

Anna Loranty

ON THE SEQUENTIAL DENSITY POINTS

Abstract. This paper contains some results about density with respect to a sequence and an extension of the Lebesgue measure. There are some properties of topologies associated with such density point.

Throughout the paper \mathbb{N} will denote the set of all positive integers, \mathbb{Q} —the set of all rational numbers, l —the standard Lebesgue measure on the real line \mathbb{R} and \mathcal{L} —the σ -algebra of Lebesgue measurable subsets of \mathbb{R} . By \mathcal{T}_d we shall denote the density topology on \mathbb{R} and by S the family of all unbounded and nondecreasing sequences of positive numbers. We shall denote a sequence $\{s_n\}_{n \in \mathbb{N}} \in S$ by $\langle s \rangle$.

Let μ be any complete extension of the Lebesgue measure on \mathbb{R} . Let \mathcal{S}_μ be the σ -algebra of μ -measurable sets and \mathcal{I}_μ the σ -ideal of μ -null sets. We shall denote by μ^* the outer measure induced by μ and by μ_* the inner measure induced by μ . We shall also write $A \sim B$ if and only if $\mu(A \Delta B) = 0$ for sets $A, B \subset \mathbb{R}$ where $A \Delta B = (A \setminus B) \cup (B \setminus A)$.

DEFINITION 1. (see [FFH]). *We shall say that $x \in \mathbb{R}$ is a density point of a set $A \in \mathcal{L}$ with respect to a sequence $\{s_n\}_{n \in \mathbb{N}} \in S$ (in abr. $\langle s \rangle$ -density point) if*

$$\lim_{n \rightarrow \infty} \frac{l(A \cap [x - \frac{1}{s_n}, x + \frac{1}{s_n}])}{\frac{2}{s_n}} = 1.$$

Let $\langle s \rangle \in S$ and $A \in \mathcal{L}$. Putting

$$\Phi^{\langle s \rangle}(A) = \{x \in \mathbb{R} : x \text{ is a } \langle s \rangle\text{-density point of } A\},$$

and

$$\mathcal{T}^{\langle s \rangle} = \{A \in \mathcal{L} : A \subset \Phi^{\langle s \rangle}(A)\}$$

we have the following result

1991 *Mathematics Subject Classification*: 54A10, 28A12.

Key words and phrases: extension of the Lebesgue measure, density point, density topology.

THEOREM 1. (see [FFH]). *Let $\langle s \rangle \in S$. The family $T^{\langle s \rangle}$ is a topology on the real line.*

Let us introduce the following notation:

$$S_0 = \{\langle s \rangle \in S : \liminf_{n \rightarrow \infty} \frac{s_n}{s_{n+1}} = 0\} \text{ and}$$

$$S_1 = \{\langle s \rangle \in S : \liminf_{n \rightarrow \infty} \frac{s_n}{s_{n+1}} > 0\}.$$

THEOREM 2. (cf. [FFH] and [W]). *Let $\langle s \rangle \in S$. Then $T^{\langle s \rangle} = T_d$ if and only if $\langle s \rangle \in S_1$.*

Let μ be an arbitrary complete extension of the Lebesgue measure on \mathbb{R} .

DEFINITION 2. *We say that $x \in \mathbb{R}$ is a density point of a set $A \in \mathcal{S}_\mu$ with respect to the measure μ if*

$$\lim_{h \rightarrow 0^+} \frac{\mu(A \cap [x-h, x+h])}{2h} = 1.$$

Let

$\Phi_\mu(A) = \{x \in \mathbb{R} : x \text{ is a density point of } A \text{ with respect to the measure } \mu\}$
for $A \in \mathcal{S}_\mu$ and

$$\mathcal{T}_\mu = \{A \in \mathcal{S}_\mu : A \subset \Phi_\mu(A)\}.$$

In paper [H] it is proved that family \mathcal{T}_μ forms a topology on \mathbb{R} such that it has the form

$$\mathcal{T}_\mu = T_d \ominus \mathcal{I}_\mu$$

(where $T_d \ominus \mathcal{I}_\mu = \{A \setminus B : A \in T_d, B \in \mathcal{I}_\mu\}$).

