

Mariusz Bieniek, Dominik Szynal

CHARACTERIZATIONS BASED ON k -TH UPPER AND LOWER RECORD VALUES

Abstract. Let $\{Y_n^{(k)}, n \geq 1\}$ and $\{Z_n^{(k)}, n \geq 1\}$ denote respectively the sequences of k -th upper and lower record values of the sequence $\{X_n, n \geq 1\}$ of independent identically distributed random variables with distribution function F . Let n, k and r be given positive integers. We characterize distributions for which one of the conditional expectations $E(Y_{n+r}^{(k)} | Y_n^{(k)}), E(Y_n^{(k)} | Y_{n+r}^{(k)}), E(Z_{n+r}^{(k)} | Z_n^{(k)})$ or $E(Z_n^{(k)} | Z_{n+r}^{(k)})$, is linear. For example, distributions for which $E(Y_{n+r}^{(k)} | Y_n^{(k)})$ has the form $E(Y_{n+r}^{(k)} | Y_n^{(k)}) = aY_n^{(k)} + b$ for some $a, b \in \mathbb{R}$.

1. Introduction

Let $\{X_n, n \geq 1\}$ be a sequence of independent identically distributed random variables with distribution function (df) F and probability density function (pdf) f . Let $X_{1:n}, \dots, X_{n:n}$ denote the order statistics of a sample X_1, \dots, X_n . For a fixed $k \geq 1$ we define the sequence $U_k(1), U_k(2), \dots$ of k -th upper record times of X_1, X_2, \dots as follows: $U_k(1) = 1$, and for $n = 2, 3, \dots$,

$$U_k(n) = \min \left\{ j > U_k(n-1) : X_{j:j+k-1} > X_{U_k(n-1):U_k(n-1)+k-1} \right\}.$$

Write

$$Y_n^{(k)} = X_{U_k(n):U_k(n)+k-1}, \quad n \geq 1.$$

The sequence $\{Y_n^{(k)}, n \geq 1\}$ is called the sequence of k -th (upper) record values of the above sequence [3]. Note that for $k = 1$ we have $Y_n^{(1)} = X_{U_1(n):U_1(n)} := R_n$ — the upper record values of the sequence $\{X_n, n \geq 1\}$ and that $Y_1^{(k)} = X_{1:k}$.

2000 *Mathematics Subject Classification*: 62E10.

Key words and phrases: k -th upper record values; k -th lower record values; Characterization; Linearity of regression; Exponential distribution; Gumbel distribution; Power distribution; Pareto distribution; Fréchet distribution; Weibull distribution.

Similarly for a fixed $k \geq 1$ we define the sequence $L_k(1), L_k(2), \dots$ of k -th lower record times of X_1, X_2, \dots as follows: $L_k(1) = 1$, and for $n = 2, 3, \dots$,

$$L_k(n) = \min \left\{ j > L_k(n-1) : X_{k:L_k(n-1)+k-1} > X_{k:j+k-1} \right\},$$

Write

$$Z_n^{(k)} = X_{k:L_k(n)+k-1}, \quad n \geq 1.$$

The sequence $\{Z_n^{(k)}, n \geq 1\}$ is called the sequence of k -th (lower) record values of the above sequence [7]. Note that for $k = 1$ we have $Z_n^{(1)} = X_{1:L_1(n)} := R'_n$ — the lower record values of the sequence $\{X_n, n \geq 1\}$ and that $Z_1^{(k)} = X_{k:k}$.

The aim of the paper is to characterize absolutely continuous distributions by linearity of regression of k -th upper and lower record values. We show that $E(Y_{n+r}^{(k)} | Y_n^{(k)})$ is linear iff F is an exponential, Pareto or power distribution function with regression parameters depending on k , and $E(Y_n^{(k)} | Y_{n+r}^{(k)})$ is linear iff F is a negative Gumbel, negative Fréchet or Weibull distribution function with regression parameters which, in contrast with the previous case, do not depend on k . These results generalize those given by [5, 6] where the case $k = 1$ and $r = 1$ was considered and by [2] who studied the case $k = 1$.

Moreover, we prove that $E(Z_{n+r}^{(k)} | Z_n^{(k)})$ is linear iff F is a negative exponential, negative Pareto or inverse power distribution with regression parameters depending on k and $E(Z_n^{(k)} | Z_{n+r}^{(k)})$ is linear iff F is a Gumbel, Fréchet or negative Weibull distribution with regression parameters which also do not depend on k .

