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DYNAMICALLY EQUIVALENT PERTURBATIONS 
OF LINEAR PARABOLIC EQUATIONS 

Abstrac t . A family of abstract parabolic equations with sectorial operator is studied 
in this paper. The conditions are provided to show that the global attractors for each equa-
tion exist and coincide. Although the common dynamics is simple, the examples presented 
in the final part of the paper indicate that the considered family may contain a linear equa-
tion together with a large number of its nonlinear perturbations. The mentioned examples 
include both scalar second order equations and the celebrated Cahn-Hilliard system. 

1. Introduction 
We consider a family of autonomous abstract parabolic equations 

(1.1) ut + Au = F\(u), t > 0, 
in a Banach space X, where —A generates a strongly continuous analytic 
semigroup. Our aim is to formulate a general abstract setting for the coin-
cidence of global attractors for a wide class of nonlinear perturbations with 
the global attractor for the linear problem. This goal is achieved by the use of 
the semigroup theory for semilinear abstract parabolic equations developed 
in [HE], [C-D 2]. The global attractor is obtained in a metric subspace V of 
a certain fractional power space Xa defined by the operator A appearing in 
the main part of the equation (1.1) (cf. [AM], [HE]). It is then interesting 
to consider the situation when (1.1) is synchronized in the sense that all 
attractors A\ coincide (cf. [HA]). We describe it in some special case, in 
which the dynamics is determined by the u-limit sets of points, or even by 
the stationary solutions. 

The above-mentioned abstract results are presented in Section 2. They 
are supported by some examples provided in Section 3. The first one deals 
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with the scalar second order equation, while the second one is devoted to the 
Cahn-Hilliard system describing the evolution of a molten multi-component 
alloy. The case of binary alloys, which reduces the problem to a single equa-
tion, has been widely investigated in the literature (cf. e.g. [C-D 2], [R-H], 
[GR] and the references therein). In comparison with the equation, the Cahn-
Hilliard system has not been studied so intensively (cf. e.g. [C-D 1], [L-Z]). 
Here we follow [C-D 2] to obtain the global solutions of the Cahn-Hilliard 
system under the assumption of the semiconvexity of the bulk free energy A 
of the alloy. However, in order to obtain such a simple dynamics we further 
assume that A is convex. What surprises is the wide range of admissible 
perturbations as well as the lack of their impact on the global attractor. 
The third example indicates that the abstract results can also be applied to 
pseudodifferential equations. 

Notation used in the paper is standard. Here we point out that de-
notes the n-dimensional Lebesgue measure of a set f2 C Rn, while dom(.A) 
and im(J4) stand for the domain and the range of an operator A, respec-
tively. Moreover, V(A) means dom(A) endowed with the graph norm. We 
also write t r ( B ) for the trace of a matrix B, i.e. the sum of the elements in 
the leading diagonal. Other notation will be explained further in the text. 

2. Abstract results 
Consider a family of autonomous abstract parabolic equations (1.1) in 

a complex Banach space X, where A 6 A (A is a certain set of indices). 
Assume that 

(A.l) A : I d dom(yl) —• X is a sectorial operator (cf. [HE, Definition 1.3.1], 
[CZ, Definition 2.2.2]) with compact resolvent, i.e. (z l — A)~l 

€ C(X, X) is a compact operator for all 2 6 p(A), 
(A.2) F\:Xa —> X (where a € [0,1) is fixed from now on) is Lipschitz 

continuous on bounded subsets of Xa for each A € A, where Xa 

denotes the fractional power space corresponding to the operator A 
(cf. [HE], [AM], [C-D 2]), 

(A.3) unique local Xa solutions u\(-,u0) of (1.1) with u\(0,uo) = u$ € Xa 

exist globally in time. 

Note that (A.l) is equivalent to the requirement that the operator 
—A: X D dom(yl) —• X is an infinitesimal generator of a strongly con-
tinuous compact analytic semigroup (cf. [PA, Theorem 2.3.3]). Observe also 
that the existence and uniqueness of local Xa solutions for uq G Xa, men-
tioned in (A.3), is due to the theory given e.g. in [C-D 2], [HE] or [CZ]. 
Recalling [C-D 2, Theorem 3.3.1], we can state 
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PROPOSITION 2.1 . Under the assumptions ( A . 1 ) - ( A . 3 ) the problem (1 .1) 
defines a family of compact C° semigroups {T\(t):t > 0} on Xa such that 
T\(t)uo coincides with a global solution u\(t, uO) to (1.1) satisfying the initial 
condition U\(0, uo) — UQ. 

Here and subsequently, S\ C Xa stands for the set consisting of all 
stationary points of {T\(t): t > 0} on Xa. 

Let us denote by V any complete metric subspace of Xa which is posi-
tively {T\(i) }-invariant for each A 6 A, i.e. Tx(t)V c V, A 6 A. Throughout 
the remainder of this section we limit ourselves to {T\(i)} restricted to V. 
Now it is a family of compact C° semigroups on V. Let us introduce further 
assumptions: 
(A.4) positive orbits of points 7^~(«o) = {T\{t)uQ\ t > 0}, UQ € V, are 

bounded subsets of V, 
(A.5) there exist continuous Lyapunov functions Cy. V —* R, A € A, such 

that for any UQ € V the function t t—> C\(T\(t)uo) is nonincreasing 
for t > 0 and 

if Cx(Tx(t)u0) = £\(u0) for all t > 0, then u0 G Sx D Vt 

(A.6) there exist a metric space M and continuous functions ly. V —> M, 
A e A, which are one-to-one on S\ H V and 

lx(Tx(t)u0) = lx(u0), t> 0, UO € V. 
We underline that the Lyapunov functions in (A.5) need not have to be 

bounded below. Moreover, (A.5) ensures that the functions t C\(T\(t)uo) 
are nonincreasing for all t > 0. 
REMARK 2.2 . If one of the assumptions ( A . 4 ) - ( A . 6 ) is satisfied with V = 
Xa, then it holds for any complete metric subspace of Xa which is positively 
{T\ (t) }-invariant for each A 6 A. 

