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DYNAMICALLY EQUIVALENT PERTURBATIONS
OF LINEAR PARABOLIC EQUATIONS

Abstract. A family of abstract parabolic equations with sectorial operator is studied
in this paper. The conditions are provided to show that the global attractors for each equa-
tion exist and coincide. Although the common dynamics is simple, the examples presented
in the final part of the paper indicate that the considered family may contain a linear equa-
tion together with a large number of its nonlinear perturbations. The mentioned examples
include both scalar second order equations and the celebrated Cahn-Hilliard system.

1. Introduction
We consider a family of autonomous abstract parabolic equations

(1.1) ut + Au = Fy(u), t > 0,

in a Banach space X, where —A generates a strongly continuous analytic
semigroup. Our aim is to formulate a general abstract setting for the coin-
cidence of global attractors for a wide class of nonlinear perturbations with
the global attractor for the linear problem. This goal is achieved by the use of
the semigroup theory for semilinear abstract parabolic equations developed
in [HE], [C-D 2]. The global attractor is obtained in a metric subspace V of
a certain fractional power space X defined by the operator A appearing in
the main part of the equation (1.1) (cf. [AM], [HE]). It is then interesting
to consider the situation when (1.1) is synchronized in the sense that all
attractors Ay coincide (cf. [HA]). We describe it in some special case, in
which the dynamics is determined by the w-limit sets of points, or even by
the stationary solutions.

The above-mentioned abstract results are presented in Section 2. They
are supported by some examples provided in Section 3. The first one deals
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with the scalar second order equation, while the second one is devoted to the
Cahn-Hilliard system describing the evolution of a molten multi-component
alloy. The case of binary alloys, which reduces the problem to a single equa-
tion, has been widely investigated in the literature (cf. e.g. [C-D 2], [R-H],
[GR] and the references therein). In comparison with the equation, the Cahn-
Hilliard system has not been studied so intensively (cf. e.g. [C-D 1], [L-Z]).
Here we follow [C-D 2] to obtain the global solutions of the Cahn-Hilliard
system under the assumption of the semiconvexity of the bulk free energy A
of the alloy. However, in order to obtain such a simple dynamics we further
assume that A is convex. What surprises is the wide range of admissible
perturbations as well as the lack of their impact on the global attractor.
The third example indicates that the abstract results can also be applied to
pseudodifferential equations.

Notation used in the paper is standard. Here we point out that |2 de-
notes the n—dimensional Lebesgue measure of a set  C R", while dom(A)
and im(A) stand for the domain and the range of an operator A, respec-
tively. Moreover, D(A) means dom(A) endowed with the graph norm. We
also write tr(B) for the trace of a matrix B, i.e. the sum of the elements in
the leading diagonal. Other notation will be explained further in the text.

2. Abstract results

Consider a family of autonomous abstract parabolic equations (1.1) in
a complex Banach space X, where A € A (A is a certain set of indices).
Assume that

(A.1) A: X D dom(A) — X is asectorial operator (cf. [HE, Definition 1.3.1],
[CZ, Definition 2.2.2]) with compact resolvent, i.e. (zI — A)™!
€ L(X, X) is a compact operator for all z € p(A),

(A2) F\: X* - X (where a € [0,1) is fixed from now on) is Lipschitz
continuous on bounded subsets of X® for each A € A, where X
denotes the fractional power space corresponding to the operator A
(cf. [HE], [AM], [C-D 2),

(A.3) unique local X* solutions ux (-, ug) of (1.1) with ux(0,ug) = up € X*
exist globally in time.

Note that (A.1) is equivalent to the requirement that the operator
—A: X D dom(A) — X is an infinitesimal generator of a strongly con-
tinuous compact analytic semigroup (cf. [PA, Theorem 2.3.3]). Observe also
that the existence and uniqueness of local X solutions for ug € X, men-
tioned in (A.3), is due to the theory given e.g. in [C-D 2], [HE] or [CZ].
Recalling [C-D 2, Theorem 3.3.1], we can state
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PROPOSITION 2.1. Under the assumptions (A.1)—(A.3) the problem (1.1)
defines a family of compact C° semigroups {T)(t):t > 0} on X° such that
T\ (t)up coincides with a global solution uy(t, up) to (1.1) satisfying the initial
condition uy (0, ug) = ug.

Here and subsequently, Sy C X< stands for the set consisting of all
stationary points of {T)(t): ¢ > 0} on X°.

Let us denote by V any complete metric subspace of X* which is posi-
tively {T»(t)}-invariant for each A € A, i.e. T)\(t)V C V, A € A. Throughout
the remainder of this section we limit ourselves to {T)\(t)} restricted to V.
Now it is a family of compact C® semigroups on V. Let us introduce further
assumptions:

(A.4) positive orbits of points v (ug) = {Tr(t)uo: t > 0}, up € V, are
bounded subsets of V,

(A.5) there exist continuous Lyapunov functions Lx:V — R, A € A, such
that for any ug € V the function ¢t — L£(T)\(t)uo) is nonincreasing
fort > 0 and

if La(Tx(t)uo) = La(uo) for all t > 0, then ug € SNV,

(A.6) there exist a metric space M and continuous functions Iy:V — M,
A € A, which are one-to-one on Sy NV and

l)‘(T,\(t)’u,o) = l,\(UO), t>0, up € V.

We underline that the Lyapunov functions in (A.5) need not have to be
bounded below. Moreover, (A.5) ensures that the functions ¢t — £ (T (t)uo)
are nonincreasing for all t > 0.

