

U. C. De, Anup Kumar Sengupta, Constantin Calin

GENERIC SUBMANIFOLDS
OF QUASI-SASAKIAN MANIFOLDS

1. Introduction

A. Bejancu [1], [2] defined and studied CR-submanifolds of Kaehlerian manifolds. CR-submanifolds of Sasakian manifolds were studied by M. Kobayashi [11] and M. Hasan Shahid [16]. B.-Y. Chen [8] introduced the notion of a generic submanifold of a Kaehler manifold. Generic submanifolds of Sasakian manifolds were studied by P. Verheyen [17] and M. Hasan Shahid [14]. Generic submanifolds of trans-Sasakian manifolds were studied by M. Hasan Shahid and I. Mihai [15].

D. E. Blair [3] initiated the study of normal almost contact metric manifolds with closed fundamental 2-form Φ and such manifolds were called quasi-Sasakian manifolds. Z. Olszak [12], [13] extensively studied 3-dimensional quasi-Sasakian manifolds. C. Calin [6] studied contact CR-submanifolds of a quasi-Sasakian manifold.

The purpose of the present paper is to study generic submanifolds of a quasi-Sasakian manifold.

2. Preliminaries

Let \overline{M} be a $(2n + 1)$ -dimensional almost contact metric manifold with (ϕ, ξ, η, g) as its almost contact metric structure, where ϕ is a tensor field of type $(1,1)$, ξ is a vector field, η is a 1-form and g is a Riemannian metric on \overline{M} satisfying

$$(1) \quad \phi^2 = -I + \eta \otimes \xi, \quad \phi\xi = 0, \quad \eta \circ \phi = 0, \quad \eta(\xi) = 1,$$

$$(2) \quad g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y) \text{ for } X, Y \in T(\overline{M}).$$

1991 *Mathematics Subject Classification*: 53C25, 53C42.

Key words and phrases: generic submanifold, CR-submanifold, quasi-Sasakian manifold.

The fundamental 2-form of \bar{M} is defined by $\Phi(X, Y) = g(X, \phi Y)$, $X, Y \in T(\bar{M})$. The Nijenhuis tensor of ϕ is the tensor field N_ϕ given by

$$N_\phi(X, Y) = [\phi X, \phi Y] + \phi^2[X, Y] - \phi[X, \phi Y] - \phi[\phi X, Y], \quad X, Y \in T(\bar{M}).$$

The almost contact structure (ϕ, ξ, η, g) is said to be normal if [4], [5] $N_\phi + 2d\eta \otimes \xi = 0$.

The manifold \bar{M} is said to be a quasi-Sasakian manifold if its almost contact structure (ϕ, ξ, η) is normal and the fundamental 2-form Φ is closed. A quasi-Sasakian manifold has been characterised by S. Kanemaki [10] as follows: a differentiable manifold \bar{M} is quasi-Sasakian if and only if it is endowed with an almost contact metric structure (ϕ, ξ, η, g) and a tensor field F of type (1,1) such that

$$(3) \quad (\bar{\nabla}_X \phi)Y = \eta(Y)FX - g(FX, Y)\xi,$$

$$(4) \quad \phi FX = F\phi X, \quad g(FX, Y) = g(X, FY),$$

for $X, Y \in T(\bar{M})$, where $\bar{\nabla}$ is the Levi-Civita connection with respect to the metric g . From (3), we obtain

$$(5) \quad \bar{\nabla}_X \xi = \phi FX, \quad X \in T(\bar{M}).$$

Using (1) and (4) we get

$$(6) \quad F\xi = \eta(F\xi)\xi.$$

Hence from (3) it follows that $\bar{\nabla}_\xi \xi = 0$. A quasi-Sasakian manifold \bar{M} is Sasakian if $F = -I$.

Let M be an m -dimensional submanifold isometrically immersed in a quasi-Sasakian manifold \bar{M} such that the structure vector field ξ of \bar{M} is tangent to the submanifold M . We denote by $\{\xi\}$ the 1-dimensional distribution spanned by ξ on M and by $\{\xi\}^\perp$ the complementary orthogonal distribution to $\{\xi\}$ in $T(M)$. For any $X \in T(M)$, we have $\phi X \in \{\xi\}^\perp$. For $X \in T(M)$, we put

$$(7) \quad \phi X = bX + cX,$$

where $bX \in \{\xi\}^\perp$ and $cX \in T^\perp(M)$. Thus $X \mapsto bX$ is an endomorphism of the tangent bundle $T(M)$ and $X \mapsto cX$ is a normal bundle valued 1-form on M .