Following [LA], we recall that a complete trajectory of a point v G V for 
a semigroup {S(t): t > 0} is the curve (f>:R —> V satisfying the following 
conditions: 

(i) 0(0) = 
(ii) S(t)<f>(s) = <p(s + t), s € R, t > 0. 

We shall denote by (respectively T^) the set of all (bounded) complete 
trajectories of a point v G V for the semigroup {T\(t): t > 0}, whereas 
C\ (respectively Cj[) shall stand for the set of all points v € V for which 
there exists at least one (bounded) complete trajectory of the point v for 
the semigroup {T\(t): t > 0}. Observe that since {T\(t): t > 0} is a C° 
semigroup, then a complete trajectory ^ of a point v is a continuous function. 
Moreover, we have T\(t)v = (f>(t), t > 0. 
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We define the uj-limit set of a set B C V for the semigroup {T\(t): t > 0} 
by 

u,x(B) = p | civ U T ^ S ) B -
t> 0 s>t 

If v G C\ and <j> € then we define the a-limit set of the point v along 
the trajectory <fi by 

<*xj{v) = f ) civ U {*(')}• 
t<0 s<t 

Following [S-Y, Lemma 22.3] and [C-D 2, Proposition 1.1.2], we recall 

PROPOSITION 2.3. Assume that the assumptions (A.1)-(A.3) and (A.5) hold 
and A e A. If v € V and Jx(v) = {T\(t)v: t > 0} is bounded in V, then 
UJ\(V) is a nonempty subset of S\C\V and attracts v. Moreover, if v 6 C\, 
(f> G and v) = {(f>(t): t < 0} is bounded in V, then a^^(u) ¿5 
a nonempty subset of S\ fl V. 

We recall that by the global attractor for the semigroup {T\(t): 
t > 0} we mean a nonempty, compact and {T\(£)}-invariant subset of V 
which attracts each bounded subset of V. 

PROPOSITION 2.4. If the assumptions ( A . 1 ) - ( A . 5 ) hold and S\f)V is inde-
pendent of X E A, then {T,\(£): t > 0} on V possesses a global attractor for 
a certain A = Ao if and only if it possesses a global attractor for all A € A. 

P r o o f . If {T\0(t): t > 0} has a global attractor, then U U Q e v i s 
a nonempty bounded set, since it is contained in the attractor (see [C-D 2, 
Corollary 1.1.1]). Moreover, we have UuoeV^AoC^o) = S\0 fl V as a conse-
quence of (A.1)-(A.5). Fix arbitrarily A € A. Again (A.1)-(A.5) and the 
coincidence of the sets of stationary points guarantee that 

( J ux(u0) = sx n v = sA o n v 
u0ev 

is a nonempty bounded subset of V. Since it attracts every point of V, we see 
that {T\(t): t > 0} is point dissipative. Hence the semigroup {T\(t)\ t > 0}, 
being compact and point dissipative, possesses a global attractor (cf. [C-D 2, 
Corollary 1.1.6]). • 

From the proof of the above proposition we obtain 

COROLLARY 2.5. Let the assumptions (A.1)-(A.5) hold andS\C\V, A € A, be 
bounded subsets ofV. Then the semigroup of global solutions corresponding 
to (1.1) on V possesses a global attractor A\ for each A G A. 

We next focus on the situation, when (1.1) is synchronized in the sense 
that all attractors A\ coincide (cf. [HA]). Theorem 2.6 below describes it 
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in a special case where the dynamics is determined by the w-limit sets of 
points, or equivalently by the stationary points (this is due to (A.6)). 

THEOREM 2.6. Let the assumptions (A.1)-(A.6) hold and S\ fl V be inde-
pendent of A E A and bounded in V. Then we have 

Ax = U wA(«o) = Sx n V =: A, A € A. 
u0ev 

Proof . Fix arbitrarily A € A. As follows from Corollary 2.5, each semigroup 
{Tx(t):t > 0} on V possesses a global attractor Ax- Then we know that 

AX= u U m 
uo eCj 4>€TU

X° 

(see [LA, Proposition 2.2] or [C-D 2, Corollary 1.1.1]). It is sufficient to 
show that Ax C Sx D V. To this end, fix uQ <5 C\ and <f> e T^0. Take any 
v € ax,^>(uo) C Sx H V and any w 6 u>\(uq) C S\ fl V, their existence 
being ensured by the fact that <f> 6 and Proposition 2.3. Prom (A.6) 
we know that the continuous function lx is constant along the complete 
trajectory cj) so we have lx{v) = lx(uo) = and thus v — w. We shall 
prove that <£(R) = {uo}- Note that (A.5) ensures that Cx is nonincreasing 
along the complete trajectory <f>. We claim that, in fact, C\ is constant along 
<f>. Suppose now, contrary to our claim, that there exist t\ < ¿2, ii, ¿2 € M, 
such that £x(<f>(ti)) > £x(<f>(t2)). For i, s positive and large enough we have 

> > C x ( m ) ) > 

which leads to the absurd relation Cx(v) > £\(w) = C\(v). Consequently, 

Cx(<f>(t)) = CX(UQ) f o r a l l t 6 R. 

Fix io € R. Then we know that 

Cx(Tx(t)<f>(to)) = C x m +10)) = Cx(u0) = £x{<t>{t0)) f o r a l l t > 0 . 

Thus (A.5) ensures that 4>(t0) e Sx fl V. Hence we obtain </>(R) C 5a H V. 
Moreover, <f>(R) cannot contain two distinct stationary points, since <j> is 
a complete trajectory. Thus <̂ >(R) = {uo}. This clearly forces 

Ax = Sx D V = U wA(tio) = A, A € A. . 

