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ON SOME APPROXIMATION PROBLEMS
IN MUSIELAK-ORLICZ SPACES OF MULTIFUNCTIONS

Abstract. We introduce the Musielak—Orlicz spaces of multifunctions Xm o and
Xc,m,p. We prove that these spaces are complete. Also, we get some convergence and
approximation theorems in these spaces.

1. Introduction

Modular approximation by a filtered family of linear operators in Mu-
sielak-Orlicz spaces was studied in [15]. The results of [15] were extended
to the case of Hammerstein operators in [7]. The results of [7] and [15] were
extended to the case of some spaces of multifunctions in [8]-[13] (the set

images are subsets of 2 or the set images are very specific subsets of real
Hilbert space Y').

In this paper we introduce the spaces of multifunctions X¢ m , and Xpm, .
We study the structure of these spaces and we extend the results of [11]-[13]
to the case of the spaces X m,, and Xr, . Theorems 2 and 3 which we obtain
are closely connected with superposition operators and Niemytskii operators
which were studied for example in [1], [18] and [19]. We apply the results of
[2]-[6] and [16]. All definitions and theorems connected with the idea of the
Musielak-Orlicz space can be found in [16].

Let (€, X, 1) be a measure space with a nonnegative, nontrivial o-finite
and complete measure u. Let ¢ be a p-functionie., ¢ : 2 x R — R, o(t, u)
is an even, continuous function of u, equal to zero iff u = 0 and nondecreasing
for u > O for every t € €, is a measurable function of ¢t € Q for every u € R
and lim,_, o ¢(t,u) = oo for p-a.e. t € Q. Moreover, if p(t,-) is a convex
function for every t € €, lim,,_,¢ -'w—(-tu’—ul =0 and lim,_, elty)

— = oo for every

1991 Mathematics Subject Classification: 46E99, 28B20.

Key words and phrases: approximation, Banach space, Hammerstein operator, su-
perposition operator, Musielak-Orlicz space of multifunctions, Aumann integral of
multifunction.



394 A. Kasperski

t € 2, then we shall say that the function ¢ is an N-function. Let L¥(2, X, u)
be the Musielak—Orlicz function space generated by the modular

p(z) = | p(t, 2(t))dp.
Q

Let || - |9 denote Orlicz norm and || - |5 denote Luxemburg norm in
L?(Q, %, p) if ¢ is an N-function. Let Y be a real separable Banach space
with the norm || @ ||ly. Let © denote the zero element of Y. If A,B C Y are
nonempty then we denote

H(A, B) = max(sup inf ||z — y||y, sup inf ||z — y|ly).
zcAYEDB yeB €A

Denote by C(Y') the set of all nonempty and compact subsets of Y, by
B(Y) the set of all nonempty bounded and closed subset of Y and by E(Y)
the set of all nonempty and closed subsets of Y.

Denote:

X ={F:Q—2¥:F(t) € E(Y) for every t € Q},
Xc={FeX :F(t) € C(Y) for p-ae. t e},
Xpo={FeX:F(t)e B(Y) for p-ae.teQ}

Two multifunctions F, G € X such that F(t) = G(t) for p-a.e. t € Q will
be treated as the same element of X.

Now we introduce the function d(F, G) by the formula:

d(F,G)(t) = H(F(t),G(t)) for all F,G € X and t € Q.

Let N be the set of all positive integers. Let 0 € X, be such that 0(t) =
{©} for every t € Q. Denote |F| = d(F,0) for every F € X. If F € X, then
by r(F) we denote a function from Q to Y such that r(F)(t) € F(t) and
Ir(F)®)|ly = H(F(t),{©}) for p-ae. t € Q.

2. On the spaces X, , and X. ..,
DEFINITION 1. We say that F € X}, is a step multifunction if

F(t)= Z XA, (t)By, for every t € Q
k=1
where x4 is a characteristic function of the set A, By € B(Y) for k =
,...,n, Q=Up_ A, Ay €eEZfork=1,...,nand A;NA; =0 fori#j.