If the maximal invariant subspaces under ϕ , $D_p = T_p(M) \cap \phi T_p(M)$, define a differentiable distribution D on M , then M is called a generic submanifold of \bar{M} . Thus for a generic submanifold M , we have the orthogonal decomposition $T(M) = D \oplus D^\perp \oplus \{\xi\}$, where D^\perp is the subbundle complementary orthogonal to $D \oplus \{\xi\}$ in $T(M)$. Then it follows immediately that $bD = 0$, $bD^\perp \subset D^\perp$.

Let $T^\perp M$ be the normal bundle of M . If ν_p is the maximal invariant vector subspace of $T_p^\perp(M)$, i. e., $\nu_p = T_p^\perp(M) \cap \phi T_p^\perp(M)$, then for $p \in M$, ν_p defines a differentiable subbundle of $T_p^\perp(M)$ and $\nu = (cD^\perp)^\perp$, $T^\perp(M) = cD^\perp \oplus \nu$. For $V \in T^\perp(M)$, suppose

$$(8) \quad \phi V = tV + fV,$$

where tV and fV denote the tangential and normal component of ϕV respectively. We have $t(T^\perp(M)) \subset D^\perp$.

A generic submanifold with $\phi D^\perp \subset T^\perp(M)$ will be called a CR-submanifold of the quasi-Sasakian manifold \bar{M} .

We denote by g the metric tensor field of \bar{M} as well as the induced metric on M . Let $\bar{\nabla}$ (resp., ∇) be the Levi-Civita connection on \bar{M} (resp., M). The Gauss and Weingarten formulas for M are respectively given by

$$(9) \quad \bar{\nabla}_X Y = \nabla_X Y + h(X, Y), \quad \bar{\nabla}_X V = -A_V X + \nabla_X^\perp V,$$

for $X, Y \in T(M)$ and $V \in T^\perp(M)$, where h (resp., A) is the second fundamental form (resp., tensor) of M in \bar{M} and ∇^\perp denotes the covariant differentiation with respect to the normal connection. From (9), it follows

$$(10) \quad g(h(X, Y), V) = g(A_V X, Y),$$

for $X, Y \in T(M)$ and $V \in T^\perp(M)$.

3. Basic results

For $X \in T(\bar{M})$, we put $FX = \alpha X + \beta X$, where αX and βX are the tangential and normal component of FX respectively.

For $X, Y \in T(M)$, we put

$$\begin{aligned} (\nabla_X b) Y &= \nabla_X b Y - b(\nabla_X Y), \\ (\nabla_X c) Y &= \nabla_X^\perp c Y - c(\nabla_X Y). \end{aligned}$$

LEMMA 1. *Let M be a generic submanifold of a quasi-Sasakian manifold \bar{M} . Then for $X, Y \in T(M)$,*

$$(11) \quad (\nabla_X b) Y = A_{cY} X + t h(X, Y) + \eta(Y) \alpha X - g(FX, Y) \xi,$$

$$(12) \quad (\nabla_X c) Y = f h(X, Y) - h(X, bY) + \eta(Y) \beta X.$$

P r o o f. From (3), (7), (8) and (9) we have

$$\begin{aligned} \nabla_X b Y + h(X, bY) - A_{cY} X + \nabla_X^\perp c Y - b \nabla_X Y - c \nabla_X Y - t h(X, Y) - f h(X, Y) \\ = \eta(Y) \alpha X + \eta(Y) \beta X - g(FX, Y) \xi, \end{aligned}$$

for $X, Y \in T(M)$. Hence, by equating the tangent and normal parts, we obtain (11) and (12).

LEMMA 2. Let M be a CR-submanifold of a quasi-Sasakian manifold \bar{M} . Then for $Z, W \in D^\perp$,

$$A_{cZ}W = A_{cW}Z.$$

Proof. For $Z, W \in D^\perp$ and $X \in T(M)$, by using (3), (9) and (10), we have

$$\begin{aligned} g(A_{cZ}W, X) &= g(h(X, W), \phi Z) = g(\bar{\nabla}_X W, \phi Z) = -g(\phi \bar{\nabla}_X W, Z) \\ &= -g(\bar{\nabla}_X \phi W, Z) = g(A_{cW}X, Z) = g(A_{cW}Z, X), \end{aligned}$$

which proves the lemma.

