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ON THE SEQUENTIAL DENSITY POINTS

Abstract. This paper contains some results about density with respect to a sequence
and an extension of the Lebesgue measure. There are some properties of topologies asso-
ciated with such density point.

Throughout the paper N will denote the set of all positive intrgers, Q—
the set of all rational numbers, [—the standard Lebesgue measure on the
real line R and £—the o-algebra of Lebesgue measurable subsets of R. By
T4 we shall denote the density topology on R and by S the family of all un-
bounded and nondecreasing sequences of positive numbers. We shall denote
a sequence {sp}neN € S by (s).

Let p be any complete extension of the Lebesgue measure on R. Let
S, be the o-algebra of y-measurable sets and Z,, the o-ideal of p-null sets.
We shall denote by p* the outer measure induced by p and by p. the inner
measure induced by p. We shall also write A ~ B if and only if y(AAB) =0
for sets A,B C R where AAB=(A\B)U(B\ A).

DEFINITION 1. (see [FFH]). We shall say that x € R is a density point of a set
A € L with respect to a sequence {sn}neN € S (in abr. (s)-density point) if
l{(AN[z -2 z+ L
lim “nl 2= s )) =1
n—o0 -

Sn

Let (s) € S and A € L . Putting
3 (A) = {x € R: z is a (s)—density point of A},

and

TW ={AeL:AcdA)
we have the following result
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THEOREM 1. (see [FFH]). Let (s) € S. The family T'®) is a topology on the
real line.

Let us introduce the following notation:
So = {(s) € S : liminfp_00 2~ e =0} and
S1={(s) € §: liminf, o S22~ s> 0}.

THEOREM 2. (cf. [FFH] and [W]). Let (s) € S. Then T = T, if and only
if (s) € 5.

Let u be an arbitrary complete extension of the Lebesgue measure on R.
DEFINITION 2. We say that z € R is a density point of a set A € S, with
respect to the measure pu if

' i AANQ[z—h 2+ h])

=1.
h—0+ 2h

Let
®,(A) = {x € R: z is a density point of A with respect to the measure u}

for Ae S, and
T.={A€S,: AC ®,(A4)}.
In paper [H] it is proved that family 7, forms a topology on R such that it
has the form
T.=T401,

(where T; 067, = {A\B: A€ T3,B € 1,}).

Similarly as above we can define (s)-density point of a set A € S, with
respect to measure u.

DEFINITION 3. Let (s) € S. We say that z € R is a (s)-density point of a
set A € S, with respect to the measure u if

pANfz -tz + o))
5 =1
n—oo —

Let (s) € S and A € S,,. Putting
o) (4) =
= {z € R:z is a (s) — density point of A with respect to the measure u}

we have the following result:
PROPERTY 1. For each A,B€ S, and (s) € S

1. 350 =0, 3 R) =

2. if AC B then & (4) C <1>,<f>(B),

3 a2 (AnB) =8 (4)naf (B),
4. if A~ B then 3 (4) = & (B).
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Moreover, it is easy to see that

PROPERTY 2. Let (s) € S; and X € S,. A point x € R is an (s)-density
point of X with respect to the measure p if and only if a point x is a density
point of X with respect to the measure p.

Proof. Let (s) € S; and X € S,,. The only difficulty in this proof is to show
that if z € R is a (s)-density point of the set X with respect to the measure
1 then this point is a density point of X with respect to the measure pu.

We assume that z € R is a (s)-density point of the set X with respect
to the measure p and fix € > 0. There exists subsequence {sn, }xen of the

sequence {sp }neN such that limg_,o0 sﬁ“— = ¢ > 0. So, there exists ko € N
"4l

such that for any k& > ko we have

c s 3
- < L < —=C.
2 Smyy 2

Moreover, it is easy to see that z is a (s)-density point of X with respect to
the measure p if

XNz-L,z+1
lim a [ 52 ) =0,

n-—00 i
Sn

where X’ denotes R \ X.
Therefore, there exists k1 > kg such that for any k& > k; we have
#(X'n[-"?—;,l,‘:w"?‘l‘#]) Cc-&
<

2 2
snk

Put § = ﬁ- and fix 0 < h < 4. Of course, there exists k& > k; such that
1
1_ < h < L. Hence we have
id

Snk41
1 1
pX0p—ha+h) HEOE-LotE ]
2h = p) <
Syl
1 1
< #(X’O[Z—q,l‘-l-q]) ‘snk-{-l < c-€ .E_E
< 3 —c
m snk 2 C

It means that z is a density point of X with respect to the measure p. O
Let (s) € S and A € S,.. Let us define
T ={A€S,: AcC d(A)}.
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From Property 2 it follows that ®,(A) = <I>,(f) (A) for each A € S, and

(s) € S1. Then we have T, = ’];(3) for each (s) € S;. It implies, by Theorems
2 and results in [H], that

COROLLARY 1. For every (s) € Sy we have that the family ’ZL(S) is a topology
on R and ']L(s) =T® oI,

In our future considerations we will show that the previous result holds
for every sequence (s) € S. Regarding the Property 2 we should limit our
considerations to sequences belonging to Sy, because only then we can obtain
new results. Let us fix (s) € Sp.

LEMMA 1. (cf.[H)). Let {Xuw}wew € T and X = Uyew Xuw. For anye >0
there ezists a set Ce € L such that X C C; and p*(Cc \ X) < €.

Proof. Let {Xy}wew € T,‘(s) and X = U,ew Xw. At first, we suppose that
X is bounded. Let P be an open interval such that X C P. Fix € € (0, {(P))
and put

'P={KCR:;L,.(K0X)> (1—%) -u(K)},

where K denotes an interval. Family P is not empty. Indeed, for each w € W
and every z € X,, we have that X,, C X and

. ;L(Xwﬂ[l‘—sl,:z:-i-si])
lim n n

n—oo l
Sn

=1.