DEFINITION 2. We say that F' € X, is measurable if there exists the sequence
of step multifunctions F,, € X, for every n€ N such that lim, o, d(F, F,,)(t)
=0 for y-a.e. t € Q.
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DerFINITION 3. We say that I' € X, is c-measurable if there exists the
sequence of a step multifunctions F, € X, for every n € N such that

lim,_,0o d(F, F,)(t) = 0 for p-a.e. t € Q.
Denote:
Xm = {F € X} : F is measurable },
Xem = {F € X : F is c-measurable },
Xsm = {F € X} : F is a step multifunction },
Xism = {F € Xom : |F| € L'(Q, T, )},
Xmo={F € Xn:|F|eL?(Q,%,u},
Xemp ={F € Xem : |[Fl € LP(Q, 2, 1)}
It is easy to see that d(F,G) € LY(, L, p) if F,G € Xp 0.
By [6], Chapter 2 Theorem 1.35 if F' € X,,,, then F is measurable and
“graph measurable” in the sense of [6], Chapter 2, Definition 1.1.

The spaces X¢m,, and X, , will be called Musielak-Orlicz spaces of
multifunctions.

REMARK 1. If F € X,,,, then there is the sequence {G} such that G, € X,
for every n € N and d(F,Gp)(t) — 0 as n — oo for p ae. t € © and
d(Gnp,0)(t) < d(F,0)(t) for p a.e. t € Q.

Proof. Let F,, € X, ,, for every n € N and d(F, F,)(t) = 0 for p-a.e. t € Q.
Let {r,} be the sequence of simple functions such that r, / |F|. We define
Grn(t) = Fo(t) NK(©,7,(t)) for every t € . D

REMARK 2. If F,, € X, F € X, for n € N and d(F, F,)(t) - 0 as n — oo
for p-a.e. t € Q, then F € X,,,.

REMARK 3. If F,, € X, F € X, forn € N and d(F, F,)(t) - Oas n — o©
for py-ae. t € Q, then F € X .

REMARK 4. Let B € X, f : @ — R be X-measurable, F' = fB, then
F e X,,.

REMARK 5. Let F,G € X.p, then F 4+ G € X .

LEMMA 1. Let F, € X, for everyn € N. If for all €,6 > 0 there is K > 0
such that

p({t € R :d(Fn, F)(t) > €}) <6 for all m,n > K,

then there exist a subsequence {F,, } of the sequence {F,} and F € X, such
that d(Fy, , F) — 0 p-a.e. and d(Fy,, F) are X-measurable.

Proof. The proof is very similar to that of Lemma 1 from [11] so we give
only a skech of it. By the assumptions there is a subsequence {Fy,, } of
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the sequence {F,} such that for p-a.e. t € Q2 and for every € > 0 there
is K > 0 such that d(F,,, Fy,)(t) < € for all k,l > K. Hence there is
F € X, such that d(F,,,F) — 0 p-a.e., because the space B(Y) with
metric H is complete. So F € X,;, and d(F;, F) is X-measurable because
d(Fy, F)(t) = limg_oo d(Fy,, F3,)(2) for p—ae. t € Q. 0O

THEOREM 1. Let F;, € Xpnp (Frn € Xcm,p) for every n € N. If for every
€ > 0 and every a > 0 there ezists K > 0 such that

§ (t, ad(Fm, Fr)(t))dn < ¢
Q

for allm,n > K, then there ezists F € X, (F € Xcpm,p) such that

S o(t,ad(Fy, F)(t))du — 0 as n — oo for every a > 0.
Q

Proof. The proof is very similar to that of Theorem 7.7 from [16] so we give
only a skech of it. By the assumptions and by Lemma 1 there is F' € X,,
such that

S o(t,ad(Fy, F)(t))dp < € for n > K.
Q

We have |F|(t) < |Fn|(t) + d(Fn, F)(t) for p-ae. t € Q, so F € X . The
space C(Y) with metric H is complete, so if F, € X m , for every n € N,
then F € X¢m . O

COROLLARY 1. Let the function ¢ be an N-function. Then the function

for all F,G € Xy, is @ metric in Xp, o, and < Xp, p, Dy, > is a complete
melric space.

