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GENERIC SUBMANIFOLDS
OF QUASI-SASAKIAN MANIFOLDS

1. Introduction

A. Bejancu [1], [2] defined and studied CR-submanifolds of Kaehle-
rian manifolds. CR-submanifolds of Sasakian manifolds were studied by M.
Kobayshi [11] and M. Hasan Shahid [16]. B.-Y. Chen [8] introduced the no-
tion of a generic submanifold of a Kaehler manifold. Generic submanifolds
of Sasakian manifolds were studied by P. Verheyen [17] and M.Hasan Shahid
[14]. Generic submanifolds of trans-Sasakian manifolds were studied by M.
Hasan Shahid and I. Mihai [15].

D. E. Blair [3] initiated the study of normal almost contact metric man-
ifolds with closed fundamental 2-form & and such manifolds were called
quasi-Sasakian manifolds. Z. Olszak [12], [13] extensively studied 3-dimen-
sional quasi-Sasakian manifolds. C. Calin [6] studied contact CR-submani-
folds of a quasi-Sasakian manifold.

The purpose of the present paper is to study generic submanifolds of a
quasi-Sasakian manifold.

2. Preliminaries
Let M be a (2n + 1)-dimensional almost contact metric manifold with
(9,&,1,9) as its almost contact metric structure, where ¢ is a tensor field of

type (1,1), £ is a vector field, 7 is a 1-form and g is a Riemannian metric on
M satisfying

¢)) ¢ =-I+n®¢& ¢6=0, nop=0, n(§)=1,
(2) 9(6X,4Y) = g(X,Y) — n(X)n(Y) for X, Y € T(M).
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The fundamental 2-form of M is defined by ®(X,Y) = g(X, ¢Y), X,Y €

T(M). The Nijenhuis tensor of ¢ is the tensor field N given by
No(X,Y) = [¢X,¢Y] + $°(X, Y] - ¢[X, ¢Y] - $[¢X,Y], X, Y €T(M).

The almost contact structure (¢, &, 7, g) is said to be normal if [4], [5] Ny +
2dn®€=0.

The manifold M is said to be a quasi-Sasakian manifold if its almost
contact structure (¢, £, n) is normal and the fundamental 2-form & is closed.
A quasi-Sasakian manifold has been characterised by S. Kanemaki [10] as
follows: a differentiable manifold M is quasi-Sasakian if and only if it is

endowed with an almost contact metric structure (¢,&,7,9) and a tensor
field F of type (1,1) such that

3) (Vx9)Y = n(Y)FX - g(FX,Y)t,
(4) $FX = F¢X, g(FX,Y)=g(X,FY),

for X, Y € T(M), where V is the Levi-Civita connection with respect to the
metric g. From (3), we obtain

(5) Vxt=¢FX, XeT(M).
Using (1) and (4) we get
(6) Fg =n(FE)E.

Hence from (3) it follows that V¢& = 0. A quasi-Sasakian manifold M is
Sasakian if F = —1I.

Let M be an m-dimensional submanifold isometrically immersed in a
quasi-Sasakian maifold M such that the structure vector field ¢ of M is
tangent to the submanifold M. We denote by {¢} the 1-dimensional distri-
bution spannned by ¢ on M and by {¢}! the complementary orthogonal
distribution to {¢} in T(M). For any X € T(M), we have ¢X € {¢}*. For
XeT (M), we put
(7 X =bX + cX,

where bX € {¢}* and cX € T+(M). Thus X — bX is an endomorphism of
the tangent bundle T(M) and X +— cX is a normal bundle valued 1-form
on M.