In Section 2 we give definitions of distribution functions for which the regressions $E(Y_{n+r}^{(k)} | Y_n^{(k)})$, $E(Y_n^{(k)} | Y_{n+r}^{(k)})$, $E(Z_{n+r}^{(k)} | Z_n^{(k)})$, $E(Z_n^{(k)} | Z_{n+r}^{(k)})$, are linear while in Section 3 we discuss linearity of regression for k -th upper and lower record values. Characterizations of distributions by linearity of regressions of the k -th upper and lower record values are presented in Section 4.

2. List of working distributions

In the paper we use the following notation of probability distribution functions:

- $\text{Exp}(\lambda, \gamma)$ — the exponential distribution with

$$F(x) = 1 - \exp(-\lambda(x - \gamma)), \quad x > \gamma; \lambda > 0, \gamma \in \mathbb{R}.$$

- $\text{Par}(\theta, \mu, \delta)$ – the Pareto distribution with

$$F(x) = 1 - \left(\frac{\mu + \delta}{x + \delta} \right)^\theta, \quad x > \mu; \theta > 0, \mu, \delta \in \mathbb{R}, \mu + \delta > 0.$$

- $\text{Pow}(\theta, \mu, \nu)$ – the power distribution with

$$F(x) = 1 - \left(\frac{\nu - x}{\nu - \mu} \right)^\theta, \quad \mu < x < \nu; \theta > 0, \mu, \nu \in \mathbb{R}, \mu < \nu.$$

- $\text{NG}(\beta, \gamma)$ – the negative Gumbel distribution with

$$F(x) = 1 - \exp(-e^{\beta(x-\gamma)}), \quad x \in \mathbb{R}; \beta > 0, \gamma \in \mathbb{R}.$$

- $\text{NFre}(\theta, \gamma, \alpha)$ – the negative Fréchet distribution with

$$F(x) = 1 - \exp\left(-\left(\frac{\alpha - \gamma}{\alpha - x}\right)^\theta\right), \quad x < \alpha; \theta > 0, \gamma, \alpha \in \mathbb{R}, \alpha > \gamma.$$

- $\text{W}(\theta, \mu, \gamma)$ – the Weibull distribution with

$$F(x) = 1 - \exp\left(-\left(\frac{x - \mu}{\gamma - \mu}\right)^\theta\right), \quad x > \mu; \theta > 0, \mu, \gamma \in \mathbb{R}, \gamma > \mu.$$

- $\text{NExp}(\lambda, \nu)$ – the negative exponential distribution with

$$F(x) = \exp(\lambda(x - \nu)), \quad x < \nu; \lambda > 0, \nu \in \mathbb{R}.$$

- $\text{NPar}(\theta, \nu, \delta)$ – the negative Pareto distribution with

$$F(x) = \left(\frac{\delta - \nu}{\delta - x} \right)^\theta, \quad x < \nu; \theta > 0, \nu, \delta \in \mathbb{R}, \nu < \delta.$$

- $\text{IPow}(\theta, \alpha, \beta)$ – the inverse power distribution with

$$F(x) = \left(\frac{x - \alpha}{\beta - \alpha} \right)^\theta, \quad \alpha < x < \beta; \theta > 0, \alpha, \beta \in \mathbb{R}, \alpha < \beta.$$

- $\text{G}(\beta, \gamma)$ – the Gumbel distribution with

$$F(x) = \exp(-e^{-\beta(x-\gamma)}), \quad x \in \mathbb{R}; \beta > 0, \gamma \in \mathbb{R}.$$

- $\text{Fre}(\theta, \mu, \delta)$ – the Fréchet distribution with

$$F(x) = \exp\left(-\left(\frac{\delta - \mu}{x - \mu}\right)^\theta\right), \quad x > \mu; \theta > 0, \mu, \delta \in \mathbb{R}, \mu < \delta.$$

- $\text{NW}(\theta, \mu, \gamma)$ – the negative Weibull distribution with

$$F(x) = \exp\left(-\left(\frac{\mu - x}{\mu - \gamma}\right)^\theta\right), \quad x < \mu; \theta > 0, \mu, \gamma \in \mathbb{R}, \mu > \gamma.$$