Similarly as above we can define $\langle s \rangle$ -density point of a set $A \in \mathcal{S}_\mu$ with respect to measure μ .

DEFINITION 3. *Let $\langle s \rangle \in S$. We say that $x \in \mathbb{R}$ is a $\langle s \rangle$ -density point of a set $A \in \mathcal{S}_\mu$ with respect to the measure μ if*

$$\lim_{n \rightarrow \infty} \frac{\mu(A \cap [x - \frac{1}{s_n}, x + \frac{1}{s_n}])}{\frac{2}{s_n}} = 1.$$

Let $\langle s \rangle \in S$ and $A \in \mathcal{S}_\mu$. Putting

$$\Phi_\mu^{\langle s \rangle}(A) =$$

$= \{x \in \mathbb{R} : x \text{ is a } \langle s \rangle \text{-density point of } A \text{ with respect to the measure } \mu\}$
we have the following result:

PROPERTY 1. *For each $A, B \in \mathcal{S}_\mu$ and $\langle s \rangle \in S$*

1. $\Phi_\mu^{\langle s \rangle}(\emptyset) = \emptyset, \Phi_\mu^{\langle s \rangle}(\mathbb{R}) = \mathbb{R}$,
2. if $A \subset B$ then $\Phi_\mu^{\langle s \rangle}(A) \subset \Phi_\mu^{\langle s \rangle}(B)$,
3. $\Phi_\mu^{\langle s \rangle}(A \cap B) = \Phi_\mu^{\langle s \rangle}(A) \cap \Phi_\mu^{\langle s \rangle}(B)$,
4. if $A \sim B$ then $\Phi_\mu^{\langle s \rangle}(A) = \Phi_\mu^{\langle s \rangle}(B)$.

Moreover, it is easy to see that

PROPERTY 2. *Let $\langle s \rangle \in S_1$ and $X \in \mathcal{S}_\mu$. A point $x \in \mathbb{R}$ is an $\langle s \rangle$ -density point of X with respect to the measure μ if and only if a point x is a density point of X with respect to the measure μ .*

Proof. Let $\langle s \rangle \in S_1$ and $X \in \mathcal{S}_\mu$. The only difficulty in this proof is to show that if $x \in \mathbb{R}$ is a $\langle s \rangle$ -density point of the set X with respect to the measure μ then this point is a density point of X with respect to the measure μ .

We assume that $x \in \mathbb{R}$ is a $\langle s \rangle$ -density point of the set X with respect to the measure μ and fix $\varepsilon > 0$. There exists subsequence $\{s_{n_k}\}_{k \in \mathbb{N}}$ of the sequence $\{s_n\}_{n \in \mathbb{N}}$ such that $\lim_{k \rightarrow \infty} \frac{s_{n_k}}{s_{n_{k+1}}} = c > 0$. So, there exists $k_0 \in \mathbb{N}$ such that for any $k \geq k_0$ we have

$$\frac{c}{2} < \frac{s_{n_k}}{s_{n_{k+1}}} < \frac{3}{2}c.$$

Moreover, it is easy to see that x is a $\langle s \rangle$ -density point of X with respect to the measure μ if

$$\lim_{n \rightarrow \infty} \frac{\mu(X' \cap [x - \frac{1}{s_n}, x + \frac{1}{s_n}])}{\frac{2}{s_n}} = 0,$$

where X' denotes $\mathbb{R} \setminus X$.