REMARK 2.2. If one of the assumptions (A.4)-(A.6) is satisfied with V =
X%, then it holds for any complete metric subspace of X* which is positively
{T(t)}-invariant for each A € A.

Following [LA], we recall that a complete trajectory of a pointv € V for
a semigroup {S(t): t > 0} is the curve ¢:R — V satisfying the following
conditions:

(i) 4(0) = v,

(ii) S@t)p(s) =d(s+1),s€R, t>0.
We shall denote by ®3 (respectively I'{) the set of all (bounded) complete
trajectories of a point v € V for the semigroup {T)(t): ¢t > 0}, whereas
C) (respectively C’g) shall stand for the set of all points v € V for which
there exists at least one (bounded) complete trajectory of the point v for
the semigroup {T)(t): ¢ > 0}. Observe that since {T)(t): t > 0} is a C°
semigroup, then a complete trajectory ¢ of a point v is a continuous function.
Moreover, we have T)(t)v = ¢(t), t > 0.
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We define the w-limit set of a set B C V for the semigroup {Tx\(t): t > 0}
by
w,\(B) = n Clv U T,\(S)B.

t>0 s>t
If v € C) and ¢ € &3, then we define the a-limit set of the point v along

the trajectory ¢ by
axg(v) = cv {J {8(s)}-

t<0  s<t
Following [S-Y, Lemma 22.3] and [C-D 2, Proposition 1.1.2], we recall

PROPOSITION 2.3. Assume that the assumptions (A.1)—(A.3) and (A.5) hold
and A € A. If v € V and v (v) = {Ta(t)v: t > 0} is bounded in V, then
wx(v) is a nonempty subset of S\ NV and attracts v. Moreover, if v € Cj,
¢ € B} and 7y 4(v) = {é(t): t < 0} is bounded in V, then ayg4(v) is
a nonempty subset of SxNV.

We recall that by the global attractor for the semigroup {Ti(t):
t > 0} we mean a nonempty, compact and {T(t)}-invariant subset of V
which attracts each bounded subset of V.

PROPOSITION 2.4. If the assumptions (A.1)—(A.5) hold and S\ NV is inde-
pendent of A € A, then {T)\(t): t > 0} on V possesses a global attractor for
a certain A = Ag if and only if it possesses a global attractor for all A € A.

Proof. If {T),(t): t > 0} has a global attractor, then |, cy wxo(uo) is
a nonempty bounded set, since it is contained in the attractor (see [C-D 2,
Corollary 1.1.1]). Moreover, we have {J,,cy wxo (o) = Sy, NV as a conse-
quence of (A.1)-(A.5). Fix arbitrarily A € A. Again (A.1)-(A.5) and the
coincidence of the sets of stationary points guarantee that
U wy (uo) =5NV=5,nV
ugeV

is a nonempty bounded subset of V. Since it attracts every point of V', we see
that {T)\(t): t > 0} is point dissipative. Hence the semigroup {T)(t): ¢t > 0},
being compact and point dissipative, possesses a global attractor (cf. [C-D 2,
Corollary 1.1.6]). =

From the proof of the above proposition we obtain

COROLLARY 2.5. Let the assumptions (A.1)~(A.5) hold and S\NV, X € A, be
bounded subsets of V. Then the semigroup of global solutions corresponding
to (1.1) on V possesses a global attractor Ay for each A € A.

We next focus on the situation, when (1.1) is synchronized in the sense
that all attractors A, coincide (cf. [HA]). Theorem 2.6 below describes it
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in a special case where the dynamics is determined by the w-limit sets of
points, or equivalently by the stationary points (this is due to (A.6)).

THEOREM 2.6. Let the assumptions (A.1)~(A.6) hold and Sy NV be inde-
pendent of A € A and bounded in V. Then we have

Ay = U w,\(u0)=S)‘ﬂV=: A, A€A.
ug€V
Proof. Fix arbitrarily A € A. As follows from Corollary 2.5, each semigroup
{T\(t):t > 0} on V possesses a global attractor 4. Then we know that

A= J U +®

uoECf‘ ¢€1";°

(see [LA, Proposition 2.2] or [C-D 2, Corollary 1.1.1]). It is sufficient to
show that Ay C Sy NV. To this end, fix up € C} and ¢ € I'}°. Take any
v € apg(uo) C SxNV and any w € wy(up) C Sy NV, their existence
being ensured by the fact that ¢ € I'}’ and Proposition 2.3. From (A.6)
we know that the continuous function [, is constant along the complete
trajectory ¢ so we have Iy (v) = I\(up) = I\(w) and thus v = w. We shall
prove that ¢(R) = {ug}. Note that (A.5) ensures that £y is nonincreasing
along the complete trajectory ¢. We claim that, in fact, £ is constant along
¢. Suppose now, contrary to our claim, that there exist ¢; < tg, t1,t2 € R,
such that £y (4(t1)) > La(¢(t2)). For ¢, s positive and large enough we have

Lr(¢(=5)) 2 La(d(t1)) > La(o(t2)) = La(#(2)),
which leads to the absurd relation £y (v) > £ (w) = Lx(v). Consequently,
Lx(#(t)) = La(up) for all t € R.
Fix ty € R. Then we know that

LA(Ta(t)¢(to)) = La((t + to)) = La(uo) = La(¢(to)) for all £ > 0.