Moreover, for the df F we denote

$$l_F = \inf\{x : F(x) > 0\}, \quad r_F = \sup\{x : F(x) < 1\}.$$

3. Linearity of regression of k -th upper and lower record values

3.1. k -th upper record values

It is known [3] that the pdf of $Y_n^{(k)}$ is

$$f_{Y_n^{(k)}}(x) = \frac{k^n}{(n-1)!} [-\log(1-F(x))]^{n-1} [1-F(x)]^{k-1} f(x)$$

and the joint pdf of the vector $(Y_m^{(k)}, Y_n^{(k)})$ is

$$\begin{aligned} f_{Y_m^{(k)}, Y_n^{(k)}}(x, y) &= \frac{k^n}{(m-1)!(n-m-1)!} [-\log(1-F(x))]^{m-1} \frac{f(x)}{1-F(x)} \\ &\quad \times \left(\log \frac{1-F(x)}{1-F(y)} \right)^{n-m-1} [1-F(y)]^{k-1} f(y) \end{aligned}$$

for $x < y$ and 0 for $x \geq y$ [4]. Therefore, the conditional density of $Y_{n+r}^{(k)}$ given $Y_n^{(k)} = x$ is

$$(3.1) \quad f_{Y_{n+r}^{(k)}|Y_n^{(k)}}(y | x) = \frac{k^r}{(r-1)!} \left(\log \frac{1-F(x)}{1-F(y)} \right)^{r-1} \left(\frac{1-F(y)}{1-F(x)} \right)^{k-1} \frac{f(y)}{1-F(x)}$$

for $y \geq x$, and the conditional density of $Y_n^{(k)}$ given $Y_{n+r}^{(k)} = y$ is

$$\begin{aligned} (3.2) \quad f_{Y_n^{(k)}|Y_{n+r}^{(k)}}(x | y) &= \frac{(n+r-1)!}{(n-1)!(r-1)!} \frac{(-\log(1-F(x)))^{n-1}}{(-\log(1-F(y)))^{n+r-1}} \\ &\quad \times \left(\log \frac{1-F(x)}{1-F(y)} \right)^{r-1} \frac{f(x)}{1-F(x)} \end{aligned}$$

for $x < y$.

Using (3.1) we see that for $x \in (l_F, r_F)$

$$\begin{aligned} E(Y_{n+r}^{(k)} | Y_n^{(k)} = x) &= \int_x^{r_F} y \frac{k^r}{(r-1)!} \left(\log \frac{1-F(x)}{1-F(y)} \right)^{r-1} \left(\frac{1-F(y)}{1-F(x)} \right)^{k-1} \frac{f(y)}{1-F(x)} dy \\ &= \end{aligned}$$

which for the exponential, Pareto and power distributions gives

$$E(Y_{n+r}^{(k)} | Y_n^{(k)}) = a_{rk} Y_n^{(k)} + b_{rk},$$

where for:

(a) $\text{Exp}(\lambda, \gamma)$

$$a_{rk} = 1, \quad b_{rk} = \frac{r}{k\lambda};$$

(b) $\text{Par}(\theta, \mu, \delta)$, $\theta > \frac{1}{k}$,

$$a_{rk} = \left(\frac{k\theta}{k\theta-1} \right)^r, \quad b_{rk} = \delta \left\{ \left(\frac{k\theta}{k\theta-1} \right)^r - 1 \right\};$$

(c) Pow(θ, μ, ν)

$$a_{rk} = \left(\frac{k\theta}{k\theta + 1} \right)^r, \quad b_{rk} = \nu \left\{ 1 - \left(\frac{k\theta}{k\theta + 1} \right)^r \right\}.$$

For instance, if $F \sim \text{Exp}(\lambda, \gamma)$, then for $x \geq \gamma$

$$\begin{aligned} E(Y_{n+r}^{(k)} | Y_n^{(k)} = x) &= \frac{(k\lambda)^r}{(r-1)!} \int_x^\infty y (y-x)^{r-1} e^{-k\lambda(y-x)} dy \\ &= \frac{(k\lambda)^r}{(r-1)!} \int_0^\infty (x+u)u^{r-1} e^{-k\lambda u} du \\ &= x \frac{(k\lambda)^r}{(r-1)! (k\lambda)^r} \frac{\Gamma(r)}{(k\lambda)^{r+1}} + \frac{(k\lambda)^r}{(r-1)! (k\lambda)^{r+1}} \frac{\Gamma(r+1)}{(k\lambda)^{r+1}} = x + \frac{r}{k\lambda}. \end{aligned}$$