If the maximal invariant subspaces under ¢, D, = T,(M) N ¢T,(M),
define a differentiable distribution D on M, then M is called a generic sub-
manifold of M. Thus for a generic submanifold M, we have the orthogonal
decomposition T(M) = D & D+ @ {¢}, where D+ is the subbundle comple-
mentary orthogonal to D & {£} in T(M). Then it follows immediately that
bD =0, bDt c DL
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Let T1M be the normal bundle of M. If v, is the maximal invariant
vector subspace of T;-(M), ie,pp= TI;L(M) N quTI;L (M), then for p eM, v,
defines a differentiable subbundle of T;;L(M ) and v = (cD1)t, TH(M). =
cD* @ v. For V € T1(M), suppose
(8) ¢V =tV + [V,
where tV and fV denote the tangential and normal component of ¢V re-
spectively. We have ¢ (TL (M )) c D*.

A generic submanifold with ¢D+ C T+ (M) will be called a CR-sub-
manifold of the quasi-Sasakian manifold M.

We denote by g the metric tensor field of M as well as the induced metric
on M. Let V (resp., V ) be the Levi-Civita connection on M (resp., M).
The Gauss and Weingarten formulas for M are respectively given by
(9) VxY =VxY + h(X,Y), VxV =—-AyvX + V%V,

for X,Y € T(M) and V € T+(M), where h (resp., A ) is the second fun-
damental form (resp., tensor ) of M in M and V. denotes the covariant
differentiation with respect to the normal connection. From (9), it follows

(10) g (h(Xa Y)’ V) = g(AVX7 Y)a
for X,Y € T(M) and V € T+(M).

3. Basic results

For X € T(M), we put FX = aX + 8X, where aX and X are the
tangential and normal component of FX respectively.
For X,Y € T(M), we put

(Vxb)Y =VxbY —b(VxY),
(Vxe)Y = VEeY — ¢ (VxY).
LEMMA 1. Let M be a generic submanifold of a quasi-Sasakian manifold M.
Then for X,Y € T(M),
(11) (Vxb)Y = Ay X+t (X,Y) +n(Y)aX — g(FX,Y)E,
(12) (Vxe)Y = fh(X,Y) — h(X,bY) + n(Y)BX.
Proof. From (3), (7), (8) and (9) we have
VxbY +h(X,bY)— Ay X + VEcY —bVxY —cVxY —t h(X,Y) - f h(X,Y)
=n(Y)eX +n(Y)BX — g(FX,Y)S,

for X,Y € T(M). Hence, by equating the tangent and normal parts, we
obtain (11) and (12).
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LEMMA 2. Let M be a CR-submanifold of a quasi-Sasakian manifold M.
Then for Z,W € D+,

AW = Agw Z.
Proof. For Z,W € D' and X € T(M), by using (3), (9) and (10),we have
9(AczW, X) = g (H(X, W), $2) = g (VxW,$2) =~ ($Vx W, 2)
=—g(Vx¢W,2) = g (Aw X, 2) = g (Aw 2, X),
which proves the lemma.

PROPOSITION 1. Let M be a generic submanifold of a quasi-Sasakian man-
ifold M. If T(M) is invariant under F, then both the distributions D and
DY are invariant under F.

Proof. As T(M) is invariant under F, we have X € D = FX e T(M).
Also X € D = ¢X € T(M). Now by (4), ¢FX = F¢X € T(M), since
#X € T(M) and T(M) is invariant under F. But FX € T(M) and ¢FX €
T(M) = FX € D. Thus D is invariant under F.

For X € D! and Y € D, by using the invariance of D under F and (4),
we obtain g (FX,Y) = ¢(X,FY) = 0. On the other hand, by using (4) and
(6), we have g (FX, ) = g (X, F£) = g (X,n(FE)E) = n(f£)g(X, €) = 0, for
X € D*. Hence D+ is invariant under F.

REMARK. In Corollary 1 of [6] to prove the invariance of D, Calin used a
method which is applicable only for CR-submanifolds. The method used
above can be applied for any type of submanifolds having invariant distri-
bution D.

Now we give an example of a generic submanifold, which is not a CR-
submanifold, of a quasi-Sasakian manifold.