Thus (A.5) ensures that ¢(tg) € Sy N V. Hence we obtain ¢(R) C Sy NV.
Moreover, ¢(R) cannot contain two distinct stationary points, since ¢ is
a complete trajectory. Thus ¢(R) = {uo}. This clearly forces

A=5SnNV= U w,\(uo)=A, A€EA n
ug€EV

Note that under the assumptions (A.1)-(A.6) each bounded complete
trajectory for the semigroup {T»(¢):t > 0} is a singleton, i.e. a single station-
ary point. Moreover, each wy(up), ug € V, is a singleton. Nevertheless, the
global attractor may still contain infinitely many elements and (A.1)-(A.6)
are satisfied in a number of interesting examples as shown in Section 3.
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REMARK 2.7. Consider a family of parabolic abstract equations

v + pAv = Fy(v), t >0,

v(0) = uo,
where 4 € (0,00) and A € A (a certain set of indices). We remark that u
satisfies
=1

2.2) us + Au = uF)\(u), t>0,

u(O) = Ug
if and only if v(t) = u(ut), t > 0, satisfies (2.1). Hence the global attractor

constructed for the semigroup of X solutions of (2.2) coincides with the
global attractor for the problem (2.1).

2.1)

Finally, let us sketch how to apply Theorem 2.6 in case our problem is
naturally set in a real Banach space.

REMARK 2.8. Owing to the requirement of the sectoriality of the operator
A in (1.1) we are forced to consider the equation in a complez Banach space.
Nevertheless, in applications, unless the operator is complex, we obtain the
abstract equations (1.1) in a reel Banach space X. However, we can com-
plexify the operator A (cf. [AM, p. 4]) and consider A(u) = Av + iAw,
u=v+iw€ X = X +iX. If A is a sectorial operator, then the linear semi-
group {e~4%:t > 0} preserves the space X (see [LU, Lemma, 2.1.3)). Thus
we are able to define the space X* as im(A~*|x) and use the real counter-
part of the theory of existence and uniqueness of X* solutions. Therefore, if
A satisfies (A.1) and for (1.1) the conditions (A.2) and (A.3) are satisfied,
then we can still define the semigroup of X solutions T)(t)up = uy(t, uo),
t > 0, ugp € X*. Furthermore, if the assumptions (A.4)-(A.6) hold with
an appropriate subspace V C X® and S) NV is independent of A € A and
bounded in V, then an analogous version of Theorem 2.6 ensures the exis-
tence of the global attractor Ay = Sy NV = A, A € A, for the semigroup
{T\(t):t >0} in V.

3. Examples

EXAMPLE 3.1. Our first example will be an initial-boundary value problem
for a scalar second order equation

u(t, z) — Au(t,z) = b(z) - V(A(u(t,z))), t >0, z € Q,
(3.1) 2u(t,z) =0, t >0, z € 3,

u(0, z) = up(z), z € Q,
where b € C'(Q0) is a vector field such that
(3.2) divb(z) =0, z € Q,
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and

(3.3) b(z)- N(z) =0, z € 0N2.

Here we consider @ C R®, n > 2, with the C? boundary and A € A =
Cl+Lip(R)_

Rewriting (3.1) in an abstract setting in X = LP(Q) with p > %, we
obtain

(3.4) {ut+Au=F,\(u), t>0,

u(0) = uo,
where Fj(u) =b-V(A(u)) and A = —Apy in X with the domain

(%}

It is well-known that {~Ay, {zk},Q} forms a regular elliptic bound-
ary value problem. Therefore, —Ay is a sectorial operator with compact
resolvent (see [C-D 2, Proposition 1.2.3, Example 1.3.8]).

Fix any max (%, %) < o < 1 and take into consideration the fractional
power space X“. The Sobolev embeddings (cf. [HE, Theorem 1.6.1] or {CZ,
Theorem 3.0.21]) now yield

X* c WhP(Q) and X c C(Q).

dom(A) = W?% () = clw2.r(q) {d) e C?(Q): % =0 on 69} .

Our considerations in X are justified, since Fy(u) € X for u € X,
Indeed, we have b; € C(2), X' (u) € C(2) and gzl,- € X and, in consequence,

b-V(A(u) znj ’\(u)) Zb ,\'( )= XN(u)b-Vu € X.

i=1 Zi

Set ||bl| = Zsup |bi|, fix a bounded subset B of X“ and let ¢,% € B.

We have =
IE2(8) = Fx(¥)lx < [[(N(9) = N(@))b- V| x + [N (@)b- V(¢ —9)| x
< e Il (IV(8) = X logg I6llwisy
+IXNW) @ 19 = Yllwisg))
<Lyppllé—¥lxa,

since X’ is globally Lipschitz continuous on compact subsets of R. This shows
that Fy: X® — X is Lipschitz continuous on bounded subsets of X®. As
a consequence, there corresponds to any uwp € X%, o € (max (3,3 75 1),
a unique local X solution uy (-, ug) of (3.4) defined on the maximal interval
of existence [0, 7).
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To prove the local X* solutions exist globally in time we need an ad-
ditional a priori estimate of the solutions in an auxiliary Banach space Y.
We shall choose Y = L*™°(f2). Let us denote v(t) = ux(t, up), t € [0, T, ). We
know that v (t) € X, v(t) € W2P(Q), $%(t) =0 on 8Q for 0 < t < 7y, and
in X we have

(3.5) ve(t) — Av(t) = b - V(A(v(t))), 0 <t < Ty
Fix any k € N and 0 < t < 7,,. Multiplying (3.5) by v?*~! and integrating
over {) we obtain
S v ldg = S Avv**~1dz + S b V(A\(v))v?*ldz.
Q Q 0
Letting gi(s)={y N'(2)2%*~1dz, s€R, we have gy € C1(R) and by (3.2)-(3.3)

n

(3.6) Sb V(A( 'u)),v2k ldr = Sibia_’\, v)UZk lgp = SZ Ogk 'U)
Q T

[ i=1 1 Qi=1 B:L‘,
n n abz
= | D biNige(v)dS - | 3 ——gi(v)dz =
N i=1 Qi=1 *

Hence, because of the boundary condition,

1de o, _ 2k-1
(3.7) 2’9%(521} da:—rSzAvv dx

) (vk"l)zd:c <0.

