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ON SOME APPROXIMATION PROBLEMS 
IN MUSIELAK-ORLICZ SPACES OF MULTIFUNCTIONS 

Abstract. We introduce the Musielak-Orlicz spaces of multifunctions Xm,<p and 
Xc,m,ifi- We prove that these spaces are complete. Also, we get some convergence and 
approximation theorems in these spaces. 

1. Introduction 
Modular approximation by a filtered family of linear operators in Mu-

sielak-Orlicz spaces was studied in [15]. The results of [15] were extended 
to the case of Hammerstein operators in [7]. The results of [7] and [15] were 
extended to the case of some spaces of multifunctions in [8]—[13] (the set 
images are subsets of 2R or the set images are very specific subsets of real 
Hilbert space V). 

In this paper we introduce the spaces of multifunctions Xc,m,<p and Xm^. 
We study the structure of these spaces and we extend the results of [11]—[13] 
to the case of the spaces and Theorems 2 and 3 which we obtain 
are closely connected with superposition operators and Niemytskii operators 
which were studied for example in [1], [18] and [19]. We apply the results of 
[2]-[6] and [16]. All definitions and theorems connected with the idea of the 
Musielak-Orlicz space can be found in [16]. 

Let (ÎÎ, 2 , fi) be a measure space with a nonnegative, nontrivial cr-finite 
and complete measure /x. Let ip be a ^-function i.e., tp : Clx R R+, ip(t, u) 
is an even, continuous function of u, equal to zero iff u = 0 and nondecreasing 
for u > 0 for every t € Cl, is a measurable function of t G fi for every u G R 
and limbec <p(t, u) — oo for /z-a.e. t e CI. Moreover, if f(t, •) is a convex 
function for every t € f2, l im^o = 0 and limu_,oo = oo for every 
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i G ft, then we shall say that the function tp is an N-function. Let E, 
be the Musielak-Orlicz function space generated by the modular 

p{x) = J ip(t, x(t))dfi. 

n 
Let |{ • ||® denote Orlicz norm and || • denote Luxemburg norm in 

L ^ f t , E,/x) if ip is an N-function. Let Y be a real separable Banach space 
with the norm || O ||y. Let 0 denote the zero element of Y. If A, B C Y are 
nonempty then we denote 

H(A, B) = max(sup inf ||x - y\\Y, sup inf ||x - y||y). 
xeAVZB ytgxeA 

Denote by C(Y) the set of all nonempty and compact subsets of Y, by 
B(Y) the set of all nonempty bounded and closed subset of Y and by E(Y) 
the set of all nonempty and closed subsets of Y. 

Denote: 
X = {F : ft - » 2 y : F(t) G E(Y) for e v e r y t G ft}, 

Xc = {F € X : F(t) € C(Y) for /z -a . e . t G ft}, 

Xb = { F e X : F(t) e B(Y) for /x - a . e . t G ft}. 

Two multifunctions F,G G X such that F(t) = G{t) for fi-a.e. t G ft will 
be treated as the same element of X. 

Now we introduce the function d(F, G) by the formula: 

d ( F , G)(t) = H(F(t),G(t)) for al l F, G G X a n d t e ft. 

Let N be the set of all positive integers. Let 0 G Xc be such that 0(i) = 
{©} for every t G ft. Denote |F | = d(F, 0) for every F G X. If F G Xc then 
by r ( F ) we denote a function from ft to Y such that r ( F ) ( t ) G F(t) and 
||r(F)(i)||y = H(F(t), {©}) for /i-a.e. t G ft. 

2. On the spaces Xm^ and XC}Tnt(p 

DEFINITION 1. We say that F G Xf, is a step multifunction if 
n 

F^) = E XAk{t)Bk for e v e r y t G ft 
fc=i 

where xa is a characteristic function of the set A, Bk G B(Y) for k = 
1 , . . . , n , ft = U £ = 1 Ak, Ak G E f o r k = 1 , . . . , n a n d Ai D Aj = 0 f o r i ^ j . 

DEFINITION 2 . We say that F G Xf, is measurable if there exists the sequence 
of step multifunctions F n €Xb for every n G N such that limn_»00d(F, Fn)(i) 
= 0 for /x-a.e. t G ft. 
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DEFINITION 3. We say that F G Xc is c-measurable if there exists the 
sequence of a step multifunctions Fn G Xc for every n G N such that 
linijj—xx) d(F, Fn)(t) = 0 for /x-a.e. t G ft. 

