive nonnegativity domain of A such that B C D, 
and assume on the contrary that there exists x 6 A such that 0 G FB(X) 
and 0 G FB(—X). Then, since x G A = D U (-D), we have either x G D or 

¡1 
-x G D. Moreover, since 0 G FB(X) = ( (B U {x } ) \ {0}) , there exist finite 
families (n j ) f = 1 in N and : = 1 in ( B u { x } ) \{0} such that 0 = niui-
Hence, since {iXi}^=1 C A \ {0} , by Theorem 4.3 it is clear that k > 1. 
Therefore, we also have nkUk = — Yli=i niui- Now, if x G D, then by 
using the inclusion {ui}^=1 C D and the additivity of D, we can see that 
nkUk G D fl (-D) C {0} , and thus nkUk = 0. Hence, since Uk G A, by 
Theorem 4.3 it follows that Uk = 0, which is a contradiction. 

Moreover, to complete the proof, we can quite similarly see that the 
inclusions —x G D and 0 G FB(—X) also lead to a contradiction. 
REMARK 5 . 4 . Since the operation # is increasing and A = 0 implies B = 0 , 
it is clear that in addition we also have 0 ^ FB(0). 

Moreover, by Theorem 5.3, we may also naturally introduce the following 

DEFINITION 5.5. A subset A of a group X is called perfectly cancellable if 
for any additive and antisymmetric subset B of A and any x G (BU(—B)) 
we have either 0 £ FB{X) or 0 ^ FB{—X). 

The relationship between infinite and perfect cancellability can be 
cleared up by the following two theorems. 

THEOREM 5.6. If A is a perfectly cancellable subset of a group X, then A 
is in particular infinitely cancellable. 

P r o o f . If A is not infinitely cancellable, then by Theorem 5.2 there exist 
x € A such that 0 G Fg(x). Thus, since F$(—x) — —Fq>(x), we also have 
0 € F J ( - I ) . Hence, since B = 0 is an additive and antisymmetric subset of 
A such that A = A\ (BU (—B), it is clear A cannot be perfectly cancellable. 
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T H E O R E M 5 . 7 . If A is a commutative subset of a group X, then the following 
assertions are equivalent: 

(1) A is perfectly cancellable; 
(2) A is infinitely cancellable. 

P r o o f . By Theorem 5.6, we need only to prove the implication (2)=>(1). For 
this, assume on the contrary that the assertion (2) holds, but the assertion 
(1) does not hold. Then, there exist an additive and antisymmetric subset 
B of A and an x e A such that 0 € FB(X) and 0 € FB(-X). 

From the first inclusion, because of FB(X) = ( ( f i l l {x}) \ {0})*, it fol-
lows that there exist finite families j in N and in (Bu{x})\{0} 
such that 0 = niui- Hence, by the assertion (2), it is clear Ui 6 B\{0} 
for some i = 1 , . . . , k. Moreover, by using a similar argument as in the proof 
of Theorem 5.3, we can also easily see that Ui = x ^ 0 for some i = 1 , . . . , k. 

Now, by the commutativity of A and the additivity of B it is clear 
that there exist n £ N and y 6 B\ {0} such that 0 = nx + y. Moreover, 
by the second inclusion 0 6 FB(—X), it is clear that there exist m € N and 
z 6 -B\{0} such that 0 = m(—x)+z. This implies that (nm)x = n(mx) — nz 
and (nm)x = m(nx) = m(—y) = —my. Hence, by the additivity and the 
antisymmetry of B, it follows that (nm)x 6 B fl (—B) C {0}, and thus 
(nm)x = 0. Therefore, by the assertion (2), we necessarily have either n = 0 
or m = 0. This contradiction proves the required assertion. 

6. The existence of additive nonnegativity domains 
Analogously to Theorem 3.5, we can also prove the following 

T H E O R E M 6 . 1 . If A is a symmetric and perfectly cancellable subset of a 
group X and B is an additive and antisymmetric subset of A, then there 
exists an additive nonnegativity domain D of X such that B C D. 
P r o o f . Let V be the family of all additive and antisymmetric subsets D of 
A such that B C D. Then, B € T>, and thus V ^ 0. Moreover, since the 
union of a directed family of additive and antisymmetric subsets of X is also 
additive and antisymmetric, it is clear that V is, in particular, inductive. 

Therefore, by Zorn's lemma, there exists a maximal element D of V. Now, 
since D is an additive and antisymmetric subset of A such that B C D and 
D D ( - D ) C A D ( -A) = A, it remains only to show that A<Z DU (-£>)• 
For this, assume on the contrary that there exists x € A such that x ^ D 
and -x £ D. Define Di = (D U {x})# and D^ = (D U { - x } ) # . Then, it 
is clear that, for z = 1,2, DI is an additive subset of X such that D C DI, 
but DI ^ D. Therefore, by the maximality of D in V, we necessarily have 
DI D (-DI) <Z {0}. 
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Since D\ D(—Di)$£{0}, there exists y£Di such that —yEDi, but y^O. 
Therefore, there exist finite families («»)£_! and (mj) j = 1 in N and ( u j ) ^ 
and (Vj) l j = l in D U {x} such that y = ¿=1 njUj and —y = mjvi-
Since y ^ 0 and — y / 0, we may assume that Ui ̂  0 for allz = 1 , . . . , k and 
Vj / 0 for all j = 1 , . . . , I. Thus, we have 

h i ^ 

0 = y+(-y) = J2niui + Y,mjVi 6 ( C 0 u W ) \ {°>) =fD{X)-
i=1 j=1 

By using £>2 H (—-D2) <T- {0}, we can quite similarly see that 0 G FD(—X). 

Thus, since x € A \ {D U (—£))), the set A cannot be perfectly cancellable. 
This contradiction proves the required assertion. 

Now, as some immediate consequences of Theorems 2.5, 5.3 and 6.1, we 
can also state the following two theorems. 
T H E O R E M 6 . 2 . If A is a subset of group X, then the following assertions 
are equivalent: 

(1) A has an additive nonnegativity domain; 
(2) A is symmetric and perfectly cancellable; 
(3) each additive and antisymmetric subset of A can be extended to an 

additive nonnegativity domain of A. 
T H E O R E M 6 . 3 . If A is a symmetric and perfectly cancellable subset of a 
group X, then for any additive and antisymmetric subset B of A and any 
x € A we have either 0 ^ FB(X) or 0 ^ FB(—X). 

From Theorems 6.1 and 6.2, by using Theorem 5.7, we can also imme-
diately get the following two theorems. 
T H E O R E M 6 . 4 . If A is a symmetric, commutative and infinitely cancellable 
subset of a group X and B is an additive and antisymmetric subset of A, 
then there exists an additive nonnegativity domain D of X such that B C D. 

T H E O R E M 6 . 5 . If A is a commutative subset of a group X, then the following 
assertions are equivalent: 

(1) A has an additive nonnegativity domain; 
(2) A is symmetric and infinitely cancellable. 

R E M A R K 6 . 6 . According to Fuchs [4, pp. 3 6 and 3 9 ] , the A = X particular 
cases of Theorems 6.5 and 6.4 have already been established by Levi [6] and 
Lorenzen [7], respectively. 

Acknowledgement. The author is indebted to the anonymous referee 
for correcting several grammatical errors and suggesting some stylistic im-
provements. 
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