Consequently, [0, 7y,) 3 t — [[v(®)||%5 12k (qy) is nonincreasing and

2k—1)§2(

Qi=1

[l (8, w0l pax () < lluoll Lox(qy » o € X%, t € [0, 7uo)-
Letting k — oo (see [AD, Theorem 2.8]) we obtain
(3.8) VusexaVo<tcry,, [lua(t, uo)lly < fluolly < ez lluollxa -
We now estimate for a fixed 0 <t < 7y,
(3-9) [|Fx(ua(t, uo))lix < erlibl| sup [N ()] llua(t, uo)llw.e(q) -

s S||U>‘(t,“0)"1,°°(n)

Fix max (3, 75) < B < a. The moments inequality (cf. [KR, Theorem 1.5.2])
yields

J3 1-8
llua(t, o) llwrr(qy < callua(t, uo)lixs < caca [lun(t, uo)ll % llur(t, wo)llx ©

1-8 8
< s fua(t )y * (1+ ua(tywo) 5o ),
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since Y = L*°(Q) C X. Combining this with (3.9) we conclude that
(3.10)  [[Ex(ua(t,uo))llx <
8 1-8
< cellbll (1 + Jlua(t,uo)lle) ~ sup  [X(s)| [lua(t, wo)lly
Is|<llua(t,uo)lly
The estimates (3.8) and (3.10) ensure by [C-D 2, Theorem 3.1.1} that
T(t)uo = ur(t,uo), t >0, up € X7,

forms a C° semigroup of global X® solutions having positive orbits of
bounded sets bounded. In particular, v (ug) = {Tx(t)uo:t > 0} is bounded
for any up € X“. So far we have checked that the conditions (A.1)-(A.4)
are satisfied with V = X<,

Let us now define
L(¢) = LA(#) = #l 720 » ¢ € X
L is continuous, since if ¢, ol ¢ in X, then ¢,, sl ¢ in L?(Q) and
thus £(¢m) ol L(®). Observe that £ is nonincreasing along any trajectory

(compare with (3.7) in case k = 1). Assume that L(ux(t,ug)) = L(ug),t > 0.
Then we have

_ d au,\ t, uo
= L6 0) = It oy = 22 [P eso
(compare with (3.7) in case k = 1). Thus
Ouy(t, uo) }
(311) Vt>0Vi€{1""'n}a—.’lIi =0 a.e. in .

Since uy (-, ug) € C([0, 00), W1P(Q)), we see that (3.11) holds also for t = 0,
i.e.
Oug )
Vie(1,...n} Bz, =0 a.e. in Q.

Hence ug(z) = const. for a.a. z € Q. Obviously such up is a stationary
solution. Therefore, by uniqueness uy (¢, ug) = ug, t > 0, which shows that
(A.5) is valid. Nevertheless, we have also proved that if ux(¢,up), ¢ > 0,
is a stationary solution, then ¢t — L(ux(t,uo)) is constant, so up must be
a constant function a.e. in 2. Hence

(3.12) Sy = {uo € X% onst.cr uo(z) = const. for a.a. € N}.

Note that S} is independent of .
Let us now define

I($) = () = |—§17| [ dz, ¢ € X2,

Q
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which is evidently one-to-one on S). It is also a continuous functional on
X%, since

|l(un) - l(u)l | I ”‘Ll.n u”Ll(Q) |QI ”un u’”X"‘ :

We are going to show that

(3.13) I(ux(t,up)) = l(uo), t >0, up € X°.
Fix up € X* and let v(t) = uy(t,uo), t > 0. Then we have
d ou(t)
ag v(t)dz = Svt(t)da:— gm (tYdx = gﬂ; o N;idS =0, t>0,

where we used (3.2), (3.3) and the boundary condition for v. This shows
that I(ux(t,u0)) = c € R for t > 0. Letting t — 0 we obtain (3.13).

What is left to show is the existence of an appropriate closed and posi-
tively {T\(t)}-invariant subset V of X* such that Sy NV is bounded in V.
Fix r > 0 and set V; = {u € X*:|l(u)| < r}. Since [I| is continuous on X<,
V. is a closed subset of X“. Moreover, V; is positively {T)(t)}-invariant,
since we have shown, in particular, that {(T(t)ug) = I(uo), t > 0, ug € V;.
Therefore, if ug € V;, then [I[(T)\(t)uo)| = |I(uo)| < r, t > 0, which shows
that for each A € A we have T)\(t)V; C V; for all t > 0. We should yet prove
that there exists R > 0 such that Sy NV, C By.(0, R), but this is obvious,
since S\ NV, consists of constant functions equibounded by r.

