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LIFTINGS OF PROJECTABLE PROJECTABLE VECTOR
FIELDS TO 1-FORMS ON HIGHER ORDER COTANGENT
BUNDLES OVER FIBERED FIBERED MANIFOLDS

Abstract. For an (m1,m2,n1,n2)-fibered fibered manifold Y and a projectable pro-
jectable vector field Z on Y we give a construction of a 1-form A(Z) on the (ry,...,rg)-
cotangent bundle 771:~"8*Y . It is reflected in the concept of a natural operator Ay :
T2 pproj| 72 Mm1,m2,n1,n2Y — T*T71»"8Y lifting projectable projectable vector

fieldson aY to 1-forms on T71'~"8*Y. We determine all natural operators of this kind and
prove that they form a free C*°(R"1174+76+78).module of dimension 2(ry +r4+7¢ +78).
We construct explicitely a basis of such module.

0. Introduction

Roughly speaking, we generalize the construction of a 1-form A(Z) on a
higher order cotangent bundle from a vector field Z or a projectable vector
field Z (in case of the category of fibered manifolds) to the category of
(mq, mg,n1, ng)-fibered fibered manifolds. It is reflected in the concept of a
natural operator over such objects, the classification result on which will be
also presented.

We start with the notation of categories over manifolds to be used and
the survey of already achieved results. We consider the category M f,, of m-
dimensional manifolds with embeddings, the category FM of fibered man-
ifolds and fibered maps, the category F M., , of fibered manifolds with m-
dimensional bases, n-dimensional fibers and fibered embeddings. Further,
we consider the category F2M of fibered fibered manifolds with fibered
fibered maps, [16] and the category F2Mm, mynyng Of (M1, M2, ny,na)-

1991 Mathematics Subject Classification: 58A05, 58 A20.

Key words and phrases: Bundle functor, natural operator, vector field, 1-form, (r, s, g)-
Jet, (le 200 :TB)'jet~

The second author was supported by the grant No. 201/02/0225 of the GA CR and
the research project MSM 261100007 of Czech Republic.



448 W. M. Mikulski, J. M. Tom4s

dimensional fibered fibered manifolds with fibered fibered embeddings and
finally the category VB of vector bundles with vector bundle morphisms.
We follow the basic notation of bundle functors and natural operators from
the fundamental monograph [4]. The concept of a fibered fibered manifold
was introduced in {16].

Fibered fibered manifolds are surjective fibered submersions between
fibered manifolds. They naturally appear in differential geometry if we con-
sider transverse natural bundles in the sense of Wolak, [18]. In [17], we have
classified all product preserving bundle functors on the category F2M. In
the present paper, we consider a bundle functor .’)’-'2./\/11,,1,m,',nl,n2 — VB
which does not preserve products, namely the cotangent bundle functor of
order (ry,...,78), [8].

We are going to generalize the following results concerning the category
M fr, together with an r-th order cotangent bundle T7™*M = J"(M, R)q and
the category FM,, , together with an (r, s, ¢)-th order cotangent bundle
Ty = Jno9(Y,Rb1)o, see [14] and [15].

In [14], the first author studied the problem how a vector field Z on an
m-dimensional manifold M induces a 1-form A(Z) on T™* M. Such a concept
is reflected in the concept of a natural operator A : Thqy,, — T*T"*. He
proved that for natural numbers m > 2 and all r, all natural operators A :
Tpmy,, — T*T™ form a free 2r-dimensional module over C*°(R"). Further,
the basis of such a module was constructed.

In {15], the similar problem was studied, i.e. how a projectable pro-
jectable vector field Z on an (m, n)-dimensional fibered manifold Y induces
a 1-form A(Z) on the (r,s, g)-cotangent bundle T™*9*Y. The problem is
reflected in the concept of a natural operator A : 1,057 Mm,, . — T T7**.
It is proved that for all natural numbers m,n,r, s, q satisfying m > 2
ans s > r < q all natural operators A : Tpro517Mm,,,, — T7T7*?* form
a free 2(q + r)-dimensional module over C®°(R%*") and its basis is con-
structed.