Denote: 
Xm = {F € Xf, : F is measurable }, 
Xc,m = {F € Xc : F is c-measurable }, 
Xs,m — {F G Xb : F is a step multifunction }, 

= {F G : \F\ G LHii.S.A*)}, 

= {Fe XCim : |F| G L*(ft, S, /x)}. 
It is easy to see that d(F, G) G ¿^(ft, E, /x) if F, G G 
By [6], Chapter 2 Theorem 1.35 if F G Xm, then F is measurable and 

"graph measurable" in the sense of [6], Chapter 2, Definition 1.1. 
The spaces XCi7ritv and Xm^ will be called Musielak-Orlicz spaces of 

multifunctions. 

REMARK 1. If F G Xm, then there is the sequence {Gn} such that Gn G Xs^m 

for every n G N and d ( F , G n ) ( t ) —> 0 as n —> oo for /x a.e. t G ii and 
d(Gn ,0)(i) < d(F, 0)(i) for p a.e. t G i). 

Proof . Let Fn e X3yTn for every n G N and d(F, Fn)(t) = 0 for ¡jl-a.e. t G Q. 
Let {rn} be the sequence of simple functions such that rn /* |F|. We define 

Gn(t) = Fn(t) n K(Q,rn(t)) for every t G ft. • 

R E M A R K 2. If Fn G Xm, F e Xb for n G N and d(F, Fn)(t) 0 as n oo 
for /x-a.e. t G ft, then F G Xm. 
REMARK 3. If Fn G Xc>m, F G Xc for n G N and d(F, Fn)(t) - > 0 a s n - > o o 
for /x-a.e. i G ft, then F G XCtTn. 

REMARK 4. Let 5 G X m , / : ft -> R be E-measurable, F = fB, then 
FeXm. 

REMARK 5. Let F,G e Xc>m, then F + G e Xc<m. 

LEMMA 1. Let F„ G Xm for every n G N. If for all e, S > 0 there is K > 0 
such that 

H({t G ft : d ( F n , F m ) ( t ) > e}) < 6 for all m,n>K, 

then there exist a subsequence {Fnfc} of the sequence {Fn} and F G Xm such 
that d(F„ fc,F) —> 0 /x-a.e. and d(F n ,F ) are H-measurable. 

Proof . The proof is very similar to that of Lemma 1 from [11] so we give 
only a skech of it. By the assumptions there is a subsequence {Fnk} of 
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the sequence { F n } such that for /z-a.e. t E Cl and for every e > 0 there 
is K > 0 such that d (F n k ,F n i ) ( t ) < e for all k,l > K. Hence there is 
F E Xb such that d ( F n k , F ) —> 0 /x-a.e., because the space B(Y) with 
metric H is complete. So F G Xm and d(Fn , F) is Immeasurable because 
d (F n ,F)( t ) = l im^ood (F n k ,F n ) ( t ) for /x-a.e. t G Ü. • 

THEOREM 1. Let Fn G Xm<lf> (Fn G Xc<tn^) for every n G N. If for every 
e > 0 and every a > 0 there exists K > 0 such that 

\ip(t,ad(Fm,Fn)(t))dn<e 
a 

for all m,n> K, then there exists F 6 Xm^ (F € such that 

J <p(t, ad(Fn, F)(t))d/j, —> 0 as n —» oo for every a > 0. 
n 

Proof . The proof is very similar to that of Theorem 7.7 from [16] so we give 
only a skech of it. By the assumptions and by Lemma 1 there is F G Xm 

such that 
\ <p(t, ad(Fn, F)(t))dfi <eiorn>K. 
n 

We have \F\(t) < |Fn|(t) + d(Fn,F)(t) for /x-a.e. t G il, so F e Xm,v- The 
space C(Y) with metric H is complete, so if Fn G for every n G N, 
then F G Xc^. • 

COROLLARY 1. Let the function <p be an N-function. Then the function 

for all F,G G Xm<íp 
is a metric in Xm,ip> and <C Xm^i D<p > is a complete metric space. 