EXAMPLE. Let the quaSI-Sasaklan structure (¢, ,7,g) of rank 5 of R7 [7],
be given by ¢ = ¢Pdr’ ® 2x; g = gijdz’ ® da’,

0 00 1 000
0 00 0 100
0 00 0 010
[#]=]-10 0 0o 00 0],
0 0 -1 0 000
0 00 -1 000
\0 0 0 2y 2® 0 0
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and
1+ 4(y1)? dyty? 0 00 0 —2¢!
dyly? 1+4(*)% 0 0 0 0 —2y?
0 0 1000 O
[g,'j]= 0 0 01 00 0 ,
0 0 0010 O
0 0 0001 O
—2y! —2y2 0000 1

with £ = (0,0,0,0,0,0,1)%; n = dz — 2y'da! — 2y°dx?, where (z!, 22, 25, 2%,
28,28, 27) = (z!,22, 23,9y, 92,93, 2) are the Cartesian coordinate on R’.
With respect to the Cartesian coordinate, let {e, = —-} be the global field
of frames of R.

The quasi-Sasakian structure defined in the above is in fact the product
of 5-dimensional Sasakian structure and the flat 2-dimensional Kéahlerian

structure.
Now let M be a submanifold of R?, dimM = 5, defined by

2 1
(13) z! = udsinh?u?; 2% = -1;— + Zsinh 2u?; 23 =ul; 2t =2

r° =3 2® = ut; 2" = 5.
The global field of frames for M is {3%;, 1<a<5}, where
3_6’_3_6_6_6_6_
Oul = 9z’ Out  0x8° OudS  O8x7

8_3_ 2 3
m—u31nh2ual+coshu62+a4,
o 9 9 0 0
78 =SV oI T g

It is easy to see that the normal vector bundle T+ (M) is generated by
the normal vector fields N1, N3 of M defined by

Ny = (1, 0,0, —u3 sin 2u?, — sinh? 42, 0, 2u2) :
N; = (O, 1,0, — cosh?42,0,0, 2u3) .
By straightforward calculation we have ¢(D) = D ;g (b(a—zg), -5%3) #0,

9 (c(3%), N1) # 0 that is, bD* C D* and cD* C T(M) with bD* # {0}
and cD+ # {0}. Thus the submanifold M, defined by (13) is a proper generic
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submanifold of the quasi-Sasakian manifold R? with D = span {-3%-, 5%;};
D1 = span {ng, 8—33'} and T+ (M) = span{Nj, Na}.

4. Integrability of distributions

THEOREM 1. Let M be a generic submanifold of a quasi-Sasakian manifold
M. If T(M) is invariant under F' and F is a non-zero tensor field, then the
distribution D is not integrable.

Proof. For X,Y € D, by using (4), (5) and (9), we obtain

14)  g(X,Y],§) = g(VxY,£) — g (V¥ X,§)
=g (VXY, €) -9 (VYX, f)
= -9 (¥, Vx¢) +9 (X, Vr¢)
=—g(Y,¢FX) + g(X,¢FY)
=g(FX,9Y)+g(FX,9Y) =29 (FX,¢Y).

As T(M) is invariant under F, by Proposition 1, D is invariant under F.
Then, by taking Y = ¢F X in (14) the theorem follows.

COROLLARY 1. [14] Let M be a generic submanifold of a Sasakian manifold
M. Then the distribution D is not integrable.

Proof. Since F = —I, T(M) is invariant under F' and therefore by Theorem
1, the corollary follows.

THEOREM 2. Let M be a generic submanifold of a quasi-Sasakian manifold
M. Then the distribution D is integrable if and only if FD 1 D and

h(X,9Y)=h(¢X,Y), for X,Y € D.
Proof. For X, Y € D, by using (12), we have

VXY = h(X,4Y) - f h(X,Y) - n(Y)BX,
and therefore
(15) c[X,Y]=h(X,8Y) - h(Y,$X)

since n(X) = n(Y) = 0. Hence the theorem follows from (14) and (15).

In the example, given earlier, it is easy to verify that the distributions D+
and D' @ {¢} of the generic submanifold M of the quasi-Sasakian manifold
R7 are not integrable.