In the present paper, we are going to extend the above mentioned results
to fibered fibered manifolds, i.e. we study the problem how an F2M-project-
able (i.e. projectable projectable) vector field Z on Y € Ob(F2 My, imynynz)
induces a 1-form A(Z) on on the (ry,...,7rs)-th order cotangent bundle
Trivre*Y = Jrie-rs(Y, RM111)o. This problem is reflected in the concept
of a natural operator A : Tr2 M—projl F2 Mmy mpimymg T*Tri-Te* . We
prove that for all natural numbers my, mq,n1,n2,71,79,...,7s satisfying
mi 22, T8 > T4 < T5 27‘3, T8 > T < T7 2Ty andn <r; forz'=2,...,8
all natural operators A : T2 pm—proj| F2Mom, mgingimg — 1L 2 "8* form a
free C°(R™*m4+76+78).module of dimension 2(r; + 74 + 16 + rg) and we
explicitely construct the basis of this module.
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As a matter of fact, natural operators lifting functions, vector fields and
1-forms to some bundle functors played an important role in all papers
devoted to prolongations of geometric structures, e.g. [19]. That is why such
operators are studied, [1]-[17], [19]-[21], etc. Operators like this concerning
higher-order cotangent bundle functors were studied in [1]-[4], [6]-[11], [14],
[15], [20], [21] e.t.c.

From now on the usual coordinates on R™1:™m2:m1m2 = R™1 x R™2 X
R™ x R™ are denoted by z!,...,z™,¢y},...,y™2, wl, ..., w™, v}, ... 0",
All manifolds and maps are assumed to be smooth, i.e. of class C°.

1. Fibered fibered manifold

The concept of a fibered fibered manifold was introduced in [16]. A
fibered fibered manifold is a fibered surjective submersion 7 : Y — X be-
tween fibered manifolds, i.e. a surjective submersion which sends fibers into
fibers such that the restricted and corestricted maps are submersions. We
will write Y instead 7 if 7 is clear. If 7’ : Y/ — X’ is another fibered fibered
manifold, a morphism m — 7’ is a fibered map f : Y — Y’ such that there is
a fibered map fo : X — X’ satisfying n’ o f = foon. Thus all fibered fibered
manifolds form a category which we will denote by F2M. The category is
over manifolds, local and admissible in the sense of [4].

A fibered fibered manifold 7 : ¥ — X is said to be of dimension
(m1, ma,ny,ng) if the fibered manifold Y is of dimension (m; +ny, mo +ng2)
and the fibered manifold X of dimension (my, my). All fibered fibered mani-
folds of dimension (m1,m2,n1,n3) and their local FZMpn, mynyn, C F2M.
Every F2M ., my.n1 np-0bject is locally isomorphic to R™ x R™2 x R™ x
R™2 — R™t x R™2 where the fibered manifolds forming the total space and
the basis in this object are considered over R™ x R™ and R™' respectively.
Let us denote such an object by R™1:m2:m1,n2,

In the end of the section, we define the concept of a projectable pro-
jectable vector field as follows. Let m : Y — X be a fibered fibered manifold
(an F2Mn, my.ny,na-0bject). A projectable vector field Z on Y is said to be
projectable projectable if there is a m-related projectable vector field Zy on
X, [16]. Further, the flow of a projectable projectable vector field is formed
by local F2M-isomorphisms.

2. (ry,...,78)-cotangent bundles of fibered fibered manifolds

Let r4,...,78 be natural numbers such that rg > rq4 < rg5 > 73, 18 >
r¢ <17 2 7ro and ry < 7; for i = 2,...,8. The concept of the r-jet and of
the (r, s, g)-jet can be generalized as follows, see e.g. [8]. Let 7 : ¥ — X
be a fibered fibered manifold being a surjective fibered submersion between
fibered manifolds p¥ : Y — Y and pX : X — X. Further, let 7’/ : Y’/ — X’