PROPOSITION 1. Let M be a generic submanifold of a quasi-Sasakian manifold \bar{M} . If $T(M)$ is invariant under F , then both the distributions D and D^\perp are invariant under F .

Proof. As $T(M)$ is invariant under F , we have $X \in D \implies FX \in T(M)$. Also $X \in D \implies \phi X \in T(M)$. Now by (4), $\phi FX = F\phi X \in T(M)$, since $\phi X \in T(M)$ and $T(M)$ is invariant under F . But $FX \in T(M)$ and $\phi FX \in T(M) \implies FX \in D$. Thus D is invariant under F .

For $X \in D^\perp$ and $Y \in D$, by using the invariance of D under F and (4), we obtain $g(FX, Y) = g(X, FY) = 0$. On the other hand, by using (4) and (6), we have $g(FX, \xi) = g(X, F\xi) = g(X, \eta(F\xi)\xi) = \eta(f\xi)g(X, \xi) = 0$, for $X \in D^\perp$. Hence D^\perp is invariant under F .

REMARK. In Corollary 1 of [6] to prove the invariance of D , Calin used a method which is applicable only for CR-submanifolds. The method used above can be applied for any type of submanifolds having invariant distribution D .

Now we give an example of a generic submanifold, which is not a CR-submanifold, of a quasi-Sasakian manifold.

EXAMPLE. Let the quasi-Sasakian structure (ϕ, ξ, η, g) of rank 5 of \mathbf{R}^7 [7], be given by $\phi = \phi_i^h dx^i \otimes \frac{\partial}{\partial x^h}$; $g = g_{ij} dx^i \otimes dx^j$,

$$[\phi_i^j] = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2y^1 & 2y^2 & 0 & 0 \end{pmatrix},$$

and

$$[g_{ij}] = \begin{pmatrix} 1 + 4(y^1)^2 & 4y^1y^2 & 0 & 0 & 0 & 0 & -2y^1 \\ 4y^1y^2 & 1 + 4(y^2)^2 & 0 & 0 & 0 & 0 & -2y^2 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ -2y^1 & -2y^2 & 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

with $\xi = (0, 0, 0, 0, 0, 0, 1)^t$; $\eta = dz - 2y^1dx^1 - 2y^2dx^2$, where $(x^1, x^2, x^3, x^4, x^5, x^6, x^7) = (x^1, x^2, x^3, y^1, y^2, y^3, z)$ are the Cartesian coordinate on R^7 . With respect to the Cartesian coordinate, let $\{e_i = \frac{\partial}{\partial x^i}\}$ be the global field of frames of R^7 .

The quasi-Sasakian structure defined in the above is in fact the product of 5-dimensional Sasakian structure and the flat 2-dimensional Kählerian structure.

Now let M be a submanifold of R^7 , $\dim M = 5$, defined by

$$(13) \quad \begin{aligned} x^1 &= u^3 \sinh^2 u^2; & x^2 &= \frac{u^2}{2} + \frac{1}{4} \sinh 2u^2; & x^3 &= u^1; & x^4 &= u^2; \\ x^5 &= u^3; & x^6 &= u^4; & x^7 &= u^5. \end{aligned}$$

The global field of frames for M is $\{\frac{\partial}{\partial u^\alpha}, 1 \leq \alpha \leq 5\}$, where

$$\begin{aligned} \frac{\partial}{\partial u^1} &= \frac{\partial}{\partial x^3}; & \frac{\partial}{\partial u^4} &= \frac{\partial}{\partial x^6}; & \frac{\partial}{\partial u^5} &= \frac{\partial}{\partial x^7} = \xi; \\ \frac{\partial}{\partial u^2} &= u^3 \sinh 2u^2 \frac{\partial}{\partial x^1} + \cosh^2 u^2 \frac{\partial}{\partial x^2} + \frac{\partial}{\partial x^4}; \\ \frac{\partial}{\partial u^3} &= \sinh^2 u^2 \frac{\partial}{\partial x^1} + \frac{\partial}{\partial x^5}. \end{aligned}$$