Theorem 1 is a generalization of Proposition 5.2 Chapter 5 from [6] and
Theorem 0 from [12].

DEFINITION 4. The ¢-function ¢ will be called locally integrable, if
{4 ¢(t,u)dp < oo for every u > 0 and A € ¥ with u(A) < co.

Applying the proof of Proposition 3.3, Proposition 2.17 and Remark 3.4
Chapter 2 from [6] we easy obtain the following:

LEMMA 2. Let the p-function ¢ be locally integrable. Then for every F' €
Xm,p there ezists the sequence {fn} C L¥(Q, X, n) such that F(t) = {fa}(t)
for p-a.e. t € Q.
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Let @ : Q2 xY — Y. We define the operators H and H, by the formulas:
{Q(t,z) : z € F(t)}, if F(t) is compact

{8}, if F(t) is noncompact,

{Q(t,z) : z € F(t)}, if F(t) is bounded

{6}, if F(t) is unbounded

for every F' € X,, and every t € ().

H(F)(t) = {

H,(F)(t) = {

THEOREM 2. Let the p-function ¢ be locally integrable. If the function Q
fulfils the following conditions:

a) there are L > 0 and g € L¥(Q, X, p) such that ||Q(t,u)|ly < L|ully +
g(t) forallueY andt €,

b) Q(-, z) is strongly measurable for everyz € Y,

c) Q(t,-) is continuous for every t € Q,
then H : Xemp = Xemyp-

Proof. Let F € X¢m,,- First, let us observe that FI(F)(t) is a compact and
nonempty set for every t € 2, because Q(t, u) is a continuous function as a
function of u for every t € €.

Second, let us remark that from a) we obtain:

[H(F)|(2) < LIr(F)®lly + 9(t)
for every F' € X m, and every t € Q0. By Lemma 2 we easy obtain that

|[H(F)| is Z-measurable, so [H(F)| € L?(Q, X, ) for every F € X;m o

Third, let B € C(Y') and let {z1,z2,...,2,} be a §-net for B. Let

Gt)={Q(t,z;):i=1,...,n},

Gp(t) = {Q(t,z) : z € B}
for every t € Q. We have G € X.,, and by c) for every € > 0 there is
0 > 0 such that H(G(t),Gp(t)) < e for every t € Q, so G € Xcm. Let
now Ay € L, B e C(Y) fork=1,...,n, Up_1Ax = Q, A; # A; if i # j.
Let Fr, = xa,Br for k=1,...,n. Let F' = Y7, F. It is easy to see that
H(F') = Y?_, H(F},) and H(F},) is c-measurable for k = 1,...,n so H(F")
is c-measurable.

Fourth, let t € Q and let F(t) and F,(t) be compact. Then F(t)UF,(¢) is
compact, so from every € > 0 there is § > 0 such that if z € F(t), z, € F,(t)
and ||z — z,||ly <9, then ||Q(¢,z) — Q(t, z.)|ly < e.

Let K > 0 be such that H(F(t), Fu(t)) < & for every n > K. Let
y € H(F)(t), so there is z € F(t) such that y = Q(¢,z). Also there are
zn, € F,(t) such that ||z — z,|ly < d for n > K. Let y, = Q(t,z,), hence
ly — ynlly < eforalln> K.
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So it is easy to see that if H(F(t), F,,(t)) — 0 as n — oo, then
H(H(F)(t), H(F,)(t)) — 0 as n — oco.
Hence we obtain the assertion by Remark 3. O

Analogously, by Proposition 7.9 Chapter 2 from [6] we obtain

THEOREM 3. Let the p-function ¢ be locally integrable. If the function Q
fulfils the following conditions:
a) there is L > 0 such that ||Q(t,u) — Q(¢,v)|ly < Llju — vl|ly for all
u,v €Y and p-a.e. t € Q,
b) the multifunction {Q(-,z) : x € B} is measurable for every B € B(Y),
) 1Q(, O)lly € L?(Q, X, p),
then Hy : Xrnp — Xmp-

3. Density and approximation

THEOREM 4. Let p be atomless, the p-function ¢ be locally integrable and
fulfils the Ag condition. Then X;sm C Xm and for every F € Xp,
there exist a sequence {F,} such that F, € X;sm for every n € N and
plad(Fy, F))—0 as n — oo for every a > 0.