So, there exist wg € W, g € Xw0 and ng € N such that for any n > ng

(Ko N [z0 = 55,0 + 1)) 4l

% I(P)’
Hence p(Xy, N [zo — <=, z0 + —]) > (1- pr) = for any n > ng. Since
Xwo C P and (s) € So, so there exists N > ng such that [:co—— a:0+—] C

P and
1 1 € 2
"*(X”[“‘s—;’“*a]) >(1‘zm)'s—-

It means that [zo — -17,2:0 + 3 ] € P. Moreover, the family P forms a
Vitali covering of the set X. So there exists sequence {Kp}nen C P of
pairwise disjoint intervals such that (X \ UZ; Kn) = 0. Simultaneously
p*(Une1(Kn \ X)) < €. Indeed, for any n € N there exists a y-measurable

set B, such that
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B C KnN X and u(B,) > (1 1 P)) w(K).

Therefore

(U K\ X) € S utEa\ X) < i “(Kn\Ba) = 3" (K \ Ba) =
n=1 n=1 n=1 n=1

_ g(u(m ~uB) <Y (%MK")) -

n=1

= 7(%) Z_:.U'(Kn) = l(LP)#( L_J K,) <e.

Putting C. = (X \Unz1 Kn)U(Un2; K.) we have that C; € L and X C C..
Moreover, u*(C: \ X) = p*(Us2; Ko\ X) <ee.

If X is unbounded the proof is obvious because we can present X as a
countable union of bounded sets. o

THEOREM 3. The family T forms a topology on R.

Proof. By Property 1 it is clear that 0,R belong to 'L(s) and for any
A,Be ’L(s) we have that AN B € 7;‘(3). The only difficulty is to show that

9 isa 4 - measurable set because by
the monotonicity property of operator <I>ff) such union is a member of ’ZL(S).

Let {Xy}lwew € ’1;,(3). From Lemma 1 it follows that there exists a
sequence {Cp}nen Of 1 - measurable sets such that Jyew Xw = X C Cy
and p*(Cp \ X) < 1 for every n € N. Let C = N, Cy. Evidently C is a
Lebesgue measurable set, X ¢ C and

the union of an arbitrary subfamily of 7;(

* * 1
Vnen pH(C\ X) < p*(Ca\ X) < .
From arbitrary n € N we have that p(C \ X) = 0. It implies that X =
C\ (C\ X) € S,. Obviously X C 3 (X), so Upew Xw =X € 1. O

THEOREM 4. For every (s) € So we have T(s) T oI,

Proof. Let (s) € S. Firstly, we shall prove that 7},(3) Cc T¥ oI, Let

Xe 7;‘(‘”. It implies that X € S, and X C <I>,<f) (X). According to the proof
of Theorem 3 there exists a Lebesgue measurable set C O X such that
w(C\X)=0.Since X =C\ (C\X),then X € LSZ,. So, X = A\ B
where A € £ and u(B) = 0. We obtain immediately, by Property 1, that

A\B =X c d{)(X) =3 (A\ B) = 3} (4) = &) (4).
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Since AN & (A) € T%) and
X=XNA=(ANd®(A)\ (ANd A\ (XNA) =
= (AN®*(A)\ (8(4)nANB)

then X € T¢) 8 1,.

Now we show that 7 © T, C 7L(s>. Let X € T® ©7T,,s0 X =A\B
where A€ T%) and B € Z,. Of course X € S, and

LN (X) =& (4) =3 (A) DAD A\B=X.

Hence X € T,3*. O

From the above and Corollary 1 we obtain

THEOREM 5. For every (s) € S we have that the family Tﬂ(s) is a topology
on R and 'I;‘(s) =T oI,
PROPERTY 3. Let (s),(t) € S. We have that 77,(3) = ’];L(t) if and only if
T() = T
Proof. Let (s),(t) € S. The only difficulty in this proof is to show that if
'1;(8) = 'ZL“) then 7% = T®_ So, let 'IL(S) = ’]L(t) and suppose that, there
exists a set A such that A € T/ \ T®. Since 4 € 'L(s) = 'Z;ft), so, by
Theorem 5, there exist sets B € T and C € Z,, such that A = B\ C. We
can assume that C C B. Because A € £ and B € £, so I(C) = 0. And we
have that ®)(A4) = &®(B). From the above we have that

Ac Bc o (B) =94,
which means that A € T®. It contradicts with fact that A ¢ T . 0

Let C((X, 1), (Y, ¢)) denotes the family of all continuous functions acting
from topological space (X, T) to the topological space (Y, ¢). In the future
considerations, the application of the following theorem of Martin will be
useful.

THEOREM 6. (see [M]). Let (X, T) be any arbitrary topological space, (Y, 7)—

a regular topological space and T—a o-ideal of subsets X free from nonempty

T —open sets and such that the family T © I forms a topology. Then
C((X,T),(Y,7)) =C((X, T ©1),(Y,7)).

At this moment we also recall the following result presented in [FFH].
THEOREM 7. For every sequences (s), (t) € S we have that C((R, T‘*), (R, 7o)
= C(R,T™), (R, 7)) if and only if T = T® where 7y is the natural
topology.
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Combining Theorems 4, 7 and 6 we have that

THEOREM 8. For every sequences (s), (t) € S we have that C((R, 'T,L(s)), (R, 70))
= C(R, ’IL(t)),(]R, 70)) if and only if 7;(3) = ’JL(t), where 19 is the natural
topology. '
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