It is easy to see that the normal vector bundle $T^\perp(M)$ is generated by the normal vector fields N_1, N_2 of M defined by

$$\begin{aligned} N_1 &= (1, 0, 0, -u^3 \sin 2u^2, -\sinh^2 u^2, 0, 2u^2); \\ N_2 &= (0, 1, 0, -\cosh^2 u^2, 0, 0, 2u^3). \end{aligned}$$

By straightforward calculation we have $\phi(D) = D$; $g\left(b(\frac{\partial}{\partial u^2}), \frac{\partial}{\partial u^3}\right) \neq 0$, $g\left(c\left(\frac{\partial}{\partial u^2}\right), N_1\right) \neq 0$ that is, $bD^\perp \subseteq D^\perp$ and $cD^\perp \subseteq T^\perp(M)$ with $bD^\perp \neq \{0\}$ and $cD^\perp \neq \{0\}$. Thus the submanifold M , defined by (13) is a proper generic

submanifold of the quasi-Sasakian manifold R^7 with $D = \text{span} \left\{ \frac{\partial}{\partial u^1}, \frac{\partial}{\partial u^4} \right\}$; $D^\perp = \text{span} \left\{ \frac{\partial}{\partial u^2}, \frac{\partial}{\partial u^3} \right\}$ and $T^\perp(M) = \text{span}\{N_1, N_2\}$.

4. Integrability of distributions

THEOREM 1. *Let M be a generic submanifold of a quasi-Sasakian manifold \overline{M} . If $T(M)$ is invariant under F and F is a non-zero tensor field, then the distribution D is not integrable.*

Proof. For $X, Y \in D$, by using (4), (5) and (9), we obtain

$$\begin{aligned}
 (14) \quad g([X, Y], \xi) &= g(\nabla_X Y, \xi) - g(\nabla_Y X, \xi) \\
 &= g(\bar{\nabla}_X Y, \xi) - g(\bar{\nabla}_Y X, \xi) \\
 &= -g(Y, \bar{\nabla}_X \xi) + g(X, \bar{\nabla}_Y \xi) \\
 &= -g(Y, \phi F X) + g(X, \phi F Y) \\
 &= g(F X, \phi Y) + g(F X, \phi Y) = 2g(F X, \phi Y).
 \end{aligned}$$

As $T(M)$ is invariant under F , by Proposition 1, D is invariant under F . Then, by taking $Y = \phi F X$ in (14) the theorem follows.

COROLLARY 1. [14] *Let M be a generic submanifold of a Sasakian manifold \overline{M} . Then the distribution D is not integrable.*

Proof. Since $F = -I$, $T(M)$ is invariant under F and therefore by Theorem 1, the corollary follows.

THEOREM 2. *Let M be a generic submanifold of a quasi-Sasakian manifold \overline{M} . Then the distribution D is integrable if and only if $FD \perp D$ and*

$$h(X, \phi Y) = h(\phi X, Y), \quad \text{for } X, Y \in D.$$

Proof. For $X, Y \in D$, by using (12), we have

$$c\nabla_X Y = h(X, \phi Y) - f h(X, Y) - \eta(Y)\beta X,$$

and therefore

$$(15) \quad c[X, Y] = h(X, \phi Y) - h(Y, \phi X)$$

since $\eta(X) = \eta(Y) = 0$. Hence the theorem follows from (14) and (15).

In the example, given earlier, it is easy to verify that the distributions D^\perp and $D^\perp \oplus \{\xi\}$ of the generic submanifold M of the quasi-Sasakian manifold R^7 are not integrable.

Necessary and sufficient conditions for the integrability of the distributions D^\perp and $D^\perp \oplus \{\xi\}$ are obtained by the following:

THEOREM 3. *Let M be a generic submanifold of a quasi-Sasakian manifold \bar{M} . Then the distribution D^\perp is integrable if and only if*

$$A_{cX}Y - A_{cY}X + \nabla_XbY - \nabla_YbX \in D^\perp \oplus \{\xi\}$$

for $X, Y \in D^\perp$ and $\alpha D^\perp \subset D$ and $\beta D^\perp \subset \nu$.