Proof. First, it is easy to see that by the assumptions X; s m C Xm .
Second, let F' € Xy, ,. By Remark 1 there is the sequence {G,} such
that G, € X s m for every n € N and d(F, G,)(t) — 0 asn — oo p-a.e. and

d(G,,0)(t) < d(F,0)(t) p-ae..
So H(F(t),Gn(t))(t) < 2H(F(t),{O}) p-a.e. for every n € N. Also
o(t,aH(F(t),Gn(t))) — 0

as n — oo p-a.e. for every a > 0. So we obtain the assertion by the Lebesgue
dominated convergence theorem. O

Theorem 4 is a generalization of Theorem 7.6 from {16} and Proposition
2 from [4] and Theorem 2 from [11]. If we omit the Ay condition in the
assumptions of Theorem 4, then we only obtain that p(ad(F,,F)) — 0 as
n — oo for some a > 0.

Let now (2, X, i) be a Lebesgue measure space. Let K,,, K : @ xQ — Ry
for every n € N. We introduce the family of operators (Uy,),eN and the
operator U by the formulas:

Un(F)(s) = { | Kn(t,5)f()dt : f(t) € F(2) for every t € O
? and the integral exists },
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U(F)(s) = { | K(t,5)f(t)dt : £(t) € F(t) for every t € O
Q .
and the integral exists },

for every n € N every F € X,,, , and every s € §).

LEMMA 3. Let Y = R"™. Let ¢ fulfil the assumptions of Theorem 4. Let
moreover ¢ and ¢ be the complementary N-functions in the sense of Young
(see [16], Definition 13.4), Ku(-,s) € L¥(Q, %, 1) for everyn € N and every
s € Q. Let gu(s) = ||Kn(-,s)||g for every n € N and every s € §} and let
gn € L¥(Q, %, ) for everyn € N, then Up(F) € Xy, for all F € Xy, , and
n € N.

Proof. Let s € Q, n € N. By Theorem 13.13 from [16] we have

S K, (t,s)|F|(t)dt < oo for every F € X .
Q
So by Proposition 8.6.2, Theorems 8.6.3 and 8.7.2 from [3], Theorem 5.14 and
Proposition 5.20 from [6] and Theorem D1.10 and Corollary D1.10.1 from
[14] we obtain Upn(F + G)(s) = Up(F)(s) + Un(G)(s) and U,(F)(s) € B(Y)
for all F,G € Xy .
Let Be C(Y), C € £, u(C) < oo. Let F(t) = xc(t)B for every t € Q.
It is easy to see that F' € X,,, , and, by Remark 4, U,(F') is measurable.
Let now F € X,, , be arbitrary. By Theorem 4 there is the sequence of
step multifunctions {F,} such that Fr, € Xm, and ||[d(Fn, F)||Z — 0 as
n — oo. It is easy to see that U,(F,) is mesurable and we have

H(Un(F)(s), Un(Fn)(®)) = H( § Kn(t, )F(8)dt, § Kn(t,5) Prm(t)de)
2 Q

< [ Knlt, s)H(Fn(t), F(t))dt
Q
< KGN Frmy FYIE — 0 25 m — co.
So U,(F) is measurable.