450 W. M. Mikulski, J. M. Tom3&s

be another fibered fibered manifold being a surjective fibered submersion
between fibered manifolds p¥ : Y’ - Y and pX : X' > X'. Lety € Y
be a point and y = p¥(y) € Y, z = 7r(y) € X and z = pX(z) € X be
its underlying points. Further, let f,g : Y — Y’ be two fibered ﬁbered
maps with underlying maps f,g: Y — Y’ fo,90 : X —» X' and f
X — X. We say that f, g determine the same (ry,...,75)-jet at y €
Iy e f = jpteoTeg if the equalities ngf = jy'9, 32 (fYz) = 35 (le)
3 (F1Y) = T (alY), 35 fo = iEtg0, 7 (folXe) = I2(0lXa), 50(F) =
“(g) Jy’( flYz) =y’ (gl¥ z) and jz*( £, f ) = Jz*(g,) hold. The space of all
(rl, . Tg)-JetS of fibered fibered maps between fibered fibered manifolds is
denoted J(r1»78)(Y,Y"). The composition of fibered fibered maps induces
the composition of (ry,...,rs)-jets.

Let rq,...,78 be as above. Let m;, ms,n;,no be natural numbers. The
r-cotangent bundle functor T7* = J"(-,R)o : Mfm — VB ([4]) and the
(r, s,q)-cotangent bundle functor T7%%* = Jrs9)(. RM)y : FMpyn, —
VB ([5], [13], [15]) can be generalized as follows. The space T "8*Y =
Jriome) (Y, RLLLL) 0 € R® has an induced structure of a vector bundle
over Y. Every F2M ., myninp-map f : Y — Y’ induces a vector bundle
map T7ir"8* f . TT1T8*¥Y — TT1-978*Y/ covering f defined by

T’rl,...,‘ra*f( (7'1’ 1r8)fy) = Jf(;’ ,7‘3)(7 [e] f 1)

for any fibered fibered map v : Y — RV1:11 gatisfying v(y) = 0. The cor-
respondence T7178* : FZM,\ o o1 n, — VB determines a vector bundle
functor in the sense of [4]. In what follows, a bundle functor of this kind is
said to be the (ry,...,7s)-cotangent bundle.

3. Examples of natural operators T2 pm—proj| F2Mom; . mginymg —
T*Trl,...,rs*

Let my,m2,n1,n9,71,...,7s be natural numbers as in Section 1. We are
going to study how a F2M-projectable vector field on an (my, ma, n, ng)-
dimensional fibered fibered manifold Y induces canonically a 1-form A(Z)
on Tm»--"8*Y  This problem is reflected in the concept of a natural operator
TF2 Mproj| FA Mo, mgng.mg = L T70278* in the sense of [4].

EXAMPLE 1. Let Z be an F2M-projectable vector field on an (m;, m2, n1, ng)
(kD1
-dimensional manifold. For every k; = 1,...,7s we have a map Z

T*Tm-"8*Y — R defined by

k1)1
Z (jérl,...,rs)'y) = Z* 4 (y) where 7= (71,72, m4):Y — RbLL
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(k1) (k1)
yeY,y(y) =0and Z =Zo...0Z (kl-times).The map Z ' iswell-defined

since j{r ™y = {8 follows jEty = jkiyy for all by = 1,...,7s.
(k1)
Then for every k; = 1,...,7g we have a 1-form le ' on T7"8*Y The

(k)1
correspondence A Tr2 M—proj| F2Mmy mpinyimg — L L+ 78" defined by
(k11
Zvw dZ determines a natural operator.

EXAMPLE 2. Let Z be as in Example 1. For every ks = 1,...,r4 we have a
(k2)2
map Z :T*TT»*Y — R defined by
(ka)z (ry,...,78) k 1,1,1,1
Z (o) = Z%y(y) where y=(y1,72,73,74): Y >R
. (k2)2
and y € Y, 7(y) = 0. Then for every ko = 1,...,74 we have a 1-form d Z
(k2)
on T7»7*Y. The correspondence A Tr2 M—projiF2 Mo, imyimying

(k2)2
T*TT"8* defined by Z — d Z determines a natural operator.