Note that under the assumptions (A.1)-(A.6) each bounded complete 
trajectory for the semigroup {Tx(t):t > 0} is a singleton, i.e. a single station-
ary point. Moreover, each U>X(UO), UQ € V, is a singleton. Nevertheless, the 
global attractor may still contain infinitely many elements and (A.1)-(A.6) 
are satisfied in a number of interesting examples as shown in Section 3. 
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REMARK 2 . 7 . Consider a family of parabolic abstract equations 
try -I \ ( V t + llAv = FX(V), t > 0, 
1 l j l«(0) = «o, 
where fi G (0, oo) and A 6 A (a certain set of indices). We remark that u 
satisfies 

2) jut + Au= ±Fx{u), t > 0, f ut + Au = I j 
[ tt(0) = UQ 

if and only if v(t) = u(fit), t > 0, satisfies (2.1). Hence the global attractor 
constructed for the semigroup of Xa solutions of (2.2) coincides with the 
global attractor for the problem (2.1). 

Finally, let us sketch how to apply Theorem 2.6 in case our problem is 
naturally set in a real Banach space. 

REMARK 2.8. Owing to the requirement of the sectoriality of the operator 
A in (1.1) we are forced to consider the equation in a complex Banach space. 
Nevertheless, in applications, unless the operator is complex, we obtain the 
abstract equations (1.1) in a real Banach space X. However, we can com-
plexify the operator A (cf. [AM, p. 4]) and consider A(u) = Av + iAw, 
u = v + iweX = X + iX. If A is a sectorial operator, then the linear semi-
group {e~At:t > 0} preserves the space X (see [LU, Lemma 2.1.3]). Thus 
we are able to define the space Xa as im(A_Q |x) and use the real counter-
part of the theory of existence and uniqueness of Xa solutions. Therefore, if 
A satisfies (A.l) and for (1.1) the conditions (A.2) and (A.3) are satisfied, 
then we can still define the semigroup of Xa solutions T\(t)uo = u\(t,uo), 
t > 0, UQ G Xa. Furthermore, if the assumptions (A.4)-(A.6) hold with 
an appropriate subspace V c Xa and S\ fl V is independent of A G A and 
bounded in V, then an analogous version of Theorem 2.6 ensures the exis-
tence of the global attractor A\ = S\ fl V = A, A € A, for the semigroup 
{Tx(t):t> 0} in V. 

3. Examples 

E X A M P L E 3 . 1 . Our first example will be an initial-boundary value problem 
for a scalar second order equation 

' ut(t, x) - Au(t , x) - b( i ) • V(A(u(i, x))), t > 0, x G Cl, 

C3-1) ^ ( t , i ) = o , i > o , i e a n , 
„ it(0, x) = uo(x), x G Cl, 

where b G C1 (f2) is a vector field such that 
(3.2) divb(x) = 0, x G fi, 
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and 
(3.3) b ( s ) • N(x) = 0 , i £ dn . 

Here we consider Q C Mn, n > 2, with the C2 boundary and A e A = 
C1+LiP(R). 

Rewriting (3.1) in an abstract setting in X = LP(Q) with p > we 
obtain 
, , jut + Au = Fx{u),t>0, 
{ } W O ) = u0, 
where F\(u) = b • V(A(u)) and A = — Ayy in X with the domain 

dom(A) = Wfy}(il) = c\W2,P(n) {<£ € C 2 ( Q ) : J ^ = 0 o n < 9 f l } . 

It is well-known that { — A ; v , { ^ } , f i } forms a regular elliptic bound-
ary value problem. Therefore, —AN is a sectorial operator with compact 
resolvent (see [C-D 2, Proposition 1.2.3, Example 1.3.8]). 

F ix any max(^ , < a < 1 and take into consideration the fractional 
power space Xa. The Sobolev embeddings (cf. [HE, Theorem 1.6.1] or [CZ, 
Theorem 3.0.21]) now yield 

Xa c a n d X a C C ( H ) . 

Our considerations in X are justified, since F\(u) € X for u € Xa. 
Indeed, we have bi € C(fl), A'(it) G C ( i i ) and J^- G X and, in consequence, 

b • V(A(«)) = ¿ f c ^ * = = A ' ( " ) b * e 

n 
Set ||b|| = V s u p l f t i l , fix a bounded subset B of Xa and let <f>,if) G B. 

i=i « 

We have 

- F x m x < ||(A'(0 - A'(^))b • + ||Y(V0b • V(4> - V)||x 

< c i ||b|| ( H A ' W - A ' W H o ^ l l ^ l ^ n ) 

< ¿A,fl,b 110 - ^11*» » 

since A' is globally Lipschitz continuous on compact subsets of R. This shows 
that F\:Xa —• X is Lipschitz continuous on bounded subsets of Xa. As 
a consequence, there corresponds to any uo G Xa, a G (max 1), 
a unique local Xa solution U\(-, UQ) of (3.4) defined on the maximal interval 
of existence [0, r u o ) . 
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To prove the local Xa solutions exist globally in time we need an ad-
ditional a priori estimate of the solutions in an auxiliary Banach space Y. 
We shall choose Y = L°°(Cl). Let us denote v(t) = u\(t, uq), t € [0, ru o). We 
know that vt(t) 6 X , v(t) G W2'P{Q), = 0 on 80, for 0 < t < tuo and 
in X we have 

(3.5) vt(t) - A v(t) = b • V(A (v(t))), 0 < t < TUO. 

Fix any k e N and 0 < t < rUQ. Multiplying (3.5) by v2k~l and integrating 
over fi we obtain 

J vtv2k-ldx = J A v v 2 k ~ l d x + \ b • V ( A ( v ^ v ^ d x . 
n q n 

Letting gk(s) = \3
0\'(z)z2k~1dz, s€R, we have gkeCl{R) and by (3.2)-(3.3) 

(3.6) j b • V ( A ( v ^ - ' d x = J X ' i v y ^ d x = ¡ ¿ b i ^ ^ - d x 
q m=i d X i ni=i d X i 

= J £ biNi9k(v)dS - j £ p-gk(v)dx = 0 . 
an i=l n i=i 1 

Hence, because of the boundary condition, 

(3-7) ± J r \ v 2 k d x = \ ^ v v 2 k - H x 

Consequently, [0, ru o) B i n ||v(i)||^2fc(f2) is nonincreasing and 

!!«*(<» «o)lll,»(n) < ||uo||I(2fc(n), uQ e Xa, t € [0, TUO). 