Therefore all assumptions of Theorem 2.6 are satisfied. According to
Remark 2.7, we conclude that for any u € (0,00) and any A € C!*+L?(R)
there exists exactly the same global attractor for the problem

u(t, ) — pAu(t, z) = b(z) - V(A (u(t, z))), t >0, z € Q,
(3.14) { $%(t,z)=0,t>0, z € 09,
u(0,z) = uo(z), z € Q,
in V., which appears to consist only of all constant functions such that the

absolute value of the constant does not exceed r > 0.

Note that we can choose A = 0 and p = 1. Therefore the dynamics of
the problem (3.14) in V; with any x € (0,00) and any A € C*+LP(R) is the
same as the dynamics of the Neumann problem for the heat equation.

REMARK 3.2. In the above considerations we have chosen as the base space
LP(Q2) with p > %. Nevertheless, we need not to be so restrictive. Assuming
that 3 < p < 3 and p > 1, we can still prove the coincidence of attractors
for the problem (3.14) in the subspace of X¢ with %E < a < 1 for any
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p € (0,00) and for all functions A € C!(R) satisfying
(315)  3eo¥szer |N(s) = N@)| < cls =3 (I + 157" + 1),

where 1 < r < %2_0‘7;;}. This is achieved by the similar argument as in
the example, while the lack of embedding X* c C(Q) is substituted by
the embedding of X* into an appropriate Lebesgue space. Moreover, the
a priori estimate (3.8) as well as the subordination condition (3.10) are also

obtained in Y = L9(Q2) with properly chosen g.

EXAMPLE 3.3. As a second example we will consider the Cahn-Hilliard sys-
tem known as a phase separation model in the decomposition of a multi-
component alloy (cf. e.g. [C-D 1], [L-Z] and the references therein):

u(t,z) = —A[TCAu(t,z) — VuA(u(t, z))], t >0, z € Q,
(3.16) Vu(t,z)N(z) = V(Au(t,z))N(z) =0, t > 0, z € 99,
u(0,z) = ug(z), € Q,

where u: [0,00) x & — R™, uT = (uy,...,um), I' = [[y;] € R™*™ is a sym-
metric and positive definite matrix, i.e.
(3.17) Jy>0Vackm alla > colaf?.

Furthermore, (2 is a bounded domain in R", where n < 3, having Ccte
regular boundary 0. Here Vu = [?r;‘:;] is a gradient m x n matrix, while N
denotes an outward normal vector to 9Q2. We assume that A € A, where A
denotes the set of all functions satisfying the following conditions:

(B.1) A € C3+Lip(R™),
(B.2) A is bounded below, i.e. there exists My > 0 such that
Vuerm A(u) > —M),

(B.3) X is semiconvex, i.e. there exists Ny > 0 such that

VuermVacrn a’ A (w)a > —Nj lal*,
(B.3’) A is convex, i.e.

VuermVacrm al A" (u)a > 0.

Obviously, the condition (B.3’) implies (B.3), but we distinguish them, since
we prove most of the required properties under the weaker (and more natural

physically) condition.
Let us now introduce the following notation:

C* = [C*@)|™, I = [LP(Q)]™, HF = [H*(Q)]™, W*P = [W*P(Q)]™,
where k e NU {0} and 1 < p < o0.
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We consider (3.16) as an abstract Cauchy problem

{0+ An() = P22, £> 0.

(3.18) u(0) = uo,

in X = L2, where A = I’A? with the domain

dom(A) = [Hfgv,g%}(ﬂ)]m = clga{u € C*: VuN = V(Au)N = 0 on 6Q}.

Moreover, Fy: H2 — X is given by
Fy(u) = AVyA(u), u € H.

Key Sobolev embeddings and Lipschitz continuity of right hand
side. From the Sobolev embeddings for n < 3 we infer that

(3.19) H? c C° and H? c W,

They guarantee that F is well-defined on H2. Since the Sobolev embed-
dings (3.19) hold and A satisfies (B.1), it follows that ¥ is Lipschitz con-
tinuous on bounded subsets of H? (cf. [C-D 1, p. 280]).

Sectoriality of linear operator. It is well-known that there exists

do > 0 such that A2 + dol is a symmetric isomorphism of [HE1 5 M}(Q)]m

N3N

onto X (cf. [TR, Theorem 5.5.1]). Since I is a symmetric isomorphism of X
onto itself and commutes with A2 + dol, we have

(T(A% 4 doDu, v)x = (A2 + doI)u,Tv)x = (u, (A% + doI)Tv)x
= (u,T(A% 4+ doI)v)x, u,v € dom(A).

Therefore, TA% + doT" is a symmetric operator with its range being the
whole X. Hence, A2 + doT" is a self-adjoint operator in X. Since doT is
a bounded self-adjoint operator on X, we infer that I'A? is self-adjoint
(cf. [ML, p. 119)]). Fixing any d; > 0, we see by the same argument that
'A% + d;1 is a self-adjoint operator in X. Note that

(TA2 4+ diIu,u)x = (TA%*u,u)x +dy |Jul/%

= {(Au)Tr(Au)dz + d; ||uf}
Q
> co||Aull + di [[uf% = di luf%, u € dom(4).

This shows that 'A2 4 d;1 is a positive definite self-adjoint operator, so
by [C-D 2, Proposition 1.3.3] it is a positive sectorial operator in X.
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Compactness of resolvent. Observe that for some positive constants
c1, ¢z and c3 we have

1 lullgs < e2||(A% + dol)ul
< [[(CA% + diT + (dof — diDyul
< ”(1“A2 + dlI)u”X +csllully, u € dom(A).