Proof. For $X, Y \in D^\perp$ and $Z \in D$ by using (3), (7) and (9) we have

$$\begin{aligned} (16) \quad g([X, Y], \phi Z) &= g(\nabla_X Y, \phi Z) - g(\nabla_Y X, \phi Z) \\ &= g(\bar{\nabla}_X Y, \phi Z) - g(\bar{\nabla}_Y X, \phi Z) \\ &= g((\bar{\nabla}_X \phi)Y - \bar{\nabla}_X \phi Y, Z) - g((\bar{\nabla}_Y \phi)X - \bar{\nabla}_Y \phi X, Z) \\ &= -g(\nabla_X bY - A_{cY}X, Z) + g(\nabla_Y bX - A_{cX}Y, Z) \\ &= -g(A_{cX}Y - A_{cY}X + \nabla_X bY - \nabla_Y bX, Z). \end{aligned}$$

Further, for $X, Y \in D^\perp$, using (5), we obtain

$$\begin{aligned} (17) \quad g([X, Y], \xi) &= g(\nabla_X Y, \xi) - g(\nabla_Y X, \xi) \\ &= f(\bar{\nabla}_X Y, \xi) - g(\bar{\nabla}_Y X, \xi) \\ &= -g(Y, \bar{\nabla}_X \xi) + g(X, \bar{\nabla}_Y \xi) \\ &= -g(Y, \phi F X) + g(X, \phi F Y) \\ &= 2g(F X, \phi Y) \\ &= 2g(\alpha X, b Y) + 2g(\beta X, c Y). \end{aligned}$$

Hence the theorem follows from (16) and (17).

COROLLARY 2. *Let M be a generic submanifold of a quasi-Sasakian manifold \bar{M} . Then the distribution D^\perp is integrable if M is a CR-submanifold of \bar{M} and $\beta D^\perp \subset \nu$.*

Proof. With the help of Lemma 2, the result follows from (16) and (17).

COROLLARY 3. *Let M be a generic submanifold of a quasi-Sasakian manifold \bar{M} . If $T(M)$ is invariant under F and D^\perp is integrable, then M is an invariant submanifold of \bar{M} .*

Proof. As D^\perp is integrable, by Theorem 3 we have $\alpha X \in D$, for $X \in D^\perp$. Also as $T(M)$ is invariant under F , by Proposition 1, we have $F X = \alpha X \in D^\perp$, for $X \in D^\perp$. Thus $F X = \alpha X = 0$, for $X \in D^\perp$ and therefore $D^\perp \subset \ker F$. For $X \in D^\perp$, as $F X = 0$, using (4) we obtain $F \phi X = \phi F X = 0$, which gives $\phi X \in \ker F \subseteq T(M)$ and therefore we have $D^\perp \subset D$. Thus $D^\perp = \{0\}$.

Hence the corollary follows.

THEOREM 4. *Let M be a generic submanifold of quasi-Sasakian manifold \overline{M} . Then the distribution $D^\perp \oplus \{\xi\}$ is integrable if and only if*

$$A_{cX}Y - A_{cY}X + \nabla_XbY - \nabla_YbX \in D^\perp \text{ for } X, Y \in D^\perp,$$

and

$$(18) \quad \alpha X + \nabla_\xi \phi X \in D \text{ for } X \in D.$$

Proof. For $Z \in D^\perp$ and $X \in D$, by using (2), (3), (4) and (5) we have

$$\begin{aligned} (19) \quad g([Z, \xi], X) &= g(\nabla_Z \xi, X) - g(\nabla_\xi Z, X) \\ &= g(\bar{\nabla}_Z \xi, X) - g(\bar{\nabla}_\xi Z, X) \\ &= g(\phi FZ, X) + g(Z, \bar{\nabla}_\xi X) \\ &= g(\phi FZ, X) + g(\phi Z, \phi \bar{\nabla}_\xi X) \\ &= g(\phi Z, FX) + g(\phi Z, \bar{\nabla}_\xi \phi X) \\ &= g(bZ, FX) + g(cZ, FX) + g(bZ, \nabla_\xi \phi X) + g(cZ, h(\xi, \phi X)) \\ &= g(bZ, FX) + g(cZ, FX) + g(bZ, \nabla_\xi \phi X) + g(cZ, \bar{\nabla}_{\phi X} \xi) \\ &= g(bZ, FX) + g(cZ, FX) + g(bZ, \nabla_\xi \phi X) + g(cZ, \phi F \phi X) \\ &= g(bZ, FX) + g(cZ, FX) + g(bZ, \nabla_\xi \phi X) + g(cZ, -FX + \eta(FX)\xi) \\ &= g(bZ, FX) + g(cZ, FX) + g(bZ, \nabla_\xi \phi X) - g(cZ, FX) \\ &= g(bZ, \alpha X) + g(bZ, \nabla_\xi \phi X) \\ &= g(bZ, \alpha X + \nabla_\xi \phi X). \end{aligned}$$

By Theorem 3 and formula (19) the theorem follows.