Using (3.2) we see that the regression

$$\begin{aligned} (3.3) \quad E(Y_n^{(k)} | Y_{n+r}^{(k)} = y) &= \frac{(n+r-1)!}{(n-1)!(r-1)!} \frac{1}{(-\log(1-F(y)))^{n+r-1}} \\ &\times \int_{l_F}^y x (-\log(1-F(x)))^{n-1} \left(\log \frac{1-F(x)}{1-F(y)} \right)^{r-1} \frac{f(x)}{1-F(x)} dx \end{aligned}$$

does not depend on k . Moreover, we see that for negative Gumbel, negative Fréchet and Weibull distributions we have

$$E(Y_n^{(k)} | Y_{n+r}^{(k)} = y) = a_{rk} Y_{n+r}^{(k)} + b_{rk},$$

where a_{rk} and b_{rk} are a_r and b_r , respectively, for all $k \geq 1$ and (c.f. [2]) for:

(a) NG(β, γ)

$$a_r = 1, \quad b_r = \frac{(n+r-1)!}{\beta(n-1)!} \sum_{i=0}^{r-1} \frac{(-1)^{i+1}}{i!(r-i-1)!(n+i)^2},$$

(b) NFre(θ, γ, α), if $\theta > 1/n$,

$$a_r = \frac{\Gamma(n+r)\Gamma(n-\frac{1}{\theta})}{\Gamma(n)\Gamma(n+r-\frac{1}{\theta})}, \quad b_r = \alpha(a-1),$$

(c) W(θ, μ, γ)

$$a_r = \frac{\Gamma(n+r)\Gamma(n+\frac{1}{\theta})}{\Gamma(n)\Gamma(n+r+\frac{1}{\theta})}, \quad b_r = \mu(1-a).$$

3.2. k -th lower record values

It is known that the pdf of $Z_n^{(k)}$ is

$$f_{Z_n^{(k)}}(x) = \frac{k^n}{(n-1)!} (-\log F(x))^{n-1} (F(x))^{k-1} f(x),$$

and the joint pdf of $(Z_m^{(k)}, Z_n^{(k)})$ is

$$f_{Z_m^{(k)}, Z_n^{(k)}}(x, y) = \frac{k^n}{(m-1)!(n-m-1)!} (-\log F(x))^{m-1} \frac{f(x)}{F(x)} \\ \times \left(\log \frac{F(x)}{F(y)} \right)^{n-m-1} (F(y))^{k-1} f(y)$$

for $x > y$ and 0 for $x \leq y$ [7]. Therefore, the conditional density of $Z_{n+r}^{(k)}$ given $Z_n^{(k)} = x$ is

$$(3.4) \quad f_{Z_{n+r}^{(k)} | Z_n^{(k)}}(y | x) = \frac{k^r}{(r-1)!} \left(\log \frac{F(x)}{F(y)} \right)^{r-1} \left(\frac{F(y)}{F(x)} \right)^{k-1} \frac{f(y)}{F(x)},$$

for $y < x$, and the conditional density of $Z_n^{(k)}$ given $Z_{n+r}^{(k)}$ is

$$(3.5) \quad f_{Z_n^{(k)} | Z_{n+r}^{(k)}}(x | y) = \frac{(n+r-1)!}{(n-1)!(r-1)!} \frac{(-\log F(x))^{n-1}}{(-\log F(y))^{n+r-1}} \\ \times \left(\log \frac{F(x)}{F(y)} \right)^{r-1} \frac{f(x)}{F(x)},$$

for $x > y$.