To end the proof we must prove that |U,(F)| € L¥(%2, X, u). We have for
a>0

§2¢(s, aH (| Kn(t,5)F(t)dt, {6}))ds
19}
< (Sch(s, a(})Kn(t, s)H(F(t), {©})dt))ds
< §o(s,all Kn(- 8)IZIA(F, 0)|)ds < oo

Q
s0 |[Un(F)| € L¥(Q, 3, p). O
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Analogously we obtain the following:

LEMMA 4. Let Y = R". Let ¢ fulfil the assumptions of Theorem 4. Let
moreover Lp and 1 be the complementary N-functions in the sense of Young,
K(-,s) € L¥(O, X, p) for every s € Q. Let g(s) = | K (-, s )||¢ for every s € 2
and let g € L¥(Q, %, ). Then U(F) € Xpnp for all F € Xy .

THEOREM 5. Let the assumptions of Lemmas 3 and 4 hold. Denote hy(s) =
| Krn(-, s) — K(-, s)llg for every s € Q. If ||hn||£ — 0 as n — oo, then

D,(Un(F),U(F)) — 0 as n — oo for every F € Xp .
Proof. Let > 0,n € N, F € X, ,. We have
{o(s,aH (| Ku(t, s)F(t)at, § K(t,5)F(t)dt))ds
Q

<fe(s (SH(K (&, 9)F(0), K(t, )F(0)dt) )ds
2 Y
< fe(s, (SlKnts) K (t,9)||F|(t)dt) )ds
Q 0
3

(s, al|Kn(-, ) — K(, 8) g A(F, 0)]g)ds
So Dy,(Upn(F),U(F)) = 0asn — co. O

COROLLARY 2. If the assumptions of Theorems 2 and 5 hold, then
D,(Un(H(F)),U(H(F))) = 0 as n — oo for every F € X,

4. On the convolution operators
In this section we will apply by the notation used in [12] and [16]. Let
V be an abstract set of indices and let V be a filter of subsets of V.

DEFINITION 5. A function g : V — R tends to zero with respect to V,

written g(v) Y, 0, if for every € > 0 there is V € V such that | g(v) |< € for
alveV.

DEFINITION 6. Let F, € X, , for every v € V and let F' € X, ,. We write

F, il , if for every € > 0 and every a > 0 there is a set V' € V such that
plad(F,, F)) < € for everyv e V.

REMARK 6. Let F, € X, , for every v € V and let F,G € X, . If

F, %Y F and F, “®Y G, then F = G.

DEFINITION 7. The family T = (T,),cv of operators T, : Xpn o — Xm o
for every v € V will be called (d, V)-bounded, if there exist positive con-
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stants k1, k2 and a function g : V — R4 such that g(v) Y, 0, and for all
F,G € X, there exists a set Vg g € V such that p(ad(T,(F),T,(G))) <
k1p(aked(F, G)) + g(v) for every a > 0 and every v € Vpg.

Analogously as in [12] we obtain the following:

REMARK 7. Let the assumptions of Theorem 4 hold. Let the family T be

(d, V)-bounded. If T,(F) = Y P for every F' € X, s m, then T,(F) ~> Wl g
for every F' € X .

Let now and next @ = [0,b), 0 < b < o0, u = Lebesgue measure in
the o-algebra ¥ of all Lebesgue measurable subsets of [0, b). The translation
operator T, : Xm,, — X will be defined by the equality 7,(F)(t) = F(t+v),
where F is b-periodically extended to the whole R. Also, the function ¢ will
be periodically extended with respect to the first variable.

DEFINITION 8. We shall say that the p-function ¢ is 7-bounded, if there are
positive constants ki, k2 such that
o(t —v,u) < k1p(t, kau) + f(t,v) for all u,v,t € R,

where the function f : R x R — R, is measurable and b—Eerlodic with
respect to the first variable and such that writing h(v) = (t,v)dt for
every v € R, we have M = sup,cph(v) < oo and h(v) — O as v — 0 or
v — b

Let now V = R and let V be a filter of all neighbourhoods of zero in R.

THEOREM 6. Let the @-function ¢ fulfils the Ag condition, ¢ is T-bounded

and Sg‘p(t’c)dt < oo for every ¢ > 0. Then 7,(F) Loy
F€Xme-

F for every

Proof. Let F,G € Xy, . Let F,, Gy, € X, for every n € N and let
p(ad(F,, F)) — 0, p(bd(Gy,G)) — 0 as n — oo for all a,b > 0.