Therefore, there exists $k_1 > k_0$ such that for any $k \geq k_1$ we have

$$\frac{\mu(X' \cap [x - \frac{1}{s_{n_k}}, x + \frac{1}{s_{n_k}}])}{\frac{2}{s_{n_k}}} < \frac{c \cdot \varepsilon}{2}.$$

Put $\delta = \frac{1}{s_{n_{k_1}}}$ and fix $0 < h < \delta$. Of course, there exists $k > k_1$ such that $\frac{1}{s_{n_{k+1}}} \leq h < \frac{1}{s_{n_k}}$. Hence we have

$$\begin{aligned} \frac{\mu(X' \cap [x - h, x + h])}{2h} &\leq \frac{\mu(X' \cap [x - \frac{1}{s_{n_k}}, x + \frac{1}{s_{n_k}}])}{\frac{2}{s_{n_{k+1}}}} \leq \\ &\leq \frac{\mu(X' \cap [x - \frac{1}{s_{n_k}}, x + \frac{1}{s_{n_k}}])}{\frac{2}{s_{n_k}}} \cdot \frac{s_{n_{k+1}}}{s_{n_k}} < \frac{c \cdot \varepsilon}{2} \cdot \frac{2}{c} = \varepsilon. \end{aligned}$$

It means that x is a density point of X with respect to the measure μ . \square

Let $\langle s \rangle \in S$ and $A \in \mathcal{S}_\mu$. Let us define

$$T_\mu^{\langle s \rangle} = \{A \in \mathcal{S}_\mu : A \subset \Phi_\mu^{\langle s \rangle}(A)\}.$$

From Property 2 it follows that $\Phi_\mu(A) = \Phi_\mu^{(s)}(A)$ for each $A \in \mathcal{S}_\mu$ and $\langle s \rangle \in S_1$. Then we have $\mathcal{T}_\mu = \mathcal{T}_\mu^{(s)}$ for each $\langle s \rangle \in S_1$. It implies, by Theorems 2 and results in [H], that

COROLLARY 1. *For every $\langle s \rangle \in S_1$ we have that the family $\mathcal{T}_\mu^{(s)}$ is a topology on \mathbb{R} and $\mathcal{T}_\mu^{(s)} = \mathcal{T}^{(s)} \ominus \mathcal{I}_\mu$.*

In our future considerations we will show that the previous result holds for every sequence $\langle s \rangle \in S$. Regarding the Property 2 we should limit our considerations to sequences belonging to S_0 , because only then we can obtain new results. Let us fix $\langle s \rangle \in S_0$.

LEMMA 1. (cf.[H]). *Let $\{X_w\}_{w \in W} \in \mathcal{T}_\mu^{(s)}$ and $X = \bigcup_{w \in W} X_w$. For any $\varepsilon > 0$ there exists a set $C_\varepsilon \in \mathcal{L}$ such that $X \subset C_\varepsilon$ and $\mu^*(C_\varepsilon \setminus X) < \varepsilon$.*

P r o o f. Let $\{X_w\}_{w \in W} \in \mathcal{T}_\mu^{(s)}$ and $X = \bigcup_{w \in W} X_w$. At first, we suppose that X is bounded. Let P be an open interval such that $X \subset P$. Fix $\varepsilon \in (0, l(P))$ and put

$$\mathcal{P} = \left\{ K \subset \mathbb{R} : \mu_*(K \cap X) > \left(1 - \frac{\varepsilon}{l(P)}\right) \cdot \mu(K) \right\},$$

where K denotes an interval. Family \mathcal{P} is not empty. Indeed, for each $w \in W$ and every $x \in X_w$ we have that $X_w \subset X$ and

$$\lim_{n \rightarrow \infty} \frac{\mu(X_w \cap [x - \frac{1}{s_n}, x + \frac{1}{s_n}])}{\frac{2}{s_n}} = 1.$$

So, there exist $w_0 \in W, x_0 \in X_{w_0}$ and $n_0 \in \mathbb{N}$ such that for any $n > n_0$

$$\left| \frac{\mu(X_{w_0} \cap [x_0 - \frac{1}{s_n}, x_0 + \frac{1}{s_n}])}{\frac{2}{s_n}} - 1 \right| < \frac{\varepsilon}{l(P)}.$$