This estimate and the compactness of embedding H? C X ensure that the
resolvent of 'A? is compact.

Description of key X° spaces. Since 'A? 4+ d; ] is a positive definite
self-adjoint operator in X, we infer from [TR, Section 1.18.10], [C-D 2, p. 50]
and [C-C, Proposition 2] that

® = D((TA2+ di)*) = [X,D(LA% + di]))a
= (L2, [H;‘;N,g%}(ﬂ)]m]a

D)™ o=
_ 2 4 ™m {'5_‘}
- [[L ( H{ a 3A}(Q)]a] { [st}(ﬂ)]m

Local solutions. We can from now on consider the nonlinearity
FyX*— Xforace [%, 1). Then F'y is Lipschitz continuous on bounded sub-
sets of X for a € [%, 1). As a consequence to any ug € X%, a € [%, 1), there
corresponds a unique local X* solution of (3.18) ux(t,up), 0 < t < ™y,
where Tug denotes the lifetime of the solution. Therefore we have already
shown that conditions (A.1), (A.2) of Theorem 2.6 are satisfied.

Global solutions and boundedness of orbits of points. We are
now in a position to prove that the local solutions are in fact global ones.
This problem was first solved in case A satisfied some growth conditions
(see [C-D 1]) and later those limitations were overcome in [L-Z]. In case of
the Cahn-Hilliard equation (i.e. m = 1), the global existence of X* solutions
was shown in [C-D 2]. Here we follow this monograph to show that the same
method applies to the system.

Step 1. Let us consider L? as a subspace of H* = [(H!(Q2))*]™. Thus

for u € L2 we have
m

a2 = 3" (sup {(wk, k) 2 il gy = 117,
k=1
where u? = (uy,...,un). Let

m(w) = [m(w)] = [ﬁ (gz ukdz].
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Observe that for a fixed u € L2 the Neumann problem
—Az(z) = u(z) —~ m(u), z € Q,
(3.20) Vz(z)N(z) =0, z € 0Q,
m(z) =0

possesses a unique solution z € H?, which we shall denote by z = N(u).
Let us define

(u1,uz)x = (M(uy), u)p2 + |2/ m(u1) - m(uz), ug,uz € L%
Note that this defines a scalar product on L? and thus a norm
[} = (u,u)w, ueL?

One can easily show that the norms |-[|,, and |||, are equivalent on L?
(cf. [GR, p. 12]). Using the Poincaré inequality we obtain

m
(321)  Julle < 04\l > IVuklizeggy llully = ca I Vulipz lully
k=1

for u € H! such that m(u) = 0.
Step 2. Fixa € [%, 1) and ug € X*. We denote
(3.22) v(t) = ux(t, ug), t € [0, uy)-
We know that v(t) € dom(A), t € (0, Tyy). For 0 <t < 7y, we estimate

(3:23) o lAv(®)|lf2 < J[AV(E) TAV(t)dz

Q

= — {[Av(®)]T (=T AV(t) + VyA(¥(t))) dz
Q

+ [ AV VoAV (D)dz.
Q

Integrating by parts we obtain

(324)  [[AvEITVeAv()dz = — [ tr (Tv(E) TN (v(8) Vv(2)) da.
Q Q
Moreover, setting

(3.25) K(v(t)) = —TAv(t) + VyA(v(t)),
we get owing to integration by parts and the regularity of v(¢t)

326)  {[Av@E)]TK(v(t)dz = - |tr ((Vv(t))TVK(v(t))) dz.
Q Q

Combining (3.24) and (3.26) with (3.23), we conclude that
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collav(B)llEe < | tr (V) VE(v(1))) do
Q
gt ((Ve@)™N (v®) V(D)) de.
Using assumption (B.3) and the Cauchy inequality we obtain

(327)  collAvd)|Ra < % for (VK (©)TVE(v(0)) dz
Q

+ <N,\ + %) [ tr (Vv(®)TVv(t)) da.
Q

Step 3. Let v and K be given by (3.22) and (3.25). Observe that inte-
gration by parts yields for 0 <t < 1y,

%% [ tr (VK(v®) VK (v(2) da
= - [[AK (V)T (K(v(t)))edz = — {[ve()]T (K (v(t)))edz
Q Q
= {[v@))T(CAVE))dz — [[ve(®)]T (Vv A(V(2)))edz.
Q Q

Using integration by parts again we get

(3.28) S[vt(t (CAV(E))dz = — [ tr (Vvs(t))TTVvi(t)) da.
Q
Since we a.lso have
(3.29) Ve @1 (Vv A(v()))edz = [[ve()]T N (v(B))ve(t)dz,
Q Q
this together with (3.28) yields

(3.30) %E [ r (VE(vV(e)TVE(v(t))) d

5 tr ((Vve(®)TTVvi(t)) dz — [ [ve(®)] "X (v(t))ve(t)dz.

Q Q
Using assumption (B.3) and (3.17) we conclude that
1d r
(331) 5= Qtr ((VE(®)TVE(v()) do

< —co [|Vve(®)lIfe + Na [ve(®)lIgz -

Step 4. Let v and K be given as in (3.22) and (3.25). Observe that for
0 <t < 7y, the equation is satisfied and v(t) € dom(A), so integration by
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parts yields

(3.32) m(ve(t)) =0
Additionally, (3.32) and the continuity of the spatial average m on L! give
(3.33) m(v(t)) = m(v(0)), 0 <t < 1y,.