Letting k —• oo (see [AD, Theorem 2.8]) we obtain 

(3.8) Vuoe;faVo<t<Tuo ||uA(i,U0)||y < I M l y < C2 |Mlx<> • 

We now estimate for a fixed 0 < t < TUQ 

(3.9) | |F A (u A ( i ,u 0 ) )b < c i INI sup \X'(s)\||uA(t>u0)||wi.P(n) • 
|s|<lhA(Mo)l|Loo(n) 

Fix 
max (5, < (3 < a. The moments inequality (cf. [KR, Theorem 1.5.2]) 

yields 2. i_£ 
lluA(i,«o)||Wi.P(n) < c4 < C3C4 ||uA(i,Uo)||^a | K ( i , U0)\\X ° 

< C5 ||uA(t, Uo)||y~° ( l + ||uA(i, U0)\\%a ) , 
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since Y = L°°(fi) C X. Combining this with (3.9) we conclude that 

(3.10) \\Fx(ux(t,u0))\\x < 

< c 6 | | b | | ( l + | M i , u 0 ) | | f a ) sup |A'(s)|||uA(É,uo)||Îr«. 
|s|<||uA(i,U0)||y 

The estimates (3.8) and (3.10) ensure by [C-D 2, Theorem 3.1.1] that 

T\(t)uo = u\(t,uo), t> 0, uo E Xa, 
forms a C° semigroup of global Xa solutions having positive orbits of 
bounded sets bounded. In particular, (UQ) = {T\(t)uo't > 0} is bounded 
for any uo € Xa. So far we have checked that the conditions (A.1)-(A.4) 
are satisfied with V = Xa. 

Let us now define 

m = £x(<t>) = M U n ) , <t>zXa. 

C is continuous, since if <f>m —> <f> in Xa, then <f>m —> <f> in L2(Q) and m—>-oo m—>oo 
thus C(<f>m) —> £(</>)• Observe that £ is nonincreasing along any trajectory m—•oo 
(compare with (3.7) in case k = 1). Assume that C(u\(t, uq)) = C(u0), t > 0. 
Then we have 

0 = jtC(ux(t,u0)) = ± \\ux(t,uo)\\h(n) = -2±\dUX^U0) 
dxi 

, i > 0 , 
L2(Sl) i=l 

(compare with (3.7) in case k = 1). Thus 

(3.11) Vt>oV ie{1 n } d U f ^ o ) = 0 a.e. in fi. 

Since ux(-, u0) e C([0,00), W 1 ^ ^ ) ) , we see that (3.11) holds also for t = 0, 
i.e. 

w d u ° n • n Vi€{ 1 n} = 0 a.e. in Q. 

Hence uo(x) = const, for a.a. x € il. Obviously such uq is a stationary 
solution. Therefore, by uniqueness u\(t,uo) = uq, t > 0, which shows that 
(A.5) is valid. Nevertheless, we have also proved that if u\(t,uo), t > 0, 
is a stationary solution, then t £(u\(t, uo)) is constant, so UQ must be 
a constant function a.e. in ii. Hence 

(3.12) S\ = {uo € Xa: 3const.gR uo(z) = const, for a.a. x € ii}. 

Note that S\ is independent of A. 
Let us now define 

i(4,) = ix(4) = p i ^ d ® , <t>exa, 
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which is evidently one-to-one on S\. It is also a continuous functional on 
Xa, since 

1 C7 
|l(un) - l(u)| < ||un - ix||il(n) < — ||un - u||xa . 

We are going to show that 

(3.13) l(ux(t, u0)) = l(u0), t>0,u0€ Xa. 

Fix tto € X° and let v(t) = U\(t, UQ), t > 0. Then we have 

jt \ v(t)dx = J vt(t)dx = j Av(t)dx = J ¿ ^p^-NidS = 0, i > 0, 
ii n n BQ t=i i 

where we used (3.2), (3.3) and the boundary condition for v. This shows 
that l(u\(t, u0)) = c € R for t > 0. Letting ¿ -•Owe obtain (3.13). 

What is left to show is the existence of an appropriate closed and posi-
tively {T\(£)}-invariant subset V of Xa such that S\ fl V is bounded in V. 
Fix r > 0 and set VT = {u E Xa: |2(u)| < r } . Since |l| is continuous on Xa, 
Vr is a closed subset of Xa. Moreover, Vr is positively {TA(i)}-invariant, 
since we have shown, in particular, that l(T\(t)uo) = l(uo), t > 0, UQ € VT. 
Therefore, if uo e Vr, then |/(T\(t)«o)| = |Kuo)| < r, t > 0, which shows 
that for each A € A we have T\{t)Vr c Vr for all t > 0. We should yet prove 
that there exists R > 0 such that S\ fl VT C Byr{0, R), but this is obvious, 
since S\ fl Vr consists of constant functions equibounded by r. 

Therefore all assumptions of Theorem 2.6 are satisfied. According to 
Remark 2.7, we conclude that for any ¡i G (0, oo) and any A € C 1 + L i p (R) 
there exists exactly the same global attractor for the problem 

' ut(t, x) - /¿Au(£, x) = b(x) • V(A(u(t, x))), t > 0, x G Q, 
(3.14) x) = 0, t > 0, x € dQ, 

t u(0,x) = UQ{X), x € Q, 

in Vr, which appears to consist only of all constant functions such that the 
absolute value of the constant does not exceed r > 0. 

Note that we can choose A = 0 and fi = 1. Therefore the dynamics of 
the problem (3.14) in Vr with any /x G (0, oo) and any A G c i + L i P ( R ) i s t h e 
same as the dynamics of the Neumann problem for the heat equation. 