Theorem 1 is a generalization of Proposition 5.2 Chapter 5 from [6] and 
Theorem 0 from [12]. 

DEFINITION 4. The «¿»-function <p will be called locally integrable, if 
\A <p(t, u)d/j, < oo for every u > 0 and A G I! with < oo. 

Applying the proof of Proposition 3.3, Proposition 2.17 and Remark 3.4 
Chapter 2 from [6] we easy obtain the following: 

LEMMA 2. Let the if-function ip be locally integrable. Then for every F G 
XmtV> there exists the sequence { / n } C L'P(Q, S, fi) such that F(t) = {/n}(£) 
for fi-a.e. t G Í2. 
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Let Q :QxY —>Y. We define the operators H and Hi by the formulas: 

H(F)(i) = { : X 6 i f F ^ i s c o m P a c t 

[ {©}, if F(t) is noncompact, 

H (F)(t) = ! {<?(*>*) if F(t) is bounded 
I {©}, if F(t) is unbounded 

for every F G Xm a n d every t G ÍÍ. 

THEOREM 2. Let the (p-function ip be locally integrable. If the function Q 
fulfils the following conditions: 

a) there are L > 0 and g G LV(Q, £, /x) such that ||Q(t, u)||y < £|M|y + 
g(t) for all u e Y and t G Q, 

b) Q(•, x) is strongly measurable for every x G Y, 
c) Q(t, •) is continuous for every t G fi, 

then H . Xcm>tp > XCtm,<p-

Proof . Let F G Xc^m¡¡fi. First, let us observe that H(F)(t) is a compact and 
nonempty set for every t G Í2, because Q(t, u) is a continuous function as a 
function of u for every t G Í1 

Second, let us remark that from a) we obtain: 

|H(F)|(í)<L||r(F)(í)||y + 5(í) 
for every F G and every t G Í2. By Lemma 2 we easy obtain that 
|H(F)| is E-measurable, so |H(F)| G L ^ f i , S,/i) for every F G Xe,m,v. 

Third, let B G C(Y) and let { i i , X2,..., xn} be a <5-net for B. Let 
G(t) = {Q(t,Xi) : t = l , . . . , n } , 

GB(t) = {Q(t,x) : x € B} 

for every t G fi. We have G G Xc,m and by c) for every e > 0 there is 
ó > 0 such that ff(G(t),Gs(t)) < e for every t G í), so Gb G XC;7n. Let 
now Ak G S , Bk G C(Y) for k = 1 , . . . , n, = í), ,4¿ ^ A,- if i ^ j. 
Let Ffc = XAkBk for fc = 1 , . . . , n. Let F' = ¿ £ = i Ffc. It is easy to see that 
H(F') = H(Ffc) and H(Ffc) is c-measurable for k = 1 , . . . , n so H(F') 
is c-measurable. 

Fourth, let t G ÍÍ and let F(i) and Fn(i) be compact. Then F(t)UFn(t) is 
compact, so from every e > 0 there is S > 0 such that if x G F(t), xn G Fn(t) 
and ||x - a;n||y < <5, then ||Q(í,:r) - Q(i,x„)||y < e. 

Let K > 0 be such that H(F(t),Fn(t)) < S for every n > K. Let 
y G H(F)(t) , so there is x G F(t) such that y = Q(t,x). Also there are 
xn € Fn(t) such that ||x — xn\\y < S for n > K. Let yn = Q(t,xn), hence 
IIy - Vn\\Y < e for all n> K. 
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So it is easy to see that if H(F(t), Fn(t)) —• 0 as n —> oo, then 

H(H(F)(t), Ü(Fn)(t)) ^ 0 as n oo. 

Hence we obtain the assertion by Remark 3. • 

Analogously, by Proposition 7.9 Chapter 2 from [6] we obtain 

THEOREM 3. Let the <p-function (p be locally integrable. If the function Q 
fulfils the following conditions: 

a) there is L > 0 such that ||<5(i, u) — Q(t, v)||y < L\\u — i>||y for all 
u,v G Y and fi-a.e. t G O,, 

b) the multifunction {<?(•, x) : x G B} is measurable for every B G B(Y), 

3. Density and approximation 

THEOREM 4 . Let fi be atomless, the (p-function ip be locally integrable and 
fulfils the A2 condition. Then X¿)S>rn C Xmtlfi and for every F G XmtV 

there exist a sequence {.Fn} such that Fn G X¿)Sjm for every n G N and 
p(ad(Fn, F))—>0 as n —> 00 for every a > 0. 