It is easy to see that 7,(Fy),74(Gr) € Xsm for alln € N and v € R. Also it
is easy to see that 7,(F), 7(G) € X for every v € R. First, we prove that
To(F), T(G) € Xm,, for every v € R. For every a > 0 and every v € R we
have

b
Jo(t, alr(F)I(t)dt = | p(t, ad(F, 0)(t + v))dt
0

=} (s — v,ad(F, 0)(s))ds

OL’-'O- O ey O~
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b
< k1 {o(t, kead(F, 0)(t))dt + M < oo.
0
Analogously we obtain that 7,(G) € X, for every v € R. Second, for every
a > 0 and every v € R we have

plad(r(F), 7(C))) = [ (¢, ad(F, G)(t +v))dt

X O O

1p(ak2d(F, G)) + h(’U)
ounded. Third, it is easy to see that

<

So the family 7 = (73,)ver is (d, V)-

d,p,V . .
(F) 225 F for every F € X, Hence we obtain the assertion from

Remark 7. O

o

COROLLARY 3. If the assumptions of Theorem 6 hold and moreover ¢ is an
N-function, then D,(7,(F),F) = 0 asv — 0.

Now we extend the function @ b-periodically with respect to the first
variable. Let W be an abstract nonempty set of indices and let W be the
filter of subsets of W. Let now K, : [0,b) — R, for every w € W be
integrable in [0,b) and singular, i.e. 0 < o(w) = {5 K, (t)dt RASR os(w) =
Sg—‘s K, (t)dt Y, 0 for every 0 < § < b/2, 0 = sup,cw o(w) < o0, and
let us extend K,, b-periodically to the whole R. We introduce the family of
operators A = (Ay)ywew by the formula:

b
Au(F)(s) = { [ Ku(t — ) f(t)dt : f(t) € F(2) for every t € [0,b)

0
and the integral exists },

for every w € W every F € X, , and every s € [0,b).

LEMMA 5. Let Y = R™. Let ¢ and v be complementary N-functions in the
sense of Young. If moreover ¢ fullfils the assumptions of Theorem 6, K,, €
L¥(Q, T, p) for everyw € W and (Ky)wew 18 singular, then Ay(F) € Xm.o
forall Fe X, andw e W.

Proof. Let s € [0,b), w € W. By Theorem 13.13 from [16] and by the proof
of Theorem 6 we have

b :
SKw(t)|F|(t + s)dt < oo for every F € X .

0
So by Proposition 8.6.2, Theorems 8.6.3 and 8.7.2 from [3], Theorem 5.14 and
Proposition 5.20 from [6] and Theorem D1.10 and Corollary D1.10.1 from
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[14] we obtain A, (F+G)(s) = Aw(F)(s)+ Aw(G)(s) and A, (F)(s) € B(Y)
for all F,G € Xy, .

Let Be C(Y), C € X. Let F(t) = xc(t)B for every t € [0,b). It is easy
to see that F' € X,,, , and by Remark 4 A, (F) is measurable.

Let now F' € X, , be arbitrary. By Theorem 4 there is the sequence
of step multifunctions {F,} such that F,, € X, , and ||d(F, F)||L — 0 as
n — 00. By the proof of Theorem 6 we have ||d(7s(Fy), 7s(F ))“L — 0 as
n — oo. It is easy to see that A,,(F,) is measurable and we have

b b
H(Aw(F)(5), Aw(Fa)(s)) = H({ Ku(@)F(t + s)dt, | Ko (t) Fa(t + 5)dt)
0 0

Ky(t)H(Fa(s +1), F(t + 5))dt

b
<
b
= | Ku(t)H (:(F)(t), 7o(Fn) (¢))dt

0

< | Kwliglld(rs(Fn), 7s(F))llg — 0 as n — oo.