REMARK 3.2 . In the above considerations we have chosen as the base space 
1/(0.) with p > f • Nevertheless, we need not to be so restrictive. Assuming 
that § < p < § and p > 1, we can still prove the coincidence of attractors 
for the problem ( 3 . 1 4 ) in the subspace of Xa with < Q < 1 for any 
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/i € (0, oo) and for all functions A € C 1(R) satisfying 

(3.15) 3 c > 0 V S ) 5 e R |A'(s) - A'(s)| < c \s - s\ ( l ^ r " 1 + I s p 1 + l ) , 

where 1 < r < • This is achieved by the similar argument as in 
the example, while the lack of embedding Xa C C(fl) is substituted by 
the embedding of Xa into an appropriate Lebesgue space. Moreover, the 
a priori estimate (3.8) as well as the subordination condition (3.10) are also 
obtained in Y = L 9(f i ) with properly chosen q. 

EXAMPLE 3.3. As a second example we will consider the Cahn-Hilliard sys-
tem known as a phase separation model in the decomposition of a multi-
component alloy (cf. e.g. [C-D 1], [L-Z] and the references therein): 

' u t(i , x) = - A [rAu(i, x) - VuA(u(f, x))], t > 0, x € fi, 
(3.16) V u ( i , x)N(x) = V ( A u ( i , x))N(x) = 0 , t > 0, x 6 dtt, 

. u(0,a;) = uo(x), x e Q, 

where u: [0, oo) x H ^ Mm, u T = ( u i , . . . , um), T = [T^] € R m x m is a sym-
metric and positive definite matrix, i.e. 

(3.17) 3co>oVaeR"> a T r a > c0 |a|2 . 

Furthermore, i) is a bounded domain in Mn, where n < 3, having C 4 + e 

regular boundary <90. Here Vu = is a gradient mxn matrix, while N 
denotes an outward normal vector to dQ. We assume that A € A, where A 
denotes the set of all functions satisfying the following conditions: 

( B . l ) A e C3+Lip(Rm), 

(B.2) A is bounded below, i.e. there exists M\ > 0 such that 

VueRm A(u) > -Mx, 

(B.3) A is semiconvex, i.e. there exists N\ > 0 such that 

VueK-VagRm a r A"(u)a > -Nx |a|2 , 

(B.3') A is convex, i.e. 

VueRmVaeR"» a r A"(u)a > 0. 

Obviously, the condition (B.3') implies (B.3), but we distinguish them, since 
we prove most of the required properties under the weaker (and more natural 
physically) condition. 

Let us now introduce the following notation: 

Cfc = [Cfc(IT)]m, V = [LP(ii)]m, Hfc - [Hk(n)]m, wk'p = [W fc'p(ii)]m, 

where k 6 N U { 0 } and 1 < p < oo. 
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We consider (3.16) as an abstract Cauchy problem 

( 3 1 8 ) i u t(i) + jlu(i) = F a (u( t ) ) , t > 0, 
I u(0) = u 0 , 

in X = L2 , where A = TA2 with the domain 

dom(i4) = [Hf a aAX(ii)]m = clH4{u e C4: VuN = V(Au )N = 0 on 

Moreover, F>,: H 2 —• X is given by 

FA(U) - AVuA(u), u € H2 . 

Key Sobolev embeddings and Lipschitz continuity of right hand 
side. Prom the Sobolev embeddings for n < 3 we infer that 

(3.19) H 2 C C° and H 2 c W1 , 4 . 

They guarantee that is well-defined on H 2 . Since the Sobolev embed-
dings (3.19) hold and A satisfies (B.l), it follows that FA is Lipschitz con-
tinuous on bounded subsets of H 2 (cf. [C-D 1, p. 280]). 

Sectoriality of linear operator. It is well-known that there exists 
do > 0 such that A 2 + do I is a symmetric isomorphism of [H* g a A ,(Q)]m 

ialv'STv J 
onto X (cf. [TR, Theorem 5.5.1]). Since T is a symmetric isomorphism of X 
onto itself and commutes with A 2 + dol, we have 

<r(A2 + do/)u, v)A- = ((A2 + dol)u, Fv)x = (u, (A2 + d0/)rv)x 
= (u, r ( A 2 + d0I)v)x, U, V € dom(A). 

Therefore, TA2 + doT is a symmetric operator with its range being the 
whole X. Hence, TA2 + dor is a self-adjoint operator in X. Since dor is 
a bounded self-adjoint operator on X, we infer that TA2 is self-adjoint 
(cf. [ML, p. 119]). Fixing any d\ > 0, we see by the same argument that 
TA2 + d\I is a self-adjoint operator in X. Note that 

<(rA2 + d!J)u, u)x = <rA2u, u)x + dx Hull2, 

= j (Au) r r(Au )dx + d\ Hull2, 
fi 

> Co I I A u f x + d! \\u\\2
x > di Hull2,, u € dom(A). 

This shows that TA2 + d\I is a positive definite self-adjoint operator, so 
by [C-D 2, Proposition 1.3.3] it is a positive sectorial operator in X. 
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Compactness of resolvent. Observe that for some positive constants 
ci, C2 and C3 we have 

ci||u||H4<c2 (A2 + doI)u 

< 

< 

(TA2 + d 1 I + ( d 0 T - d 1 I ) ) u 

( rA 2 + dil)u + c3 ||u||x , u € dom(A). 

This estimate and the compactness of embedding H4 C X ensure that the 
resolvent of TA2 is compact. 

Description of key Xa spaces. Since TA2 + d\I is a positive definite 
self-adjoint operator in X, we infer from [TR, Section 1.18.10], [C-D 2, p. 50] 
and [C-C, Proposition 2] that 

Xa = V((TA2 + d i l ) a ) = [X,V(TA2 + d i / ) ] a 

= [ H U ( Q ) r , a 
tsjv/ = [[L*(n),H*a ^ m u 

- [H3
{e i 3JV 

tdN> 
,a = 

l 
2' 
3 
4" 

Loceil solutions. We can from now on consider the nonlinearity 
Xa X for a € 1). Then Fa is Lipschitz continuous on bounded sub-

sets of Xa for a 6 1). As a consequence to any uo € Xa, a 6 1), there 
corresponds a unique local Xa solution of (3.18) u\(t, uo), 0 < t < TUQ, 
where tUq denotes the lifetime of the solution. Therefore we have already 
shown that conditions (A.l), (A.2) of Theorem 2.6 are satisfied. 