Proof. First, it is easy to see that by the assumptions XitS¡m c 
Second, let F G Xm^. By Remark 1 there is the sequence {Gn} such 

that Gn G Xi^m for every n G N and d(F, Gn)(t) —> 0 as n —> 00 /i-a.e. and 

So H{F{t), Gn(t))(t) < 2H(F{t), {©}) ^-a.e. for every n G N. Also 

as n —> 00 /i-a.e. for every a > 0. So we obtain the assertion by the Lebesgue 
dominated convergence theorem. • 

Theorem 4 is a generalization of Theorem 7.6 from [16] and Proposition 
2 from [4] and Theorem 2 from [11]. If we omit the A2 condition in the 
assumptions of Theorem 4, then we only obtain that p(ad(Fn, F)) —» 0 as 
n —> 00 for some a > 0. 

Let now (fi, E, /z) be a Lebesgue measure space. Let Kn, K : iî x £î —> R+ 

for every n G N. We introduce the family of operators (Un)neN and the 
operator U by the formulas: 

d(Gn ,0)(í) <d(F,0)( i ) /x-a.e. . 

ip(t,aH(F(t),Gn(t))) —• 0 

Un(F)(s) = { J Kn(t, s)f{t)dt : /(f) G F(t) for every t G iî 

and the integral exists 
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{/(F)(s) = { \ K(t, s)f(t)dt : f{t) e F ( i ) for every í € fi 
ft .. 

and the integral exists k 

for every n € N every F E Xm^ and every sGÍ l . 

LEMMA 3. Leí Y = Rn. Let f fulfil the assumptions of Theorem 4• Let 
moreover <p and ip be the complementary N-functions in the sense of Young 
(see [16], Definition 13.4), Kn(-,s) G for every n E N and every 
s E fl. Let gn(s) = ||-Kn(-> for every n E N and every s E Í2 and let 
gn E Lv(Çl, S, /i) for every n E N, then Un(F) E Xmi¥, /or a/Z F € Xmi<p and 
nE N. 

Proof . Let s e iî, n € N. By Theorem 13.13 from [16] we have 

j ür„(t, s)|F|(í)dí < oo for every F E Xm>ip. 
ft 

So by Proposition 8.6.2, Theorems 8.6.3 and 8.7.2 from [3], Theorem 5.14 and 
Proposition 5.20 from [6] and Theorem D1.10 and Corollary D 1.10.1 from 
[14] we obtain Un(F + G)(s) = Un{F)(s) + Un(G)(s) and Un(F)(s) E B(Y) 
for all F, G E Xmt¡p. 

Let B E C(Y), C £ E, fx(C) < oo. Let F( i ) = xc(t)B for every t E ÍX 
It is easy to see that F E Xm^ and, by Remark 4, Un(F) is measurable. 

Let now F € Xmbe arbitrary. By Theorem 4 there is the sequence of 
step multifunctions { F m } such that Fm E Xm^ and ||d(Fm, F)||£ —> 0 as 
n —> oo. It is easy to see that Un(Fm) is mesurable and we have 

H(Un(F)(s), Un(Fm)(s)) = H( J Kn(t, s)F(t)dt, ¡ Kn(t, s)Fm(t)dt) 
ft ft 

< \Kn(t,s)H(Fm(t),F(t))dt 
ft 

< ||Kn||g||d(Fm, F)||£ - » O a s m - t o o . 

So Un{F) is measurable. 
To end the proof we must prove that \Un(F)\ E Lv(fi, S, y). We have for 

a > 0 

( j Kn(t, s)F(t)dt, {©}))ds 
ft ft 

< S S Kn(t, s)H(F(t), {G})dt))ds 
ft ft 

< S^(S,a||Kn(-,S)||J||d(F,0)||J)dS<oo 
ft 

so \un(F)\ELf(n,i:,fi). • 
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Analogously we obtain the following: 

LEMMA 4. Let Y = Rn. Let fulfil the assumptions of Theorem 4• Let 
moreover <p and ip be the complementary N-functions in the sense of Young, 
K(-, s) G S, /x) for every s £ i i . Let g(s) = \\K(-, s) || J for every s £ Q. 
and let g G ¿^(il, E, p). Then U(F) G Xm<ip for all F € Xm>v. 