EXAMPLE 3. Let Z be as in Example 1. For every k3 = 1,...,7¢ we have a
(k3)
map Z  :T*T™--m*Y — R defined by

(ka)a k 1
Z (j§rmy) = Z*y3(y) where v =(m,72,713,74) Y — RVLH
(k3)3
and y € Y, y(y) = 0. Then for every k3 = 1,...,r¢ we have a 1-form d Z
(ka)a
on Tm--"*Y. The correspondence A : Tr2pm—prof|F2Mm; mpinying

(k3)a
T*TT178* defined by Z — dZ determines a natural operator.
EXAMPLE 4. Let Z be as in Example 1. For every k4 = 1,...,7; we have a
(k9
map Z  : T*T™--"s*Y — R defined by

(ka)

Z () = Z*y(y) where = (1,72,78,7) : ¥ — RMULL
(ka)a
and y € Y, y(y) = 0. Then for every k4 = 1,...,r; we have a 1-form d Z
(kq)
on Tm»7™*Y . The correspondence A L T2 M—prof| F2 My mpinying —

(ka)a
T*TT1-78* defined by Z — dZ determines a natural operator.
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EXAMPLE 5. Let Z be as in Example 1. For every k; = 1,...,7g we have a

(foz)
1-form Z ' :TT™»7m8*Y — R on T*T"1»»"8*Y defined by

(k1)1
Z (v) = (d(Z" ) (y), Ty (v))

forv e (TT™"*),Y,yeY,v= (71,72,73,7) : Y = RULLL () =0

and pg(v) — jérl,...,rs),_y where P; < T T8*Y _, TT1,--978*Y ig the tangent
bundle projection. Further, 7 : T™-"8*Y — Y is the base projection. The

{k1}1
correspondence A : Tz pq_proj|72 Moy imginging T*Tr-78* defined by
(k1)1 .
Z — Z determines a natural operator.

EXAMPLE 6. Let Z be as in Example 1. For every ky = 1,...,74 we have a
(k2)
1-form Z : :TTTm8*Y — R on T*TT-"8*Y defined by

(k2)2 _
Z (v) = (d(Z"y2)(y), TRy (v))

for v € (TT™ "), Y,y €Y, v = (71,72,73,74) : Y = RLLLL 4(y) = 0
and p%l‘(v) — jén,...,rs),y where P; « TTTi7T8*%Y _y TT1,-978%Y is the tangent

bundle projection. Further, 7 : T™~"8*Y — Y is the base projection. The
{k2)2
correspondence A T2 M—proj| F2Mum, mpinying — L 1 1" defined by
(k)2
Z — Z determines a natural operator.

EXAMPLE 7. Let Z be as in Example 1. For every k3 = 1,...,76 we have a

(k)
lLform Z :TT™*Y — R on T*T™"s*Y defined by

(ka3
Z (v) = (d(Z* 1 y3)(y), Ty (v))

forv e (TTTI'M'TB*)‘!/Y'J ye Y, = (71a72)73)74) 1Y — Rl'Ll'la 7(y) =0

and P)I;('U) — j!(ln,...,rs),y where p; - TTT1-T8%Y — TT1:-78*Y is the tangent

bundle projection. Further, 7 : T7~"8*Y — Y is the base projection. The
(ks)3

correspondence A : Tr2M—prof|F2Mum, mpnyimg — L L 278" defined by

(k3)a
Z — Z determines a natural operator.

EXAMPLE 8. Let Z be as in Example 1. For every k4 = 1,...,7, we have a
(kd
l-form Z ‘ :TTrm8*Y — R on T*T""8*Y defined by

(kda ~
Z (v) = (d(Z% y)(y), Ty (v))
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forv e (TTTI,“"TS*)yYa y€ Ya 7= ('711'72,’73’74) 1Y — ]Rl’l’l’la 7(y) =0
and pg; (’U) — jz(lrl,...,rs),y where p$ - T T8*Y — TT1--578%Y ig the tangent
bundle projection. Further, 7 : T71»~"8*Y — Y is the base projection. The

(kaa
correspondence A : TF2p—proj|F2Mum) myinymg > 1 1 27" defined by

(kda
Z w— Z determines a natural operator.

4. The classification theorem

In this section, we are going to formulate the main result giving the
classification of all natural operators Ay : T'rz pf—proj| 72 MMI_MMMY —
T*Tri»-e*Y transforming F2M-projectable vector fields on a fibered fibered
manifold Y € Ob(F2 M, my.n1,n,) to 1-forms on the (rq,...,7s)-cotangent
bundle of Y.