COROLLARY 4. *Let M be a generic submanifold of a quasi-Sasakian manifold \overline{M} . If $T(M)$ is invariant under F , then $D^\perp \oplus \{\xi\}$ is integrable if and only if $\nabla_\xi \phi X \in D$ for $X \in D$.*

Proof. Since $T(M)$ is invariant under F , by Proposition 1, D is invariant under F and therefore the corollary follows from (18) of Theorem 4.

Acknowledgement. The authors are thankful to the referee for his valuable suggestions in the improvement of the paper.

References

- [1] A. Bejancu, *CR-submanifolds of Kaehler manifold I*, Proc. Amer. Math. Soc. 69, (1978), 135–142.
- [2] A. Bejancu, *CR-submanifolds of Kaehler manifold II*, Trans. Amer. Math. Soc. 250, (1979), 333–345.

- [3] D. E. Blair, *The theory of quasi-Sasakian structures*, J. Diff. Geometry, 1 (1967), 331–345.
- [4] D. E. Blair, *Contact Manifolds in Riemannian Geometry*, Lecture Notes in Mathematics, 509 Springer-Verlag, Berlin, 1976.
- [5] D. E. Blair, *Riemannian geometry of contact and symplectic manifold*, Progress Math. Vol. 203, Birkhäuser, Boston-Basel-Berlin, 2003.
- [6] C. Calin, *Contact CR-submanifolds of quasi-Sasakian manifolds*, Bull. Math. Soc. Sci. Math. Roumanie, 36(84) (1992), nr 3-4, 217–226.
- [7] C. Calin, *On some properties of a quasi-Sasakian manifold*, Algebras, Groups and Geometries, 16 (1999), 39–46.
- [8] B.-Y. Chen, *Differential geometry of real submanifold*, Monatsh Math. 91 (1981), 257–274.
- [9] U. C. De and A. K. Sengupta, *Generic submanifolds of a Lorentzian Para-Sasakian manifold*, Soochow J. Math., 27, No 1. (2001), 29–36.
- [10] S. Kanemaki, *On Quasi-Sasakian Manifolds*, Banach Center Publications, 12 (1984), 95–125.
- [11] M. Kobayashi, *CR-submanifolds of a Sasakian manifold*, Tensor N. S. 35 (1981), 297–307.
- [12] Z. Olszak, *Curvature properties of quasi-Sasakian manifolds*, Tensor N. S. 38 (1982), 19–28.
- [13] Z. Olszak, *On three-dimensional conformally flat quasi-Sasakian manifolds*, Period. Math. Hungar., Vol. 33(2) (1996), 105–113.
- [14] M. H. Shahid and S. Ali, *Generic submanifold of a Sasakian manifold*, Math. Student, 52, No. 1 (1989), 197–202.
- [15] M. H. Shahid and I. Mihai, *Generic submanifolds of trans-Sasakian manifolds*, Publ. Math. Debrecen, 47 (1995), 209–218.
- [16] M. H. Shahid, A. Sharfuddin and S. I. Hussain, *CR-submanifolds of a Sasakian manifold*, Review Research, Fac. Sc. Yugoslavia, 15 No. 1 (1985), 263–278.
- [17] P. Verheyen, *Generic submanifolds of Sasakian Manifold*, Med. Wisk. Inst. K. U. Leuven, 157 (1982), 1–21.

U. C. De and Anup Kumar Sengupta
 DEPARTMENT OF MATHEMATICS
 UNIVERSITY OF KALYANI
 KALYANI-741235, NADIA,
 WEST BENGAL, INDIA
 E-mail:ucde@klyuniv.ernet.in

C. Calin
 TECHNICAL UNIVERSITY OF IASI
 DEPARTMENT OF MATHEMATICS
 6600 IASI, ROMANIA
 E-mail: calin@math.tuiasi.ro

Received January 14, 2002; revised version March 17, 2003.