THEOREM 5. Let the assumptions of Lemmas 3 and 4 hold. Denote hn(s) = 
\\Kn(-, s) - K(•, for every s G ft. If \\hn\\^ -> 0 as n oo, then 

Dv{Un{F), U(F)) —> 0 as n —• oo for every F G Xm,v. 

Proof . Let a > 0, n G N, F G XmWe have 

J <p(s,aff( \ Kn(t, s)F(t)dt, \ K(t, s)F(t)dtyds 
n n n 

< J ip(s, a( J H(Kn{t, s)F(i), a)F(i))di))ds 
n n 

< j <p(s,a( \ \Kn(t,s) - if(i,s)||F|(t)dt))ds 
a n 

< 5 <p(s, a\\Kn(; S) - K(; S)||g||d(F, 0)11 %)d8. 
n 

So Dv(Un(F), U(F)) -» 0 as n -> oo. • 

COROLLARY 2. / / i/ie assumptions of Theorems 2 and 5 hold, then 

Dip{Un(H(F)), U(H(F))) as n-^oo for every F € XmtV. 

4. On the convolution operators 
In this section we will apply by the notation used in [12] and [16]. Let 

V be an abstract set of indices and let V be a filter of subsets of V. 

DEFINITION 5. A function g : V —> R tends to zero with respect to V, 

written g(v) —> 0, if for every e > 0 there is V G V such that | g(v) \< e for 
all v G V. 

DEFINITION 6. Let Fv e Xmiip for every v G V and let F G Xm^. We write 
Fv F, if for every e > 0 and every a > 0 there is a set V G V such that 
p(ad(Fv, F)) < e for every v G V. 

REMARK 6. Let Fv G Xm<v for every v eV and let F, G G Xm^. If 

F v F a n d F v G> then F = G. 

DEFINITION 7. The family T = (Tv)ve-y of operators Tv : Xm^ —> Xm^ 
for every v G V will be called (d, V)-bounded, if there exist positive con-
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stants ki, k^ and a function g : V —> R+ such that g(v) 0, and for all 
F,G 6 Xmi¥, there exists a set VpiG € V such that p(ad(Tv(F),Tv(G))) < 
KIP(AK<2d(F, G)) + g(v) for every a > 0 and every v G VF,G-

Analogously as in [12] we obtain the following: 

REMARK 7. Let the assumptions of Theorem 4 hold. Let the family T be 
(d, V)-bounded. If TV(F) F for every F G X i iS,m, then TV(F) ^ F 
for every F G XM>IP. 

Let now and next i) = [0, b), 0 < b < oo, ¡J, = Lebesgue measure in 
the cr-algebra E of all Lebesgue measurable subsets of [0, b). The translation 
operator Tv : —» X will be defined by the equality Tv(F)(t) = F(t + v), 
where F is ¿»-periodically extended to the whole R. Also, the function </? will 
be periodically extended with respect to the first variable. 

DEFINITION 8. We shall say that the ^-function ip is R-bounded, if there are 
positive constants k\, k<2 such that 

ip(t — v, u) < ki<p(t, k^u) + f ( t , v) f o r al l u,v,t G R, 

where the function / : R X R —• R-y. is measurable and 6-periodic with 
respect to the first variable and such that writing h(v) = \0 f(t, v)dt for 
every v € R, we have M = supu e f l/i(u) < oo and h(v) —• 0 as v —> 0 or 
v —» b. 

Let now V = R and let V be a filter of all neighbourhoods of zero in R. 

THEOREM 6. Let the ip-function ip fulfils the A 2 condition, (p is r-bounded 

and \Qip(t,c)dt < 00 for every c > 0 . Then rv{F) F for every 

F 6 Xmfip. 

P r o o f . Let F,G € Xm^. Let Fn,Gn 6 XStTn for every n € N and let 

p(ad(Fn, F)) 0 , p(bd(Gn, G)) 0 a s n 00 f o r a l l a, b > 0 . 