The set of all natural operators T’r2 p—proj| F2 Mo, mpinying — 1 L 078
is a module over C®°(Rm+rstre+rs) Indeed, for any f € C®(R™ T74+7e+7s)
and a natural operator A : TPM—PTOjlf’Mml.mz,nl.nz — T*TT17T8% we
have a natural operator fA : TpM_pmﬂpMm'mwmz — T*TT1r978* de-
fined as follows

(kD1 (k2)2 (k3)a (kaa
fA2)=f(Z ,Z ,Z2 ,Z )A(Z)

where Z is an F2M projectable vector field and 1 < k; < 7g, 1 < kg < 1y,
1Sk3$7‘sand].§k4$’r‘1.
The main classification theorem of this paper reads

THEOREM 1. Let my,mg,ny,n2,71,...,7s be natural numbers satisfying
my 2 2,13 274 <715 273,78 276 <17 272 andry < 1y for
i=2,...,8. Then the C®(R™*74+7s+78)_module of all natural operators
Tr2 M-projflF2 Moy mpimymg — L L7078 is free and 2(ry + 14 + 16 + 73)-
dimensional. Moreover, for ky =1,...rs, ko =1,...,7r4, ks =1,...,76 and
(k1)1 (k22 (ka)a (koa (k)1 (k2 (ks
ks = 1,...,7r1, the natural operators A , , , 4, , A

(k
and A ‘ form the basis of the module.

The proof of Theorem 1 will occupy the rest of the paper. It is a com-
plicated adaptation of the proofs of Theorem 1 in [14] and [15].

5. Some preparations to the proof of Theorem 1
Let us consider a natural operator A : Tr2p—proj|F2Mum, myinying —

(k1)1 (k)2 (ka)s (koa (ki1 (kdz (ka)s (kda
T*TTm78* Theoperators A , A , A, A, A, A, A and A
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for ky = 1,...r8, ko = 1,...,14, k3 = 1,...,7¢ and kg = 1,...,7 are
C>°(Rm1*74+re+7s). linearly independent. Thus we only prove that A is a

(k1)1 (k2)2 (k3)s (kd)a (kn)r (k2 (ka3 (ka)s
linear combination of A , A , A, A, A, A, A and A for

k1, k2, k3, k4 as above with C®(R™1+74+76+78)_coefficients.
In the following lemma we show that A is uniquely determined by the
restriction A(z2r)|(TT71Te*R™1m2mm2),

LEMMA 1. If A(z2r)|(TTT-me*Rmym2min2)g = 0 then A = 0.

Proof. The proof is standard. We use the naturality of A and the fact
that any F2M-projectable vector field Z having an underlying projectable
vector field with an underlyng non-vanishing vector field is locally % in
some fibered fibered manifold coordinates. m

It follows from Lemma 1 that our investigations of natural operators in
question can be reduced to their restriction to the canonical vector field 5%1-,
i.e. we are going to study all A(%)KTT""""B*R’"""‘2'"1’"2)0.

LEMMA 2. There are functions f1),y..-,fre)1s f(1)2s- s f(ra)ar F(1)ar--+»
f("e)a’ f(l)47 . "f(r1)4 € C°°(]er+1‘4+re+"8) such that
(k2)2 6 (ka) ™

"8 1)1 4
(A- Z ftk), A Z f(kz)z Z f(ka)a Z ftka)e A )(’U)

k1=1 kz 1 k3 1 k4 1

or any v € (VTT1rT8¥)gRM1m2:m02 - the yertical subbundle with respect
Y ’ P
to the projection 7 : TT1r - T8*RM1:M2:R1M2 _; RMLM2,71,02

Proof. We have the identification (VT "8*)gRMm1m2nunz  ~
Ty T Rmmann  Tb- T Rmamaming by & (u+ tw) e (u, w) for
u,w € Tyt T8 RM1M2m1n2

For k1 =1,...,7s we define fii,), : Rtt74t7et7s R by

f(k1)1 (a'7 b, c, e) =

— 9 (71,-..,78) 1 1\k: 1\:
A(81)<30‘ s(zﬁ%(z)l,zkm( o,
k:

F*1=1 2=
i _l_c_,, (:1:1)7;3 rzl 1 (zl)h (1‘1, -78) i(zl)kl 0.0.0
K 753' ks 1~ k4' k4 Jo k1| 1Vt )
k3=1 ka=1

where a = (aj,...,8r,) € R™, b= (b,...,b,,) € R™, c= (c1,...,¢r) €
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R, e = (e1,...,er,) € R™. Forky=1,...,74 we define f,), : R71+7etretrs
— R by

f(kz)z (a’ b) ¢, e) =
0 ( ) — 1 1k S 1\k:
(71,478 1
=4(2) (X fom @ Y g e
k=1 ko=
re Tt
1 1)k 1 1\k, (T1,...,78) IRy
2 %@ )3Zk,e,;< ) ) de (0, (21, 0,0
ks=1 kq=1

where a, b, ¢, e are as above.
For k3 =1,...,7¢ we define fik,), : Rritmetmetrs R by

f(ka)s(av ba c, e) =

=A i (r1,...,78) o~ 1 1yk1 S 1yk2

- (2 (i (Ek' o, @, %_:k,h( ",
o~ 1 1\k: - 1\k (T15:.578) 1o 1k
Z;’;ka( )*, Zk' k‘( )4) (O,O,k—a!(x)”,o)),
k3— 4—

where a, b, c, e are as above.
For ks =1,...,7, we define fix,), : R*+r¢+ms+ms R by

f(k4)4(a’ b’ ¢ e) =

9 ( ) S 1yk; = 1\k:
_ (71,...,78
= () (5 (Z;,azx 3 e

1=1 2=
S %o~ L AR ) 1\k
1 (T1,..,78

X @ Y e @) (00,0, k),

ka=1 ka=1
where a, b, ¢, e are as above.

~ (kx)l
In order to simplify the notation, put A = A—3°_ f,), A —
( 3)3 (k4)4

zk,_1 f(kz)z Ek3_1 [ (ks)s 2k4_1 f (k4)4
Consider F2M-morphisms v, 5 : Rmvm2nrun2 o, RLLLL gatisfying

7(0) = Oa 7)(0) = 01 7¥= (71,72,7&74) and n= (7711772)773, 774)-
Define a = (ai,...,ar,) € R™, b= (b1,...,br,) €ER™, c=(c1,...,Crq)
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eR™,e=(ey,...,er) € R™ by

J'((Jrl""'ra)(’rl(zl,o,...,0),0,0,0)=J'((>T1""'r8)( 3 El— K (21)%,0,0 0)

k1=1

jé”""”")(o,vz(zl,o,...,0),0,0)—Jé""“'"’(o 3 ki (a1, oo)
ka2=1

3§ m(0,0,7(a,0, . .., 0),0) = j{ ’*’)(o Z; ki ka(xl)ks,o)

35(0,0,0,74(2",0, .., 0)) = 5§ '")(o 0,0, Z —ek4(z1)’°4)

Further, define @ = (a,,...,a,) € R", b = (31,...,5“) € R, ¢ =
(81,...,57-6) eR™, e= (gl,...,grl) € R" by

e (i (21,0, ..0),0,0,0) = 5T (

G (0, pa (21,0, .. ., 0),0,0) = 5 (0’ )
3§rm)(0,0,n8(21,0, ..., 0),0) =j(()'r1,...,'rg)(0, 0 TZG L.Eka(wl)'”,o)
jGrm(0,0,0, 74(2%, 0, .. ., 0)) = ) ( )

Taking into account the naturality of A with respect to PMml,mz,nl,n,-
morphisms given by (z!,tz?,...,tz™, ty}, ..., ty™2, tuy,. .., tu™ tvy,. ..,
ty™2) : Rmumamnnz o R™MM2,01072 for ¢ £ and putting ¢t — 0, we obtain

~

A(a 1)(](7‘1. ,rs),y’j(()rl,--.,rs)n) —

(90 (714000 (T1yeensT
A(@) @Gere 8)('y(:zr:l,O,...0)),_7((, T8) (n(21,0, ... 0))).