Using (3.4) we obtain that for $x \in (l_F, r_F)$

$$E(Z_{n+r}^{(k)} | Z_n^{(k)} = x) = \int_{l_F}^x y \frac{k^r}{(r-1)!} \left(\log \frac{F(x)}{F(y)} \right)^{r-1} \left(\frac{F(y)}{F(x)} \right)^{k-1} \frac{f(y)}{F(x)} dy,$$

which for the negative Gumbel, negative Fréchet and Weibull distributions gives

$$E(Z_{n+r}^{(k)} | Z_n^{(k)}) = a_{rk} Z_n^{(k)} + b_{rk},$$

where for:

(a) $\text{NExp}(\lambda, \nu)$

$$a_{rk} = 1, \quad b_{rk} = -\frac{r}{k\lambda};$$

(b) $\text{NPar}(\theta, \nu, \delta)$, $\theta > 1/k$,

$$a_{rk} = \left(\frac{k\theta}{k\theta - 1} \right)^r, \quad b_{rk} = \delta \left\{ 1 - \left(\frac{k\theta}{k\theta - 1} \right)^r \right\};$$

(c) $\text{IPow}(\theta, \alpha, \beta)$

$$a_{rk} = \left(\frac{k\theta}{k\theta + 1} \right)^r, \quad b_{rk} = \alpha \left\{ \left(\frac{k\theta}{k\theta + 1} \right)^r - 1 \right\}.$$

Using (3.5) we see that for $y \in (l_F, r_F)$

$$E(Z_n^{(k)} | Z_{n+r}^{(k)} = y) = \frac{(n+r-1)!}{(n-1)!(r-1)!} \frac{1}{(-\log F(y))^{n+r-1}} \\ \times \int_y^{r_F} x (-\log F(x))^{n-1} \left(\log \frac{F(x)}{F(y)} \right)^{r-1} \frac{f(x)}{F(x)} dx$$

which for the Gumbel, Fréchet and negative Weibull distribution gives

$$E(Z_n^{(k)} | Z_{n+r}^{(k)} = y) = a_{rk} Z_{n+r}^{(k)} + b_{rk},$$

where a_{rk} and b_{rk} are a_r and b_r , respectively, for all $k \geq 1$ and for:

(a) $G(\beta, \gamma)$

$$a_r = 1, \quad b_r = \frac{(n-r-1)!}{\beta(n-1)!} \sum_{j=0}^{r-1} \frac{(-1)^j}{j!(r-1-j)!(n+j)^2},$$

(b) $\text{Fre}(\theta, \mu, \delta)$, $\theta > 1/n$,

$$a_r = \frac{\Gamma(n+r)\Gamma\left(n-\frac{1}{\theta}\right)}{\Gamma(n)\Gamma\left(n+r-\frac{1}{\theta}\right)}, \quad b_r = \delta(1-a),$$

(c) $\text{NW}(\theta, \mu, \gamma)$

$$a_r = \frac{\Gamma(n+r)\Gamma\left(n+\frac{1}{\theta}\right)}{\Gamma(n)\Gamma\left(n+r+\frac{1}{\theta}\right)}, \quad b_r = \mu(a-1).$$

4. Characterizations by linearity of regression of k -th upper and lower record values

4.1. k -th upper record values

THEOREM 1. Let $\{X_j, j \geq 1\}$ be a sequence of i.i.d. random variables with df F . If for fixed positive integers $n, r, k \geq 1$

$$(4.1) \quad E(Y_{n+r}^{(k)} | Y_n^{(k)}) = aY_n^{(k)} + b$$

for some $a, b \in \mathbb{R}$, then only the following three cases are possible:

- (a) $a = 1$ and $X_i \sim \text{Exp}(\lambda, \gamma)$ where $\lambda = \frac{r}{kb}$ and $\gamma \in \mathbb{R}$;
- (b) $a > 1$ and $X_i \sim \text{Par}(\theta, \mu, \delta)$ where

$$\theta = \frac{\sqrt[k]{a}}{k(\sqrt[k]{a}-1)}, \quad \delta = \frac{b}{a-1},$$

and $\mu \in \mathbb{R}$ is such that $\mu + \delta > 0$;

(c) $0 < a < 1$ and $X_i \sim \text{Pow}(\theta, \mu, \nu)$ where

$$\theta = \frac{\sqrt[3]{a}}{k(1 - \sqrt[3]{a})}, \quad \nu = \frac{b}{1 - a},$$

and $\mu \in \mathbb{R}$ is such that $\mu < \nu$.

