

Zygfryd Kominek

ON HYERS-ULAM STABILITY
OF THE PEXIDER EQUATION

Let $(S, +)$ be a commutative semigroup and let X be a sequentially complete linear topological Hausdorff space. In the theory of functional equations the problem of the stability (in a sense) has been considered by many authors. We recall only two results concerning the stability of the Pexider equation. In [1] E. Główacki and Z. Kominek have proved that under the above assumptions, for arbitrary functions $f, g, h : S \rightarrow X$ fulfilling the condition

$$S \times S \ni (x, y) \mapsto f(x + y) - g(x) - h(y) \text{ is bounded,}$$

there exists an additive function $A : S \rightarrow X$ such that the differences $f(x) - A(x)$, $x \in S + S$, $g(x) - A(x)$, $x \in S$, $h(x) - A(x)$, $x \in S$ are bounded. This theorem has a qualitative character. It says nothing about numerical dependence between these bounded sets. On the other hand, in [3] K. Nikodem has proved, assuming additionally that S is a semigroup with zero, that if $f(x+y)-g(x)-h(y) \in V$ (V is a bounded, convex and symmetric with respect to zero subset of X), then there exist functions $f_1, g_1, h_1 : S \rightarrow X$ satisfying the Pexider equation $f_1(x+y) - g_1(x) - h_1(y) = 0$, $x, y \in S$, such that $f(x) - f_1(x) \in 3U$, $g(x) - g_1(x) \in 4U$, $h(x) - h_1(x) \in 4U$ where $U := \text{seqcl } V$. We denote by $\text{seqcl } A$ the sequential closure of A .

We start with the following lemma.

LEMMA. *Let $(S, +)$ be a commutative semigroup and let X be a sequentially complete, linear topological Hausdorff space. Assume that V is a sequentially closed, bounded, convex and symmetric with respect to zero subset of X . If*

2000 *Mathematics Subject Classification:* 39B82.

Key words and phrases: stability in the sense of Hyers-Ulam, Jensen equation, Pexider equation.

$f : S \rightarrow X$ fulfils the condition

$$(1) \quad f(x+y) - \frac{f(2x) + f(2y)}{2} \in 2V, \quad x, y \in S,$$

then there exist an additive function $A : S \rightarrow X$ and a constant $c := 2f(2x_0) - f(4x_0) \in X$ such that

$$(2) \quad f(2x) - A(2x) - c \in 16V \quad \text{and} \quad f(x+y) - A(x+y) - c \in 18V, \quad x, y \in S.$$

Proof. Fix an $x_0 \in S$ and put

$$(3) \quad a(x) := f(x+2x_0) - f(2x_0), \quad x \in S.$$

By virtue of (1) we have

$$\begin{aligned} a(x+y) - a(x) - a(y) &= f(x+y+2x_0) - f(x+2x_0) - f(y+2x_0) + f(2x_0) \\ &= f((x+x_0) + (y+x_0)) - \frac{f(2(x+x_0)) + f(2(y+x_0))}{2} \\ &\quad + \frac{f(2(x+x_0)) + f(2x_0)}{2} - f((x+x_0) + x_0) \\ &\quad + \frac{f(2(y+x_0)) + f(2x_0)}{2} - f((y+x_0) + x_0) \\ &\in 2V + 2V + 2V = 6V. \end{aligned}$$

Now, by a standard way ([2], for example, where the boundedneity of V is needed) one can check that $(\frac{a(2^n x)}{2^n})_{n \in \mathbb{N}}$ is a Cauchy sequence and the limit

$$A(x) := \lim_{n \rightarrow \infty} \frac{a(2^n x)}{2^n}, \quad x \in S$$

is additive function and, moreover,

$$(4) \quad a(x) - A(x) \in 6V, \quad x \in S.$$

By definition of c and (3), for every $x, y \in S$, we obtain

$$\begin{aligned} A(2x) + c - f(2x) &= A(2x) - 2a(x) + 2a(x) + 2f(2x_0) - f(4x_0) - f(2x) \\ &= 2[A(x) - a(x)] + 2 \left[f(x+2x_0) - \frac{f(2x) + f(4x_0)}{2} \right] \\ &\in 12V + 4V = 16V, \end{aligned}$$