Since v¢(t) € H and m(v¢(t)) =0 for 0 < t < Tug, it follows from (3.21)
that

(3.34) IVe(t)IIE2 < ca Vve()llpe ve(t)lly -
Thus (3.31) gives

1d
2ar ) (VKON VE(() de
< —co [Vve(B)llF2 + Naca [Vve(®)llp2 Ive(®)ll -

Using Cauchy inequality and integrating over [e, t] for some fixed sufficiently
small € > 0 we obtain

(3.35) % [ tr (VE(v@)TVE () do <

202 t
< 3 e (VKT VK () da+ 2% [ o) By do.
0 [

Combining (3.35) with (3.27) we conclude that for 0 < e <t < 1y,
1
(3.36) co||AV(R)|E, < 2) [ or (VE(v(€)) VK (v(e))) dz
Nf i
+ Tt [ ds + (Mo 43 ) IVVOIs.-

Step 5. Let v and K be given by (3.22) and (3.25). Using (3.32) we
compute for 0 < t < Tug
(3.37) = V@i = ~N (ve(®)), va(t))1a
= (K(v(8)) - m(K(v(t))), ve(t))rz = (K(v(2)), v&(t)) L2
jt (1 Jer ((Vv(£)TTVv(2)) do + /\(v(t))da:)

where we used the symmetry of I' and integration by parts. Defining

(3.38) La(u) = % [ tr ((Vo)'T'Vu) de + | A(u)de
Q Q

for u € X% a € [%,1), we see that £,: X® — R is continuous and the
function ¢ — Lx(ux(¢, up)) is nonincreasing for 0 < ¢ < 7y,-
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Step 6. We now assume that o € [%, 1), ug € X* and v, K are given
as before. We know that v(t) € [H?i}(ﬂ)]m, 0 <t < 1y, From (3.36)
aN

and (3.37) we get

(339)  alavill <3 {ir (VK (O VE(v(0) ds
M s (v(0) - £x(v(0)

+ (N,\ + %) Vv, ¢ € (0,7p).

We shall now show that £y(v(t)) and [|Vv(t)||32 are bounded. Indeed,
from (3.17) and the assumption (B.2) it follows that

+

(3.40)  LA(v(0)) 2 La(v(®)) 2 %CO IV v®liLz + § Av()dz
Q

1
> 5o [VV()liEs — Mal@ 2 -My (9.
Hence from (3.39), (3.40) and (3.33) we obtain

(34D 1AVORs + () < 5 [ (VKVO)TVE(v(0) do
Q

[Nfcg + 8N, +4
+ 2
4cg

l (L(v(0) + My [9]) + (m(v(0)))?, ¢ € (0, Tup)-

After simple computations one can see that

IAV®)IE2 + (m(v(®))* < eA(IV(0)lg), t € (0, 7ug),
where ¢y:[0,00) — [0,00) is a certain nondecreasing function. However,
1
note that [|u||gz2 is equivalent to ( ||Au||iz+(m(u))2 )2 foru e X3 (cf. [TE,

Lemma II1.4.2]). In consequence, for o € [3,1) we get
1
(342)  [lua(t, uo)ll= < s ([lAua(t, wo)[Fa + (m(ua(t, uo)))®)?
< ¥a(lluollx«)

for all ¢t € (0,7uy), where 4):[0,00) — [0,00) is a certain nondecreasing
function.

Step 7. Since 'A? + d,1 is a positive sectorial operator, we estimate
IFA(ua(t, uo)) + drux(t, ug)llr2 <
< AV (un(t, uO))"L2 + dy [lua(t, uO)”H2 , t € (0, Tuo)'
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Let v(t) denote u,(¢, ug). Then we have for ¢ € (0, Tu,)

18T AV < e 3233 1

m m m v 3 v
Z:aJ(t) ) (())Bk(t)

s v Oz; 0v.0v;0u; oz; L2(9)
m m 62)\

Z Z 5; (VA0

r=1j=1 LA(Q)

( su oA (s)
1<],k r<m |s|<c-(||VI()t)”H2 3’(1-,6'0] Oug

9%\
0v,Ov; (s)

+ max sup
1S4rSm s <erllv(t) g2

) (14 v,

where we used the Holder inequality and the Sobolev embeddings (3.19).
Hence

(343)  [|Fa(ux(t, uo)) + drua(t, uo)llpz < a(llua(t, wo)llgz), t € (0, 7uy),
where ¥): [0, 00) — [0,00) is a certain nondecreasing function.

It follows from (3.42), (3.43) and [C-D 2, Theorem 3.1.1] that for any
ug € X* with a € [%,1) we have Tug = 0. Moreover, the global X¢
solutions for a € [%, 1) constitute a C° semigroup on X having orbits of
bounded sets bounded. Fix now a € [1,3). We know that the local X*

solutions exist. Hence if ug € X<, then uy(t,ug),0<e <t < Tug, 1 an xi
solution uy(t — €, uy (g, up)). Thus Tug = 0o and the relation

(3.44) T5(t) = up(t,ug), t >0,

defines a C% semigroup of global X solutions having orbits of points
bounded for a € [3,1). The above considerations establish (A.3)—(A.4) with
V=X*a€(}1).

Lyapunov functions. Observe that we have already defined in (3.38)
quantities that turn out to be Lyapunov functions. We have noticed that
Lx: X* — R is continuous and the function t — £ (ux(t, ug)) is nonincreas-
ing for t > 0 with ug € X, a € [%, 1). Now we merely mention that

Lx(ux(t,up)) = La(ug) implies uy(t, ug) = uy,

(see [C-D 1, Lemma 1] for more details). This and previous observations
ensure that (A.5) holds with V = X*, a € },1).