Hence $\mu(X_{w_0} \cap [x_0 - \frac{1}{s_n}, x_0 + \frac{1}{s_n}]) > (1 - \frac{\varepsilon}{l(P)}) \cdot \frac{2}{s_n}$ for any $n > n_0$. Since $X_{w_0} \subset P$ and $\langle s \rangle \in S_0$, so there exists $N > n_0$ such that $[x_0 - \frac{1}{s_N}, x_0 + \frac{1}{s_N}] \subset P$ and

$$\mu_* \left(X \cap \left[x_0 - \frac{1}{s_N}, x_0 + \frac{1}{s_N} \right] \right) > \left(1 - \frac{\varepsilon}{l(P)}\right) \cdot \frac{2}{s_n}.$$

It means that $[x_0 - \frac{1}{s_N}, x_0 + \frac{1}{s_N}] \in \mathcal{P}$. Moreover, the family \mathcal{P} forms a Vitali covering of the set X . So, there exists sequence $\{K_n\}_{n \in \mathbb{N}} \subset \mathcal{P}$ of pairwise disjoint intervals such that $l(X \setminus \bigcup_{n=1}^{\infty} K_n) = 0$. Simultaneously $\mu^*(\bigcup_{n=1}^{\infty} (K_n \setminus X)) < \varepsilon$. Indeed, for any $n \in \mathbb{N}$ there exists a μ -measurable set B_n such that

$$B_n \subset K_n \cap X \text{ and } \mu(B_n) > \left(1 - \frac{\varepsilon}{l(P)}\right) \cdot \mu(K_n).$$

Therefore

$$\begin{aligned} \mu^*\left(\bigcup_{n=1}^{\infty} K_n \setminus X\right) &\leq \sum_{n=1}^{\infty} \mu^*(K_n \setminus X) \leq \sum_{n=1}^{\infty} \mu^*(K_n \setminus B_n) = \sum_{n=1}^{\infty} \mu(K_n \setminus B_n) = \\ &= \sum_{n=1}^{\infty} (\mu(K_n) - \mu(B_n)) < \sum_{n=1}^{\infty} \left(\frac{\varepsilon}{l(P)} \mu(K_n)\right) = \\ &= \frac{\varepsilon}{l(P)} \sum_{n=1}^{\infty} \mu(K_n) = \frac{\varepsilon}{l(P)} \mu\left(\bigcup_{n=1}^{\infty} K_n\right) \leq \varepsilon. \end{aligned}$$

Putting $C_{\varepsilon} = (X \setminus \bigcup_{n=1}^{\infty} K_n) \cup (\bigcup_{n=1}^{\infty} K_n)$ we have that $C_{\varepsilon} \in \mathcal{L}$ and $X \subset C_{\varepsilon}$. Moreover, $\mu^*(C_{\varepsilon} \setminus X) = \mu^*(\bigcup_{n=1}^{\infty} K_n \setminus X) < \varepsilon$.

If X is unbounded the proof is obvious because we can present X as a countable union of bounded sets. \square

THEOREM 3. *The family $T_{\mu}^{(s)}$ forms a topology on \mathbb{R} .*

Proof. By Property 1 it is clear that \emptyset, \mathbb{R} belong to $T_{\mu}^{(s)}$ and for any $A, B \in T_{\mu}^{(s)}$ we have that $A \cap B \in T_{\mu}^{(s)}$. The only difficulty is to show that the union of an arbitrary subfamily of $T_{\mu}^{(s)}$ is a μ - measurable set because by the monotonicity property of operator $\Phi_{\mu}^{(s)}$ such union is a member of $T_{\mu}^{(s)}$.