Global solutions and boundedness of orbits of points. We are 
now in a position to prove that the local solutions are in fact global ones. 
This problem was first solved in case A satisfied some growth conditions 
(see [C-D 1]) and later those limitations were overcome in [L-Z]. In case of 
the Cahn-Hilliard equation (i.e. m — 1), the global existence of Xa solutions 
was shown in [C-D 2]. Here we follow this monograph to show that the same 
method applies to the system. 

Step 1. Let us consider L2 as a subspace of H* = [(//1(0))*]m. Thus 
for u € L2 we have 

TO 
H I * = H(sup{(^fc.uJfc)L2(ii) :IKIIi/i(n) = i » 2 . 

k=1 

where uT = ( i t i , . . . , um). Let 

m(u) = [m(u jt)] = 
I M ^ . 
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Observe that for a fixed u € L 2 the Neumann problem 
' — Az(x) = u(x) — m(u), x € ii, 

(3.20) Vz (x )N(x) = 0, x e dCt, 
. m(z) = 0 

possesses a unique solution z € H2 , which we shall denote by z = A/"(u). 
Let us define 

(ui, U 2 ) J V = (A/"(ui), U2)L2 + 1̂ 1 m(u!) • m(u2) , ui , u 2 € L 2 . 

Note that this defines a scalar product on L 2 and thus a norm 

H 2 ^ (u,u)^, U G L 2 . 

One can easily show that the norms H-H^ and ||-||t are equivalent on L 2 

(cf. [GR, p. 12]). Using the Poincaré inequality we obtain 

(3.21) ||U|£2 < c4 E WW = c4 HVu||L2 \\uy 
k=1 

for u € H1 such that m(u) = 0. 

Step 2. Fix a € 1) and u 0 G Xa. We denote 

(3.22) \{t) = uA ( i ,u 0 ) , t G [0,rUo). 

We know that v(i) € dom(A), t € (0, rUQ). For 0 < t < TUq we estimate 

(3.23) co || Av(i)||L2 < J [Av(i)]TrAv(i)dx 
Q 

= - | [ A v ( t ) f ( - r A v ( i ) + VvA(v(i))) dx 
n 

+ \[Av{t)]TVyX(v(t))dx. 
n 

Integrating by parts we obtain 

(3.24) J [Av(t)]TVvA(v(i))cte = - J tr ((Vv(i))TA"(v(i))Vv(i)) dx. 
n n 

Moreover, setting 

(3.25) K{v(t)) = - r A v ( i ) + VvA(v(i)), 

we get owing to integration by parts and the regularity of v(i) 

(3.26) J [Av{t ) ] T K(v(t ) )dx = - \ tr ( (Vv(t))TVii(v(<))) dx. 
n n 

Combining (3.24) and (3.26) with (3.23), we conclude that 
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CO ||Av(i)||£2 < 5 tr ( (Vv( i ) ) r Vii (v( t ) ) ) dx 
n 

- J tr ((Vv(i))TA"(v(i))Vv(i)) dx. 
n 

Using assumption (B.3) and the Cauchy inequality we obtain 

(3.27) co ||Av(i)|£2 < \ J tr ( (Vi f (v( i ) ) ) r VK(v(t ) ) ) dx 

+ j t r ( (Vv(i) ) T Vv(i)) dx. 
+ — ' 2 , 

Step 3. Let v and K be given by (3.22) and (3.25). Observe that inte-
gration by parts yields for 0 < t < rUQ 

— Jtr ((VK(v(t))fVK(v(t)))dx 

= - J [A K(vmT(K(v(t)))tdx = - | [ v t ( f ( i i ( v ( t ) ) ) ^ 
n n 

= \ [yt(t)}T(TAv(t))tdx- \[vt(t)]T(Vv\(v(t)))tdx. 

a ci 

Using integration by parts again we get 

(3.28) J [v t(i)]T(rAv(i))t<te = _ J tr ( (Vv t ( i ) ) T rVv t ( i ) ) dx. 
n n 

Since we also have 

(3.29) J [v t(t)] r(VvA(v(i))) tdx = \ [v t(i)]TA"(v(i))v t(i)dx, 
n u 

this together with (3.28) yields 
ld_ 

2 dt 
(3-30) \jt I((V^(v(i)))rVK(v(i))) dx 

= - J tr ( (Vvi ( i ) ) r rVv t ( i ) ) dx - 5[v t(i)]rA"(v(i))v t(i)dx. 
n n 

Using assumption (B.3) and (3.17) we conclude that 

(3.31) ~ t \ tr ({VK{-v{t)))TVK{\{t))) dx 

<-co||Vvt(i)||22 + iVA||vt(i)||L. 
Step 4. Let v and K be given as in (3.22) and (3.25). Observe that for 

0 < t < TUQ the equation is satisfied and v(i) € dom(A), so integration by 
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parts yields 

(3.32) m(v t(i)) = 0. 

Additionally, (3.32) and the continuity of the spatial average m on L 1 give 

(3.33) rn(v(t)) = m(v(0)), 0 < t < TUQ. 
Since vt(t) € H1 and m(Vt(t)) = 0 for 0 < t < TUQ, it follows from (3.21) 
that 
(3.34) l|vt(i)||L<c4||Vvt(t)||L2||vt(i)IU. 
Thus (3.31) gives 

\jt J tr ( (VK(v( i ) ) ) r Vif (v ( t ) ) ) dx 

< -co ||Vvt(i)||L + NxCA ||Vvt(i)||L2 llvtCOH^. 
Using Cauchy inequality and integrating over [e, f] for some fixed sufficiently 
small s > 0 we obtain 

(3.35) i J tr ((VK(v(t)))TVK(v(t))) dx < 

1 / \ AT2r2 1 

< - J tr (( V J f (v( e ) ) ) T Vtf(v(e))) + || v t(S) ds. 