Then we have

-~ a (r yeoeyT ) .(1‘ yeooy T )
A('a—zj)(ﬂol Yy,d0 ) =
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T8 Ta
= Z f(k1)1 (aa b1 c, e)ak1+ Z f(kg)z (aa b7 c, e)bkz

k1=1 ka=1

T8 T1
+ Z f(k3)3 (aa b, c, e)Eks + Z f(k4)4(a'a b, c, e)gk4

ka=1 kq=1

T8 T4
= " fkes (@,b,¢,€)ak, — D fika)a(a:b, ¢, €)bi,

ki=1 ka=1

T8 T1
- E f(ka)a (aa b,c, e)Eka - Z f(k4)4 (a') b, c, e)€k4 =0.

k3=1 ks=1

The proof of Lemma 2 is complete. m

6. Proof of Theorem 1
Consider the functions fx,),, f(ks)er f(ks)a> f(ke)s from Lemma 2 and
(k1)1 k2 (ka)a
replace Aby A~ 30"\ fiken A — Lkami ftka)e A — Lkami fiks)s 4

(ka)a
> k=1 f(ke)e A 8s in Lemma 2. Then any natural operator in question can

be assumed to satisfy
A (_a_%) |(VT"‘l,...,‘rg*)Ole,mz,‘nl,'nz — 0

It remains to show the existence of functions g(x,),, 9(ks)2» I(ks)sr I(ks)a
(k1)1 (kz)z
Coo(Rr1+‘r4+ra+"‘8) so that A = Zkl_l 9(k1)y A + Zkz—l Glks)a A +
(ka}s (ka)a
Zkg—l G(ks)s A + zk4_lg (keda A . For ky = 1,...,rg define (k1)1
Rritratretrs _, R by

g(k;)l(av b, ¢c, e) =
a 100, TB¥ 6 -("'1,---,7'8) - 1 1 kl 1 1 ”:1—1 2
4% (7 (7 (3 o o + e
1=1
T4 -l-bv (m1)~2 27'6: —l-C“" (Il)ka i ( 1)k4
2 iR L e TR
2=1 ka=1 k=

where a = (aj,...,0r,) € R™, b = (by,...,b,,) € R™, c = (c1,...,Cr) €
R"¢, and e = (ey,...,er,) € R™. Here T"8*Z denotes the flow lifting of
the F2M-projectable vector field Z on Y to TTi7s*,
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Analogously, for ky = 1,...,74 define g(,), : R Tm¢+ms+7s R by

9 T1,..,T8% 0 (71,-+y78) L 1 E
sl = 4 (577) (77 g (7 32 gom

~

1=1
S 1 : % 2 %.
— lyka phykr1, 1\ ks
..Zkz! @) (ka— 1)( : Zk'ks =
ko= ka=1

> gie))
Further, for k3 = 1,...,7¢ define gk, : Rritretretrs R by

9 T rg* 9 AT1y7 = 1 T
st (o) = A ) (T (367 (1 grom @

~

1=

T4 1 ~ T8 1 1 -
— b~ (! kz’ —_— 1 k3 . k3_1$2’
Z ko! (@) Z ks! % (=) (k3-—1)!( )
k2=1 k3=

> g )))
where a, b, c, e are as above.
Finally for ks = 1,...,r; define g(,), : R *7etre+7s R by

9 r rg* 4 {r1,...,7 = 1 T
stau(one) = (g ) (77 g (i g P

1=1

S L @, 3 e R,

£ k k 1 s
ko= k3—1
T
1 1yke 1 1ykg—1 2)))
=€ | + =—Iz 4 x .
kq! %) (k4—1)!( )

’l\c":l
It follows from Lemma 1 and the assumption
A(ggr)l(VT”’""T“)Ole’mz’m'nz =0

that it suffices to show that
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15] . rioTa (k)1 T4 (kz)z
A( )(T"’ .78 (3)(3( 1y )’)’)) — ( Z 9k A + Z g(k2)2
k1=1 ka=1
T (ka)s 1 k4)4 o . -
+ng3 A + ng4)4 >(a 1>(TT1' 8% (8) (o A(T1,..,78) 7))

ka=1 ky=1

for any F2M-morphism « : Rmtm2mun2 — RLLLL ~(0) = 0 and any con-
stant vector field 8 on R™1'™2:"1:"2 ap(d linearly independent with —r Tak-