Proof. We use Theorem 1 of [2] and the fact that for any $k \geq 1$ the sequence $\{Y_n^{(k)}, n \geq 1\}$ of k -th upper record values from df F has the same finite-dimensional distributions as the sequence $\{\tilde{R}_n, n \geq 1\}$ of record values from the df F

$$(4.2) \quad G_k(x) = 1 - (1 - F(x))^k$$

(c.f. [1]). Then (4.1) is equivalent to

$$E(\tilde{R}_{n+r} | \tilde{R}_n) = a\tilde{R}_n + b.$$

It follows from Theorem 1 of [2] that only three cases are possible:

(a) $a = 1$ and

$$G_k(x) = 1 - \exp(-\tilde{\lambda}(x - \gamma)), \quad x > 0,$$

where $\tilde{\lambda} = \frac{r}{b}$ and $\gamma \in \mathbb{R}$;

(b) $a > 1$ and

$$G_k(x) = 1 - \left(\frac{\mu + \delta}{x + \delta}\right)^{\tilde{\theta}}, \quad x > \mu,$$

where

$$\tilde{\theta} = \frac{\sqrt[3]{a}}{\sqrt[3]{a} - 1}, \quad \delta = \frac{b}{a - 1},$$

and $\mu \in \mathbb{R}$ is such that $\mu + \delta > 0$;

(c) $0 < a < 1$ and

$$G_k(x) = 1 - \left(\frac{\nu - x}{\nu - \mu}\right)^{\tilde{\theta}}, \quad \mu < x < \nu,$$

where

$$\tilde{\theta} = \frac{\sqrt[3]{a}}{1 - \sqrt[3]{a}}, \quad \nu = \frac{b}{1 - a},$$

and $\mu \in \mathbb{R}$ is such that $\mu < \nu$. Using (4.2) we complete the proof. ■

For the regression $E(Y_n^{(k)} | Y_{n+r}^{(k)})$ we have

THEOREM 2. *Let $\{X_j, j \geq 1\}$ be a sequence of i.i.d. random variables with df F . If for fixed positive integers $n, r, k \geq 1$*

$$(4.3) \quad E(Y_n^{(k)} | Y_{n+r}^{(k)}) = aY_{n+r}^{(k)} + b$$

for some $a, b \in \mathbb{R}$, then only the following three cases are possible:

- (a) $a = 1$ and $X_i \sim \text{NG}(\beta, \gamma)$;
- (b) $a > 1$ and $X_i \sim \text{NFre}(\theta, \gamma, \alpha)$;
- (c) $0 < a < 1$ and $X_i \sim \text{W}(\theta, \mu, \gamma)$.

Proof. Note that if (4.3) holds then by (3.3) for $y \in (l_F, r_F)$

$$(4.4) \quad E(R_n | R_{n+r} = y) = E(Y_n^{(k)} | Y_{n+r}^{(k)} = y) = ay + b.$$

Therefore (4.4) implies that

$$E(R_n | R_{n+r}) = aR_{n+r} + b.$$

Now the result follows from Theorem 3 of [2]. ■

The parameters of the distributions are determined from the respective formulae for a and b of Section 3.

4.2. k -th lower record values

THEOREM 3. Let $\{X_j, j \geq 1\}$ be a sequence of i.i.d. random variables with df F . If for fixed positive integers $n, r, k \geq 1$

$$(4.5) \quad E(Z_{n+r}^{(k)} | Z_n^{(k)}) = aZ_n^{(k)} + b$$

for some $a, b \in \mathbb{R}$, then only the following three cases are possible:

- (a) $a = 1$ and $X_i \sim \text{NExp}(\lambda, \nu)$ where $\lambda = -\frac{r}{kb}$ and $\nu \in \mathbb{R}$;
- (b) $a > 1$ and $X_i \sim \text{NPar}(\theta, \nu, \delta)$ where

$$\theta = \frac{\sqrt[k]{a}}{k(\sqrt[k]{a} - 1)}, \quad \delta = \frac{b}{1 - a},$$

and $\nu \in \mathbb{R}$ is such that $\nu < \delta$;

- (c) $0 < a < 1$ and $X_i \sim \text{IPow}(\theta, \alpha, \beta)$ where

$$\theta = \frac{\sqrt[k]{a}}{k(1 - \sqrt[k]{a})}, \quad \alpha = \frac{b}{a - 1},$$

and $\beta \in \mathbb{R}$ is such that $\beta > \alpha$.