So A, (F) is measurable.
To end the proof we must prove that |A,(F)| € L¥(, X, ). We have
(see also [16], the proof of Theorem 7.15) for a > 0

b

b
(g) o(s,aH ( (g) K (t - s)F(t)dt, {©}))ds
b b
< (S)go(s, a((S)Kw(t — s)H(F(t), {6})dt) )ds

b b
< —— [ Ku()([9(u — t,a0 H(F(u), {0})du) ) dt
0 0

b
< kup(kaaod(F, 0)) + o | KuOh(D)t
0

< k1p(keacd(F,0)) + M < oo
so |Aw(F)| € L¥(,Z, p). O _
LEMMA 6. Let C € &, B € C(Y), F(t) = xc(t)B for every t € [0,b). If the
assumptions of Lemma 5 hold, then A, (F) dpVy convF'.

Proof. By Theorem 7.16 from [16] we have
b b

Jo(s, a(§ Ku(t — s)xc(t)dt — xc(s)))ds - 0
0 0
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for every a > 0. Let a > 0. We have
plad (A, (F), convF))

(s aH(SK (t — s)xc(t)Bdt, xc(s )coan))ds
b

(p(s aH( S K, (t — s)xc(t)dtconvB, xc(s)coan))d
0

b
=l
0
b
=
0
b
< Scp(s aH(convB, {@})l w(t = 8)xc(t)dt — xc(s)‘)ds Y, 0.0
0

LEMMA 7. If the assumptions of Lemma 5 hold, then

plad(Aw(F), Aw(G))) < k1p(akod(F, G)) + g(w)
for all F,G € Xy, w € W and every a > 0, where

Ko (t)h(t)dt 2 0.

Oty O

1
g(w) = U—w)
Proof. Let F,G € X, a > 0 and w € W. We have

p(ad(Ay(F), Au(G))) (s,al H(Ku(t - $)F(t), Ku(t — $)G(t))dt)ds

<lofee]
<{ofsair.
<k

plakzod(F, G)) + g(w),

(t - $)d(F, G)(t)dt)ds

where g(w) 0 (see also [15], the proof of Proposition 2). O

By Lemmas 5-7, Remark 7 and Proposition 1.17, Chapter 1 from [6] we
obtain the following theorem.
THEOREM 7. If the assumptions of Lemma 5 hold, then D,(Aw(F), convF)
RN for every F € Xy, .

Analogously, by Theorem 8.6.4 and Proposition 8.6.2 from [3] we obtain
the following theorem

THEOREM 8. Let Y be a real reflexive separable Banach space. If the other

assumptions of Lemma 5 hold, then D, (A, (convF),convF) Y0 for every
F e X .
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Now, we define the families of Hammerstein operators T = (Ty),cw
and T! = (TL),ew by the formulas:

Tw(F) = Au(H(F)), TL(F)= Ay(convH,(F))
for every w € W and every F € X, ,. We easy obtain the following:
THEOREM 9. If the assumptions of Theorems 2 and 7 hold, then

Dy (T (F), convH(F)) RAN) Jor every F' € X, .
THEOREM 10. If the assumptions of Theorems 3 and 8 hold, then
Dy (TL(F),conoH; (F)) Y, 0 for every F € Xy 0.

Theorems 2 and 6 -10 are the generalization of Theorems 1, 2, 3 and 4
from [12] and Theorem 3 from {11] and [13].

5. Final remark

DEFINITION 9. Let F, € Xy, , for every v € V and let F' € X,, ,. We write

F, Ll F | if for every € > 0 there is a set V € V such that p(ad(F,, F)) < €

for every v € V for some a > 0.

If we omit the As condition in the assumptions of Theorems 7 and 8 then

dp,W d,p,W
we must replace the convergence 25" by the covergence “2% " and moreover

in Lemma 5 we must also assume that Sg Y(t,d)dt < oo for every d > 0 and

for for every ug > 0 there exists ¢ > 0 such that ﬂi’—"z > ¢ for u > ug and
all t € [0,b) instead of the Ay condition for ¢. From the assumptions by
Theorem 13.15 from [16] we obtain the assertion of Lemma 5.
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