Necessary and sufficient conditions for the integrability of the distribu-
tions DL and D+ @ {¢} are obtained by the following:
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THEOREM 3. Let M be a generic submanifold of a quasi-Sasakian manifold
M. Then the distribution DL is integrable if and only if

AxY — Ay X + VxbY — VybX € D* @ {¢}
for X,Y € D1 and aD+ C D and BD+ C v.
Proof. For X,Y e Dt and Ze D by using (3), (7) and (9) we have
(16) g ([X,Y],6Z) = g(VxY,¢Z) — g (Vy X, ¢Z)
=g (VxY,42) -9 (Vv X,42)
=9 ((Vx9)Y - VxoY, Z) - g (Vv $)X - Vy¢X, 2)
=—g(VxbY — Ay X,Z)+ g(VybX — A.xY, Z)
=—g(AcxY — Ay X + VxbY —VybX,Z).
Further, for X,Y € D", using (5), we obtain
(17) 9([X,Y],&) =g(VxY,€) - g(Vy X,¢)
= £ (VxY,€) — 9 (Vv X,¢)
=-g (Y, VXE) +g (X, VY&)
=—g(Y,¢FX) +g(X, ¢FY)
=29 (FX, ¢Y)
=2g (aX,bY) + 29 (BX,cY).
Hence the theorem follows from (16) and (17).

COROLLARY 2. Let M be a generic submanifold of a quasi-Sasakian manifold
M. Then the distribution DL is integrable if M is a CR-submanifold of M
and BDt c .

Proof. With the help of Lemma 2, the result follows from (16) and (17).

COROLLARY 3. Let M be a generic submanifold of a quasi-Sasakian mani-
fold M. If T(M) is invariant under F and D~ is integrable, then M is an
invariant submanifold of M.

Proof. As D+ is integrable, by Theorem 3 we have X € D, for X € DL.
Also as T(M) is invariant under F', by Proposition 1, we have FF. X = aX €
D+, for X € D1. Thus FX = aX =0, for X € DL and therefore D+ C
kerF. For X € D+, as FX = 0, using (4) we obtain F¢X = ¢FX = 0,
which gives ¢X € KerF C T(M) and therefore we have D+ C D. Thus
D+ = {0}.

Hence the corollary follows.
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THEOREM 4. Let M be a generic submanifold of quasi-Sasakian manifold
M. Then the distribution D1 @ {¢} is integrable if and only if

AcxY — Acy X + VxbY — VybX € D* for X,Y € D*,

and
(18) aX +VepX €D for X € D.

Proof. For Z € Dt and X € D, by using (2), (3), (4) and (5) we have
(19) g([Z,{],X)=g(Vz§,X)—g(V5Z,X)
=9(Vz¢ X) -9 (Vez, X)
= 9(¢FZ,X) + ¢ (Z2,V¢X)
= 9($FZ,X) + g (¢2,4VeX)
= 9(#2,FX) + g (¢2,VesX)
=g(bZ,FX)+g(cZ, FX) +g(bZ,V¢¢X) + g(cZ,h(¢, X))
= g(bZ, FX) + g(cZ, FX) + g (b2, V¢$X) + g (cZ, Vyxe)
=9g(bZ,FX) +g(cZ,FX) +g(bZ,Ve¢X) + g(cZ,¢F$X)
=g(Z,FX)+g(cZ,FX)+g(bZ,V¢pX)+ g (cZ,—FX + n(FX)E)
=9(bZ,FX)+9(cZ,FX)+g(bZ,V¢¢X) - g(cZ, FX)
= 9(bZ,aX) + g (b2, VegX)
=g((bZ,0aX + Vo X).
By Theorem 3 and formula (19) the theorem follows.

COROLLARY 4. Let M be a generic submanifold of a quasi-Sasakian manifold
M. If T(M) is invariant under F, then D1 @ {€} is integrable if and only
ifVe¢X € D for X € D.

Proof. Since T(M) is invariant under F, by Proposition 1, D is invariant
under F' and therefore the corollary follows from (18) of Theorem 4.
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