Let $\{X_w\}_{w \in W} \in T_{\mu}^{(s)}$. From Lemma 1 it follows that there exists a sequence $\{C_n\}_{n \in \mathbb{N}}$ of μ - measurable sets such that $\bigcup_{w \in W} X_w = X \subset C_n$ and $\mu^*(C_n \setminus X) < \frac{1}{n}$ for every $n \in \mathbb{N}$. Let $C = \bigcap_{n=1}^{\infty} C_n$. Evidently C is a Lebesgue measurable set, $X \subset C$ and

$$\forall_{n \in \mathbb{N}} \mu^*(C \setminus X) \leq \mu^*(C_n \setminus X) < \frac{1}{n}.$$

From arbitrary $n \in \mathbb{N}$ we have that $\mu(C \setminus X) = 0$. It implies that $X = C \setminus (C \setminus X) \in \mathcal{S}_{\mu}$. Obviously $X \subset \Phi_{\mu}^{(s)}(X)$, so $\bigcup_{w \in W} X_w = X \in T_{\mu}^{(s)}$. \square

THEOREM 4. *For every $\langle s \rangle \in S_0$ we have $T_{\mu}^{(s)} = \mathcal{T}^{(s)} \ominus \mathcal{I}_{\mu}$.*

Proof. Let $\langle s \rangle \in S$. Firstly, we shall prove that $T_{\mu}^{(s)} \subset \mathcal{T}^{(s)} \ominus \mathcal{I}_{\mu}$. Let $X \in T_{\mu}^{(s)}$. It implies that $X \in \mathcal{S}_{\mu}$ and $X \subset \Phi_{\mu}^{(s)}(X)$. According to the proof of Theorem 3 there exists a Lebesgue measurable set $C \supset X$ such that $\mu(C \setminus X) = 0$. Since $X = C \setminus (C \setminus X)$, then $X \in \mathcal{L} \ominus \mathcal{I}_{\mu}$. So, $X = A \setminus B$ where $A \in \mathcal{L}$ and $\mu(B) = 0$. We obtain immediately, by Property 1, that

$$A \setminus B = X \subset \Phi_{\mu}^{(s)}(X) = \Phi_{\mu}^{(s)}(A \setminus B) = \Phi_{\mu}^{(s)}(A) = \Phi_{\mu}^{(s)}(A).$$

Since $A \cap \Phi^{(s)}(A) \in \mathcal{T}^{(s)}$ and

$$\begin{aligned} X = X \cap A &= (A \cap \Phi^{(s)}(A)) \setminus ((A \cap \Phi^{(s)}(A)) \setminus (X \cap A)) = \\ &= (A \cap \Phi^{(s)}(A)) \setminus (\Phi^{(s)}(A) \cap A \cap B) \end{aligned}$$

then $X \in \mathcal{T}^{(s)} \ominus \mathcal{I}_\mu$.

Now we show that $\mathcal{T}^{(s)} \ominus \mathcal{I}_\mu \subset \mathcal{T}_\mu^{(s)}$. Let $X \in \mathcal{T}^{(s)} \ominus \mathcal{I}_\mu$, so $X = A \setminus B$ where $A \in \mathcal{T}^{(s)}$ and $B \in \mathcal{I}_\mu$. Of course $X \in \mathcal{S}_\mu$ and

$$\Phi_\mu^{(s)}(X) = \Phi_\mu^{(s)}(A) = \Phi^{(s)}(A) \supset A \supset A \setminus B = X.$$

Hence $X \in \mathcal{T}_\mu^{(s)}$. □

From the above and Corollary 1 we obtain

THEOREM 5. *For every $\langle s \rangle \in S$ we have that the family $\mathcal{T}_\mu^{(s)}$ is a topology on \mathbb{R} and $\mathcal{T}_\mu^{(s)} = \mathcal{T}^{(s)} \ominus \mathcal{I}_\mu$.*

PROPERTY 3. *Let $\langle s \rangle, \langle t \rangle \in S$. We have that $\mathcal{T}_\mu^{(s)} = \mathcal{T}_\mu^{(t)}$ if and only if $\mathcal{T}^{(s)} = \mathcal{T}^{(t)}$.*