and

$$\begin{aligned}
& A(x+y) + c - f(x+y) \\
&= A(x) + A(y) + 2f(2x_0) - f(4x_0) - f(x+y) \\
&\quad + \frac{f(2x) + f(2y)}{2} - \frac{f(2x) + f(2y)}{2} + a(x) + a(y) - a(x) - a(y) \\
&= [A(x) - a(x)] + [A(y) - a(y)] - \left[f(x+y) - \frac{f(2x) + f(2y)}{2} \right] \\
&\quad + \left[f(x+2x_0) - \frac{f(2x) + f(4x_0)}{2} \right] + \left[f(y+2x_0) - \frac{f(2y) + f(4x_0)}{2} \right] \\
&\in 6V + 6V - 2V + 2V + 2V = 18V.
\end{aligned}$$

The proof of our Lemma is completed. ■

Our main result reads as follows.

THEOREM. *Let $(S, +)$ be a commutative semigroup and let X be a sequentially complete, linear topological Hausdorff space. Assume that V is a sequentially closed, bounded, convex and symmetric with respect to zero subset of X . For arbitrary functions $f, g, h : S \rightarrow X$ satisfying condition*

$$(5) \quad f(x+y) - g(x) - h(y) \in V, \quad x, y \in S,$$

there exist functions $f_1, g_1, h_1 : S \rightarrow X$ such that

$$(6) \quad f_1(x+y) - g_1(x) - h_1(y) = 0, \quad x, y \in S,$$

$f_1(x+y) - f(x+y) \in 15V$, $g_1(x) - g(x) \in 7V$, and $h_1(x) - h(x) \in 7V$, $x, y \in S$.

Proof. Since $f(2x) - g(x) - h(x) \in V$, $x \in S$, we have

$$\begin{aligned}
& f(x+y) - \frac{f(2x) + f(2y)}{2} \\
&= \frac{1}{2}[f(x+y) - g(x) - h(y)] + \frac{1}{2}[f(x+y) - g(y) - h(x)] \\
&\quad - \frac{1}{2}[f(2x) - g(x) - h(x)] - \frac{1}{2}[f(2y) - g(y) - h(y)] \\
&\in \frac{1}{2}V + \frac{1}{2}V - \frac{1}{2}V - \frac{1}{2}V = 2V.
\end{aligned}$$

Let $A : S \rightarrow X$ be an additive function obtained in our Lemma and let f_1, g_1 and h_1 be functions defined by the following formulas:

$$f_1(x) := A(x) + 2f(2x_0) - g(2x_0) - h(2x_0), \quad x \in S;$$

$$g_1(x) := A(x) + f(2x_0) - h(2x_0), \quad x \in S;$$

$$h_1(x) := A(x) + f(2x_0) - g(2x_0), \quad x \in S.$$

Now condition (6) is an easy consequence of additivity of A . It follows from (3), (4) and (5) that

$$\begin{aligned}
 g_1(x) - g(x) &= A(x) + f(2x_0) - h(2x_0) - g(x) \\
 &= A(x) - a(x) + a(x) + f(2x_0) - h(2x_0) - g(x) \\
 &= [A(x) - a(x)] + [f(x + 2x_0) - h(2x_0) - g(x)] \\
 &\in 6V + V = 7V.
 \end{aligned}$$

Similarly, we obtain the relation $h_1(x) - h(x) \in 7V$, $x \in S$. Moreover, according to (6) and (5), we get

$f_1(x+y) - f(x+y) \in V + [g_1(x) - g(x)] + [h_1(y) - h(y)] \in V + 7V + 7V = 15V$, for all $x, y \in S$. This ends the proof of our Theorem. ■

References

- [1] E. Głowacki, Z. Kominek, *On stability of the Pexider equation on semigroups*, TH. M. Rassias & J. Tabor (eds.), *Stability of Mappings of Hyers-Ulam Type*, Hadronic Press, Palm Harbor, Florida 34682-1577, USA. ISBN 0-911767-64-9, pp. 111–116, 1994.
- [2] D. H. Hyers, *On the stability of the linear functional equation*, Proc. Nat. Acad. Sci. USA. 27 (1941), 222–224.
- [3] K. Nikodem, *The stability of the Pexider equation*, Ann. Math. Sil. 5 (1991), 91–93.

INSTITUTE OF MATHEMATICS
SILESIAN UNIVERSITY
Bankowa 14
40-007 KATOWICE, POLAND
e-mail: zkominek@ux2.math.us.edu.pl

Received February 25, 2003.