It is easy to see that TV(FN), RV(GN) € Xs^m for all n G N and v € R. Also it 
is easy to see that RV(F),RV(G) € Xm for every v € R. First, we prove that 
Tv(F),Tv(G) 6 Xm<(fi for every v G R. For every a > 0 and every v G R we 
have 

b b 
\ <p(t, CL\Tv(F)I(t))dt = \ tp(t, ad(F, 0 ) ( t + v))dt 
0 0 

b 
= \<p(s-v,ad(F,0)(s))ds 

0 
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b 
< h \ <p{t, k2ad(F, O)(t))dt + M < oo. 

o 
Analogously we obtain that rv(G) € Xm^ for every v £ R. Second, for every 
a > 0 and every v E R we have 

b 
p(ad(Rv(F), Tv(G))) = J tp(t, ad(F, G)(t + v))dt 

o 
< klP(ak2d(F,G)) + h{v). 

So the family r = (rv)veR is (d, V)-bounded. Third, it is easy to see that 
Tv (F) ^X F for every F € XStTn. Hence we obtain the assertion from 
Remark 7. • 

COROLLARY 3. If the assumptions of Theorem 6 hold and moreover <p is an 
N-function, then Dv(Tv{F), F) —> 0 as v —> 0. 

Now we extend the function Q b-periodically with respect to the first 
variable. Let W be an abstract nonempty set of indices and let W be the 
filter of subsets of W. Let now Kw : [0,6) —> R+ for every w 6 W be 
integrable in [0,6) and singular, i.e. 0 < a(w) = fQKw(t)dt 1, crg(w) = 
fs~& Kw{t)dt 0 for every 0 < 8 < 6/2, a = supmewff(w) < oo, and 
let us extend Kw 6-periodically to the whole R. We introduce the family of 
operators A = (Aw)w ew by the formula: 

b 
Aw(F)(s) - { J Kw(t - s)f(t)dt: f(t) G F(t) for every t e [0,6) 

o 1 
and the integral exists k 

for every w 6 W every F € and every s 6 [0,6). 
LEMMA 5. Let Y = Rn. Let ip and ip be complementary N-functions in the 
sense of Young. If moreover ip fullfils the assumptions of Theorem 6, Kw G 

S, ¡JL) for every w € W and (Kw)wew is singular, then AW(F) € Xmtip 

for all F € Xm¡íp and w 6 W . 

Proof. Let s € [0,6), w e W. By Theorem 13.13 from [16] and by the proof 
of Theorem 6 we have 

b 
\ Kw(t)\F\(t + s)dt < oo for every F € Xm#. 
o 

So by Proposition 8.6.2, Theorems 8.6.3 and 8.7.2 from [3], Theorem 5.14 and 
Proposition 5.20 from [6] and Theorem D1.10 and Corollary Dl.10.1 from 
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[14] we obtain AW(F + G)(s) = Aw(F)(s) + Aw(G)(s) and Aw(F)(s) € B(Y) 
for all F,G £ 

Let B e C(Y), C e E . Let F(t) = xc(t)B for every t € [0, b). It is easy 
to see that F € Xm^ and by Remark 4 AW(F) is measurable. 

Let now F € XM^ be arbitrary. By Theorem 4 there is the sequence 
of step multifunctions {FN} such that FN G Xm>ip and ||d(Fn, F)\\^ —> 0 as 
n —> oo. By the proof of Theorem 6 we have ||d(rs(Fn),TS(F))\\^ —• 0 as 
n —* oo. It is easy to see that AW(FN) is measurable and we have 

b b 
H(Aw(F)(s),Aw(Fn)(s)) = H(\Kw{t)F(t + s)dt, jKw(t)Fn{t + s)dt) 

o o 
b 

<\Kw(t)H(Fn(s + t),F(t + s))dt 
o 
b 

= \ Kw(t)H(rs(F)(t), rs(Fn)(t))dt 
o 

< \\Kw\\%\\d(Ts(Fn),Ts(FMi ^ 0 as t w oo. 