Combining (3.35) with (3.27) we conclude that for 0 < e < t < rU() 
(3.36) co ||Av(i)|£2 < ± J tr ( ( V # ( v ( e ) ) ) r V f f ( v ( e ) ) ) dx 

a 

+ - ^ f S \\Ms)\\lrds + (Nx + ||Vv(t)||k 

Step 5. Let v and K be given by (3.22) and (3.25). Using (3.32) we 
compute for 0 < t < rUQ 

(3.37) -||vt(t)|gr = - (V(v i ( t ) ) l v t ( t )> L a 

= (K(w(t)) - m ( t f ( v ( i ) ) ) , v t ( i ) ) L 2 = (K(v(i)) ,v t(i))L2 

= Tt Q ! t r ( ( V v ( É ) ) T r V v ( t ) ) dx + j X(v(t))dx \ , 
\ ÌÌ Ì2 / 

where we used the symmetry of T and integration by parts. Defining 

(3.38) Cx(u) = 1 j tr ( ( V u ) T r V u ) dx + $ A(u)dx 
0. n 

for u 6 Xa, a 6 1), we see that C\: Xa —> 1R is continuous and the 
function t £A(UA(Ì, UQ)) is nonincreasing for 0 < t < TUq. 
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Step 6. We now assume that a e [f, 1), uo € Xa and v, K are given 
as before. We know that v(i) € [.Hf a 0 < t < r U n . From (3.36) 

taAM 
and (3.37) we get 

(3.39) co | |Av(i)| |2
2 < ± \ tr ((Vtf(v(0))fV*T(v(0))) dx 

N2r2 

+ (iVA + i ) | | V v ( i ) | | L , i e ( 0 , r U o ) . 

We shall now show that £A(v(i)) and ||Vv(i)||iJ2 are bounded. Indeed, 
from (3.17) and the assumption (B.2) it follows that 

(3.40) £A(v(0)) > £A(v(t)) > \ c 0 | |Vv(i)|£2 + J A(y(t))dx 
z n 

> ^ o | | V v ( i ) | | ^ 2 - M A | i 2 | > - M A | n | . 

Hence from (3.39), (3.40) and (3.33) we obtain 

(3.41) | |Av(i) | |L + (m(v(i)))2 < ± j tr ((Vif(v(0))) rViT(v(0))) dx 

(£(v(0)) + M\ | il |) + (m(v(0)))2 , t € (0,TUQ). 

After simple computations one can see that 

l|Av(i)||2
2 + (m(v(i)))2 < ¥>A(||V(0)||H3), t e (0,RUO), 

where <p\: [0, oo) —> [0, oo) is a certain nondecreasing function. However, 
note that | |u| |H2 is equivalent to ( ||Au||l2 + (m(u))2 for u G X? (cf. [TE, 
Lemma III.4.2]). In consequence, for a € [f, 1) we get 

(3 .42) ||uA(i,u0)||H2 < c 5 ( | |Au a (<, uo)||l2 + (m(uA(i ,u0)))2)^ 

< ^( l luol lx-) 
for all t G (0, rU()), where ipy. [0, oo) —• [0, oo) is a certain nondecreasing 
function. 

Step 7. Since TA2 + d\I is a positive sectorial operator, we estimate 

||FA(uA(i,uo)) + diuA(i,uo)||L2 < 

< ||AVuA(uA(i,uo))||L2 + di||uA(i,uo)||H2, t e (0 , r u o ) . 

jV2c2 + 8N\ + 4 
4c2 
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Let v(t) denote uA(i, uo). Then we have for t G (0, r U Q ) 

dVj{t) a 3 A 771 771 771 
IIAVvA(v(i))||L2 < c « E E E 

r=lj=1fc=l 

r=lj=l 

y 
dxi dvrdvjdvk 

d2\ 

M O ) 
dvk(t) 

dxi L2( N) 

dvrdvj 
(v(t))AVj(t) 

< c$ ( max sup 
l<j,k,r<m |s|<cr||v(t)||jj2 

+ max sup 
l<J><m|sl<C7||v(t)||H2 

L2(Cl) 
d3X 

dvTdvjdvk 

d2x 
dvrdv. • w ) ( l + l | v ( t ) l l H » ) . 

where we used the Holder inequality and the Sobolev embeddings (3.19). 
Hence 

(3.43) ||FA(uA(t,uo)) + diuA(t,uo)||La < ^A(||uA(i, u0)||H2), t e (0 ,r U ( ) ) , 

where [0, oo) —> [0, oo) is a certain nondecreasing function. 
It follows from (3.42), (3.43) and [C-D 2, Theorem 3.1.1] that for any 

u o € Xa with a € 1) we have t U q = oo. Moreover, the global Xa 

solutions for a 6 [|, 1) constitute a semigroup on Xa having orbits of 
bounded sets bounded. Fix now a G [ ^ f ) - We know that the local Xa 

3 
solutions exist. Hence if uo G Xa, then uA(i , uo), 0 < e < t < t U q , is an 
solution u\(t — e, uA(e, uo)). Thus rU Q = oo and the relation 

(3.44) T\(t) = u\(t, uo), t>Q, 

defines a 
semigroup of global Xa solutions having orbits of points 

bounded for a G [5,1). The above considerations establish (A.3)-(A.4) with 
Lyapunov functions. Observe that we have already defined in (3.38) 

quantities that turn out to be Lyapunov functions. We have noticed that 
C\: Xa —» R is continuous and the function t h-> £ A ( u A ( i , uo)) is nonincreas-
ing for t > 0 with uo G Xa, a G 1). Now we merely mention that 

£ a ( u a ( < ; , u o ) ) = >Ca(uo) implies u A ( i , u 0 ) = u 0 , 
(see [C-D 1, Lemma 1] for more details). This and previous observations 
ensure that (A.5) holds with V = Xa, a G [5,1). 