Proof. Note that by (3.1) and (3.4)

$$f_{Z_{n+r}^{(k)} | Z_n^{(k)}}(y | x) = f_{\tilde{Y}_{n+r}^{(k)} | \tilde{Y}_n^{(k)}}(-y | -x),$$

where $\{\tilde{Y}_n^{(k)}, n \geq 1\}$ is the sequence of k -th upper record values from the df $G(x) = 1 - F(-x)$ with the pdf $g(x) = f(-x)$. Thus, for $x \in (l_F, r_F)$

$$E(Z_{n+r}^{(k)} | Z_n^{(k)} = x) = -E(\tilde{Y}_{n+r}^{(k)} | \tilde{Y}_n^{(k)} = -x),$$

which implies that if (4.5) holds true, then

$$E(\tilde{Y}_{n+r}^{(k)} | \tilde{Y}_n^{(k)} = x) = ax - b,$$

for $x \in (l_G, r_G)$, where $l_G = -r_F$, $r_G = -l_F$. Therefore, by Theorem 1 only the following three cases are possible:

(a) $a = 1$ and

$$G(x) = 1 - \exp(-\lambda(x - \gamma)), \quad x > \gamma,$$

where

$$\lambda = -\frac{r}{kb}, \quad \gamma \in \mathbb{R};$$

(b) $a > 1$ and

$$G(x) = 1 - \left(\frac{\mu + \delta}{x + \delta} \right)^\theta, \quad x > \mu,$$

where

$$\theta = \frac{\sqrt[3]{a}}{k(\sqrt[3]{a} - 1)}, \quad \delta = \frac{b}{1 - a},$$

and $\mu \in \mathbb{R}$ is such that $\mu + \delta > 0$;

(c) $0 < a < 1$ and

$$G(x) = 1 - \left(\frac{\nu - x}{\nu - \mu} \right)^\theta, \quad \mu < x < \nu.$$

$$\theta = \frac{\sqrt[3]{a}}{k(1 - \sqrt[3]{a})}, \quad \nu = \frac{b}{a - 1},$$

and $\mu \in \mathbb{R}$ is such that $\mu < \nu$.

Taking into account that $G(x) = 1 - F(-x)$ we get the statement of Theorem 3. ■

In the same way, we can prove the following result, which characterizes the Gumbel, Fréchet and negative Weibull distributions.

THEOREM 4. *Let $\{X_j, j \geq 1\}$ be a sequence of i.i.d. random variables with df F . If for fixed positive integers $n, r, k \geq 1$*

$$E(Z_n^{(k)} | Z_{n+r}^{(k)}) = aZ_{n+r}^{(k)} + b$$

for some $a, b \in \mathbb{R}$, then only the following three cases are possible:

- (a) $a = 1$ and $X_i \sim G(\beta, \gamma)$;
- (b) $a > 1$ and $X_i \sim \text{Fre}(\theta, \mu, \delta)$;
- (c) $0 < a < 1$ and $X_i \sim \text{NW}(\theta, \mu, \gamma)$.

The parameters of the distributions are determined from the respective formulae for a and b of Section 3.

References

- [1] B. C. Arnold, N. Balakrishnan, H. N. Nagaraja, *Records*, John Wiley & Sons, New York, 1998.
- [2] A. Dembińska, J. Wesołowski, *Linearity of regression for non-adjacent record values*, J. Statist. Plann. Inference, 90 (2000), 195–205.

- [3] W. Dziubdziela, B. Kopociński, *Limiting properties of the k -th record values*, *Zas. Mat.*, 15 2 (1976), 187–190.
- [4] Z. Grudzień, *Charakteryzacja rozkładów w terminach statystyk rekordowych oraz rozkłady i momenty statystyk porządkowych i rekordowych z prób o losowej liczebności*, (in Polish) Ph.D. Thesis, UMCS, Lublin, 1982.
- [5] H. N. Nagaraja, *On a characterization based on record values*, *Austral. J. Statist.*, 19 (1977), 70–73.
- [6] H. N. Nagaraja, *Some characterizations of continuous distributions based on regressions of order statistics and record values*, *Sankhyā, Ser. A*, 50 (1988), 70–73.
- [7] P. Pawlas, D. Szynal, *Relations for single and product moments of k -th record values from exponential and Gumbel distributions*, *J. Appl. Stat. Sci.*, 7 (1998), 53–62.

INSTITUTE OF MATHEMATICS
UNIVERSITY OF MARIE CURIE-SKŁODOWSKA
Pl. Marii Curie-Skłodowskiej 1
20-031 LUBLIN, POLAND
E- mail: mbieniek@golem.umcs.lublin.pl

Received February 21, 2003.