So AW(F) is measurable. 
To end the proof we must prove that G E,/i). We have 

(see also [16], the proof of Theorem 7.15) for a > 0 
b b 
\tp(s,aH(\ Kw(t - s)F(t)dt, {©}))ds 
o o 

b b 
< S </>(s, a( j Kw(t - s)H(F(t), {©})dt))ds 

0 0 
J 6 6 

< \ Kw{t) (\<p(u- t, aaH(F(u), {G})du))dt 
a \ w ) 0 0 1 

1 6 

< kip(k2a(Td(F, 0)) + \ Kw{t)h{t)dt 
a(w) ¡> 

< kip(k2aad(F, 0)) + M < oo 
so • 
LEMMA 6. Let C € B E C{Y), F{t) = xc{t)B for every t <E [0, b). If the 

d ipW assumptions of Lemma 5 hold, then AW(F) convF. 

Proof. By Theorem 7.16 from [16] we have 
b b 
J <p(s, a($ Kw(t - s)Xc(t)dt - xc(s)))ds 0 
o o 
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for every a > 0. Let a > 0. We have 

p(ad(Aw(F), convF)) 
b b 

= \tp(s,aH^\Kw(t - s)xc(t)Bdt,xc(s)convB^ds 
o o 
b b 
^ip(s,aH^Kw(t — s)xc(t)dtconvB, xc(s)convB^ds 
o o 
b b 

<\<p(s,aH(convB, {0})| jKw(t - s)Xc(t)dt - xc(s)|)ds 0. • 
o o 

LEMMA 7. If the assumptions of Lemma 5 hold, then 

p{ad{Aw(F), AW(G))) < k1p(ak2ad(F,G)) + g{w) 

for all F,G € Xmt(p, w € W and every a > 0, where 

1 6 
g(W) = -—\Kw(t)h(t)dt^ 0. 

P r o o f . Let F, G € Xm}lfi, a > 0 and w € W . We have 

6 6 

p(ad(Aw(F), AW(G))) <\<p(s,a\H{Kw(t - s)F(t),Kw{t - s)G(t))dt)ds 
o o 
b b 

< \<p(s,a\Kw(t - s)d(F,G)(t)dt)ds 

< kip(ak2ad(F, G)) + g(w), 

where g(w) 0 (see also [15], the proof of Proposition 2). • 

By Lemmas 5-7, Remark 7 and Proposition 1.17, Chapter 1 from [6] we 
obtain the following theorem. 

THEOREM 7. If the assumptions of Lemma 5 hold, then D,p(Aw(F), convF) 
w —• 0 for every F 6 Xm>ip. 

Analogously, by Theorem 8.6.4 and Proposition 8.6.2 from [3] we obtain 
the following theorem 

THEOREM 8. Let Y be a real reflexive separable Banach space. If the other 
assumption 
F G Xm^. 
assumptions of Lemma 5 hold, then D,p(Aw(convF), convF) 0 for every 
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Now, we define the families of Hammerstein operators T = (Ttu)we-\v 
and T 1 - ( T ^ ^ e w by the formulas: 

Tu,(F) = AW(H(F)), Ti(F) = A^convH^F)) 

for every w G W and every F £ We easy obtain the following: 

THEOREM 9. If the assumptions of Theorems 2 and 7 hold, then 

DV(TW(F), convU(F)) 0 for every F £ Xm<ip. 

THEOREM 10. If the assumptions of Theorems 3 and 8 hold, then 

Dv(Tl(F),7EmjHi(F)) 0 for every F £ Xm,v. 

Theorems 2 and 6 -10 are the generalization of Theorems 1, 2, 3 and 4 
from [12] and Theorem 3 from [11] and [13]. 

5. F inal remark 

DEFINITION 9. Let Fv £ Xm<v for every v £ V and let F £ Xm,<p- We write 

Fv F, if for every e > 0 there is a set V £ V such that p(ad(Fv, F)) < e 
for every v £ V for some a > 0. 

If we omit the A2 condition in the assumptions of Theorems 7 and 8 then 
we must replace the convergence by the covergence and moreover 
in Lemma 5 we must also assume that JQ ip(t, d)dt < 00 for every d > 0 and 
for for every UQ > 0 there exists c > 0 such that > c for u > UQ and 
all t £ [0, b) instead of the A2 condition for tp. From the assumptions by 
Theorem 13.15 from [16] we obtain the assertion of Lemma 5. 
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