Proof. Let $\langle s \rangle, \langle t \rangle \in S$. The only difficulty in this proof is to show that if $\mathcal{T}_\mu^{(s)} = \mathcal{T}_\mu^{(t)}$ then $\mathcal{T}^{(s)} = \mathcal{T}^{(t)}$. So, let $\mathcal{T}_\mu^{(s)} = \mathcal{T}_\mu^{(t)}$ and suppose that, there exists a set A such that $A \in \mathcal{T}^{(s)} \setminus \mathcal{T}^{(t)}$. Since $A \in \mathcal{T}_\mu^{(s)} = \mathcal{T}_\mu^{(t)}$, so, by Theorem 5, there exist sets $B \in \mathcal{T}^{(t)}$ and $C \in \mathcal{I}_\mu$ such that $A = B \setminus C$. We can assume that $C \subset B$. Because $A \in \mathcal{L}$ and $B \in \mathcal{L}$, so $l(C) = 0$. And we have that $\Phi^{(t)}(A) = \Phi^{(t)}(B)$. From the above we have that

$$A \subset B \subset \Phi^{(t)}(B) = \Phi^{(t)}(A),$$

which means that $A \in \mathcal{T}^{(t)}$. It contradicts with fact that $A \notin \mathcal{T}^{(t)}$. □

Let $C((X, \tau), (Y, \varrho))$ denotes the family of all continuous functions acting from topological space (X, τ) to the topological space (Y, ϱ) . In the future considerations, the application of the following theorem of Martin will be useful.

THEOREM 6. (see [M]). *Let (X, \mathcal{T}) be any arbitrary topological space, (Y, τ) —a regular topological space and \mathcal{I} —a σ -ideal of subsets X free from nonempty \mathcal{T} —open sets and such that the family $\mathcal{T} \ominus \mathcal{I}$ forms a topology. Then*

$$C((X, \mathcal{T}), (Y, \tau)) = C((X, \mathcal{T} \ominus \mathcal{I}), (Y, \tau)).$$

At this moment we also recall the following result presented in [FFH].

THEOREM 7. *For every sequences $\langle s \rangle, \langle t \rangle \in S$ we have that $C((\mathbb{R}, \mathcal{T}^{(s)}), (\mathbb{R}, \tau_0)) = C((\mathbb{R}, \mathcal{T}^{(t)}), (\mathbb{R}, \tau_0))$ if and only if $\mathcal{T}^{(s)} = \mathcal{T}^{(t)}$, where τ_0 is the natural topology.*

Combining Theorems 4, 7 and 6 we have that

THEOREM 8. *For every sequences $\langle s \rangle, \langle t \rangle \in S$ we have that $C((\mathbb{R}, \mathcal{T}_\mu^{(s)}), (\mathbb{R}, \tau_0)) = C(\mathbb{R}, \mathcal{T}_\mu^{(t)}), (\mathbb{R}, \tau_0))$ if and only if $\mathcal{T}_\mu^{(s)} = \mathcal{T}_\mu^{(t)}$, where τ_0 is the natural topology.*

References

- [FFH] M. Filipczak, T. Filipczak, J. Hejduk, *On the comparison of the density type topologies*, Preprint 2002/26, University of Łódź, 2002.
- [H] J. Hejduk, *Density topologies with respect to an extension of Lebesgue measure*, Real Anal. Exchange Vol. 21, No. 2, (1995–96), 811–817.
- [M] N. F. G. Martin, *Generalized condensation points*, Duke Math. J. 28 (1961), 507–514.
- [W] W. Wilczyński, *Density topologies*, chapter 15 in *Handbook of Measure Theory*, Institute of Mathematics, University of Novi Sad, Elsevier, 2002.

THE FACULTY OF MATHEMATICS
 UNIVERSITY OF ŁÓDŹ
 Banacha 22
 90-238 ŁÓDŹ, POLAND
 E-mail: loranta@imul.uni.lodz.pl

Received March 5, 2003.