Stationary solutions under assumption (B.3’). Up to now we have
made our calculations under the assumptions (B.1)—(B.3). Hereafter we are
going to use the stronger assumption (B.3’). We now concentrate on finding
Sy, i.e. all stationary solutions of (3.18) in X%, a € [%, 1).
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Assume that w € dom(A) is a stationary solution of (3.18). From (3.37)
we get

0= (£aw)) = ~ IVEW)IE

Therefore, we obtain VK(w) = 0 a.e. in 2. The well-known property of
the distributional derivative implies that the function under the gradient is
independent of the spatial variable, so we have

(3.45) —T'Aw+ VyA(w) =aae. in )

with some a € R™. Since integration by parts gives m(I'Aw) = 0, it follows
that

(3.46) a = m(a) = m(VwA(w)).

Computing the scalar product of (3.45) and w in L? we obtain
(3.47) (-TAw,w)p2 + (VwA(W), W)z = (m(VwA(w)), w)L2.
Note that integration by parts gives

(-TAw, w)p2 = S tr ((VW)TFVW) dz.
Q

Moreover, we have (m(VwA(w)), w)p2 = (VwA(w), m(w))g2. Thus (3.47)
yields

(3.48) S tr ((VW)TFVW) dz = (VwA(W), m(w) — w)g,2.
Q

Computing the scalar product of (3.45) and Aw in L? we get
(3.49) — (CAW, Aw)12 + (VwA(W), Aw)p2 = (a, AwW)pe.
Rewriting the first term in (3.49) we see that

(CAw, Aw)yz = {(Aw) T Awdz.
Q
Lastly, integration by parts ensures that (a, Aw)y2 =0 and

(VwA(w), Aw)pz = — [ tr (Vw)T N (w)Vw) dz.

Q
These computations lead to
(3.50) f(aw)TAWdz = - [ tr (VW)TX'(w)Vw) d.
Q Q

Since I is positive definite and we assume (B.3’) here, i.e. A is convex, we
obtain
collaw|is < S(AW)TFAWdSE <0.
Q



346 R. Czaja

Hence Aw = 0 a.e. in Q. Applying this to (3.45) we see that VyA(w) = a
a.e. in Q. Now it follows from (3.48) and (3.17) that Vw = 0 a.e. in Q. Well-
known properties of distributional derivatives guarantee that w(z) = ¢ for
a.a. £ € §). Therefore, we sum up our considerations describing the set of
stationary solutions as

(3.51) Sy = {w € X% 3cerm w(z) =c for a.a. z € 0},

since every function constant almost everywhere is a stationary solution
of (3.18). It is worth noticing that Sy does not depend on A.

Functions [). Let us now define [): X — R™ by
1 T
I\(u) =m(u) = 9] {urdz |, where ul = (uy,...,um).
Q

The continuity of the spatial average m on L! ensures that [ are continuous
functions. Moreover, (3.33) yields

l/\(u/\(ta uO)) = lk(uO)a t> 01 ug € Xa,

and, by the characterization of S in (3.51), the condition (A.6) holds with
V=X

Appropriate subspace V C X, We have already shown that the
conditions (A.1)-(A.6) are satisfied with V' = X*. Nevertheless, the set of
stationary solutions Sy is unbounded in X<, so we cannot look for a global
attractor in X . Therefore we need to find an appropriate closed and posi-
tively {T(t)}-invariant subset V' of X such that Sy NV is bounded in V.
In the light of our previous discussion it is clear that this will be satisfied
by the set V, = {u € X*:|m(u)| < r} with » > 0.

Therefore all assumptions of Theorem 2.6 are satisfied. According to
Remark 2.7, we conclude that for any u € (0,00) and any A € A there exists
inV,c X% ac€ [%, 1), the same global attractor for the problem

w(t, z) + uCA%u(t, z) = AVuA(u(t,z)), t >0, z € Q,
(3.52) { Vu(t,z)N(z) = V(Au(t,z))N(z) =0, t > 0, z € 09,
U(O, 1?) = uO(m)a z €,

which consists only of all functions constant almost everywhere in {2 such
that the absolute value of the constant does not exceed r > 0.

Observe that A contains the zero function so the dynamics of the prob-
lem (3.18) with any A € A is the same as the dynamics of the linear parabolic
problem.

EXAMPLE 3.4. We also mention that from the considerations of [C-D-T] it
follows that all assumptions of Theorem 2.6 are satisfied if we consider the
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pseudodifferential parabolic problem

uy(t, z) + (—Ap)Pu(t, z) = b(z) - V(A(u(t, z))), t >0, z € Q,
(3.53) u(t,z) =0, t >0, z € 69,

u(0,z) = uo(z), = € Q,
where b: R™ D ) — R" is a bounded differentiable vector field such that
(3.54) divb(z) =0, z € Q.

Here we consider 82 € C**¢ withe > 0, B € (%, 1) and A € A = C1HEP(R).
Hence for any A € A there exists exactly the same global attractor for the
problem (3.53) in the whole X% a € (%, B), which consists only of the zero
function. Here X* corresponds to the operator A = (—Ap)P considered in
X = LP() with p > n.

Note that A contains the zero function so the dynamics of the prob-
lem (3.53) with any A € A is exactly the same as the dynamics of the linear
parabolic problem.
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