~ (k1)1
ing into account the naturality of A and A = 3 °_ g4y, A +

(k22 (ka)a (kaa
D1 Ok A F i 1 Gka)s A F 2 hio1 9ika)e A With respect to 11near
F2 My, my ny ,ne-morphisms R™1m2:71,m2 —y RM1,M2:m1,12 preserving ——1- we
can assume 0 = =27
Consider an fa&M morphism v = (71, 72,73, 74) : R™™2renz , RLLLI
satisfying v(0) = 0. Define a = (ay,...,a) € R™, b= (b1,...,b,) € R™,
c=(c1,...,Crg) ER™ €= (el,...,em) € R™ by

ok ok
ag, = W'}'l(o), bk2 0( )kz 72( )
oks ke

Chy = a(z_l)kﬂ*"(o)’ €k, = 3(93—1)'“74(0)’

for kl = 1,...,7‘8, k2 = 1”"’T4Lk3 =~1,---,1'6 and k4 = 1,...,T1. Further,
define @ = (Gy,...,8r,) € R™, b= (by,...,by) € R™, T = (G1,...,5p) €
R, €= (&1,...,6,) € R™ by

9 o1 -9 gt
akl = ax2 6—(:—1:?),61—171 (0), bk2 = -B?W’m(o)’
5 ksl 9 okl

%o~ o g 2O g O

Using the naturality of A with respect to the F2M,, m; n, n,-morphisms
(z},t2?, 723, .. rz™, Tyl, . Ty™ Tl L Tw™, Tl L To™2)
R™1™2.nn2  R™MM2:7172 for ¢ 1 % 0 we obtain the following homogenity

condition

4 71,0, T8k 0 (71,...,78)
tA(a 1)(T B (W)(Jo B ’7))
3 , * L FREETLE
= 455 ) (T (g ) 6t

7':1:3, .. .,T:rm‘,Tyl, e ,'ry"‘z,'rwl, .. .,Tw"I,T'vl, .. .,Tv"’))).
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This kind of homogenity yields

0 r Tg* 0 71,7
A ) (77 (5 )™

T8 T4
= Z ki (a’) b’ ¢, C)Ekl + Z G(k2)2 (a') b7 &) e)bkz
ky=1 ka=1

6 1
+ Z 9(ks)s (@) by €, €)Chy + Z Gike)o (@, by c,€)dp,
kz=1 kg=1

which follows from the homogenous function theorem. On the other hand

A% (i)

T8

T4
= Z Gk )y (aa b) ¢, e)ah + Z g(kz)z(a7 b) ¢, e)bkz

k1=1 ka=1

Te 1y
+ Z Iika)s (@, b, ¢, €)Ck, + Z Iika)a(ay b, ¢, €)di,
k3=1 k4=1

which is easy to observe. It completes the proof of Theorem 1. =

7. A corollary

In this section, we deduce a corollary of Theorem 1 giving the classifi-
cation of canonical 1-forms A on T*T"t~"#* for fibered fibered manifolds
Y of dimension m,ms,n1,ne. They correspond to constant (i.e. indepen-
dent on vector fields) natural operators Ay : Tr2 M —proj|F2Mum, myinying ¥ —
T*TT--"8*Y . Such a correspondence can be equivalently formulated as fol-
lows.

Any canonical 1-form A on T71»~"8*Y is of the form Ay (0) for a natural
operator Ay : Tr2M—proj|F2Mum, mymying Y — L 1 0 2™*Y, where Y are
F2 M, my.ny ma- Objects. Thus we have the following corollary

COROLLARY 1 ([8]). Let my, mg,nq,n9 and rq,...,rg be natural numbers
such that my > 2, 78 2 14 <15 2713, 13 216 <17 210 andr; < 1;
fori =2,...,8. Then the vector space over R of all canonical 1-forms A

on T*T™1+78*Y for Y € Ob(F:Mm, myning) is 4-dimensional and the

(k1)1 (k22 (ka)s (ka)a
l-forms A , A , A and A form its basis.

Proof. The proof is clear.
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REMARK. We have four canonical maps =n; : T71»"8*Y — T*Y defined

-(7‘1,...,’!‘3)

by formulas 7|'1',(.7y 7) = dy7ia i=1,...,4,v= (71,727737'74) (Y —
RLLLL y(y) =0, y € Y € Obj(F2 M, my,n1,ny)- Then it is easy to verify

(kdds
that A = m}), the pull-back of the well-known canonical (Liouville) 1-form
on T*Y.
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