Stationary solutions under assumption (B.3'). Up to now we have 
made our calculations under the assumptions (B.1)-(B.3) . Hereafter we are 
going to use the stronger assumption (B.3'). We now concentrate on finding 
S\, i.e. all stationary solutions of (3.18) in Xa, a G [5,1). 
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Assume that w 6 dom(A) is a stationary solution of (3.18). From (3.37) 
we get 

Therefore, we obtain VK(w) = 0 a.e. in Q. The well-known property of 
the distributional derivative implies that the function under the gradient is 
independent of the spatial variable, so we have 

(3.45) - T A w + V w A(w) = a a.e. in ft 

with some a € R m . Since integration by parts gives m ( r A w ) = 0, it follows 
that 

(3.46) a = m (a) - m(V w A(w)) . 

Computing the scalar product of (3.45) and w in L 2 we obtain 

( 3 . 4 7 ) ( - r A w , w ) L 2 + ( V W A ( w ) , w ) L 2 = (M(VWA(w)), w ) L 2 . 

Note that integration by parts gives 
( - r A w , w ) L 2 = j tr ( ( V w ) T r V w ) dx. 

n 
Moreover, we have (m(V w A(w)) , w) l2 = (VwA(w), tti(w))l2. Thus (3.47) 
yields 

(3.48) \ tr ( ( V w ) T r V w ) dx = (V w A(w) ,m(w) - w ) L 2 . 
n 

Computing the scalar product of (3.45) and A w in L 2 we get 

(3.49) - (rAw, A w ) L 2 + (VwA(w), A w ) L 2 = (a, Aw ) L 2 . 

Rewriting the first term in (3.49) we see that 

(rAw, A w ) L 2 = \ (Aw)rrAwdx. 
fi 

Lastly, integration by parts ensures that (a, Aw) l2 = 0 and 

( V W A ( w ) , A w ) L 2 = - J t r ( ( V w ) T A " ( w ) V w ) dx. 
n 

These computations lead to 

( 3 . 5 0 ) \ {AwfTAwdx = - \ t r ( ( V w ) T A " ( w ) V w ) dx. 
n n 

Since r is positive definite and we assume (B.3') here, i.e. A is convex, we 
obtain 

c 0 ||Aw|£2 < 5 ( A w ) T r A w d x < 0. 
n 
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Hence Aw = 0 a.e. in 0 . Applying this to (3.45) we see that VwA(w) = a 
a.e. in ii. Now it follows from (3.48) and (3.17) that Vw = 0 a.e. in ft. Well-
known properties of distributional derivatives guarantee that w(x) — c for 
8i>8n X € ii. Therefore, we sum up our considerations describing the set of 
stationary solutions as 

(3.51) S\ = {w G Xa\BceR™ w(x) = c for a.a. x € ii}, 

since every function constant almost everywhere is a stationary solution 
of (3.18). It is worth noticing that S\ does not depend on A. 

Functions l\. Let us now define l\: Xa —> Rm by 

ZA(u) = m(u) = where u T = ( u i , . . . , um). 

The continuity of the spatial average m o n L 1 ensures that l\ are continuous 
functions. Moreover, (3.33) yields 

lx(ux{t,u0)) = Z A ( U 0 ) , t > 0, u 0 € X a , 
and, by the characterization of S\ in (3.51), the condition (A.6) holds with 
V = Xa. 

Appropriate subspace V C Xa. We have already shown that the 
conditions (A.1)-(A.6) are satisfied with V = Xa. Nevertheless, the set of 
stationary solutions S\ is unbounded in Xa, so we cannot look for a global 
attractor in Xa. Therefore we need to find an appropriate closed and posi-
tively {Tx(i)}-invariant subset V of Xa such that S\ fl V is bounded in V. 
In the light of our previous discussion it is clear that this will be satisfied 
by the set Vr = {u € Xa: |m(u)| < r} with r > 0. 

Therefore all assumptions of Theorem 2.6 are satisfied. According to 
Remark 2.7, we conclude that for any fx € (0, oo) and any A 6 A there exists 
in K C Xa, a € 1), the same global attractor for the problem 

{u t(i , x) + fjTA2u(t, x) = AVuA(u(t, x)), t > 0, x € Ct, 
V u ( t , x ) N ( x ) = V(Au(t,x))JV(®) = 0, t > 0, x 6 d f l , 
u(0,x) = uo(x), x e fl, 

which consists only of all functions constant almost everywhere in fi such 
that the absolute value of the constant does not exceed r > 0. 

Observe that A contains the zero function so the dynamics of the prob-
lem (3.18) with any A € A is the same as the dynamics of the linear parabolic 
problem. 

EXAMPLE 3.4. We also mention that from the considerations of [C-D-T] it 
follows that all assumptions of Theorem 2.6 are satisfied if we consider the 
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pseudodifferential parabolic problem 
C ut(t,x) + ( - A Dfu{t,x) = b(x) • V(A(ti(i,x))), t > 0 , i e f l , 

(3.53) I u(t, x) = 0,t>0,x€ dSl, 
{. u(0,x) = uo(x), x e Q, 

where b: R™ D f2 —> Rn is a bounded differentiable vector field such that 

(3.54) divb(®) = 0, x e t l . 

Here we consider dtl G C 2 + e with e > 0, /? G (5,1) and A 6 A = C1+Lip(K). 
Hence for any A G A there exists exactly the same global attractor for the 
problem (3.53) in the whole Xa, a G (5, /3), which consists only of the zero 
function. Here Xa corresponds to the operator A = (-AD)P considered in 
X = LP{n) with p > n. 

Note that A contains the zero function so the dynamics of the prob-
lem (3.53) with any A G A is exactly the same as the dynamics of the linear 
parabolic problem. 
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