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ON SOME GENERALIZATION OF COEFFICIENT
CONDITIONS FOR COMPLEX HARMONIC MAPPINGS

Abstract. Let h = u + iv, where u, v are real harmonic functions in the unit disc
A. Such functions are called complex mappings harmonic in A. The function h may be
written in the form h = f + g, where f,g are functions holomorphic in the unit disc,
of course. Studies of complex harmonic functions were initiated in 1984 by J. Clunie and
T. Sheil-Small ({2]) and were continued by many others mathematicians. We can find some
papers on functions harmonic in A, satisfying certain coefficient conditions, e.g. [1], [4],
(6], [7], [8]. We investigate some more general problem, i. e. a coefficient inequality with
any fixed sequence of real positive numbers.

Let us consider functions h harmonic in A = {z € C : |z| < 1} of the
form

o0 o0
1) h=f+3g, f(z)=z2+ z an2", g(z)= Z bz, z€A, || <1.
n=2 n=1
For a fixed sequence {¢n}n=23,... of real positive numbers we denote by
H({pn}) the class of functions h of the form (1) and satisfying the condition

(2) 1] + Z wn(lan| + Ibn.l) <L

n=2
Let next H%({¢,}) be the subclass of H({y,}) of functions h such that
b =0.

REMARK 1. a) In the case ¢, = n, n = 2,3,..., we have the classes HS,
HS? investigated by Y. Avci and E. Zlotkiewicz [1], i. e. H({n}) = HS,
H°({n}) = HS°. Each function of the class HS? is starlike ([1]).

b) If o, = n%,n=2,3,..., weobtain the classes HC, HC? examined also
by Y. Avci and E. Zlotkiewicz [1], i. e. H({n?}) = HC, H%({n?}) = HC".
The functions of the class HC? are convex ([1]).
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c¢) The case o, =nP, n =2,3,..., p > 0, was considered by A. Ganczar
(4).

d) We can also consider the sequence ¢, = an+ (1 —a)n?, n=2,3,...,
a € (0,1),i. e. H{an+ (1 — a)n?}) = HS(a) (see [5]). This case is a kind
of generalization of a) and b).

e) In [6] the authors investigated the case ¢, = 2—"1'_17“0‘, n=23,..., for
ac€ (0,1).

f) If {¢n}n=23,. is a sequence such that ¢, > n, n = 2,3,..., then
by (2) H({en}) € HS, H({¥n}) C HS, of course. It concerns the cases
examined in [1](a) and b)), [4] (c) with p > 1), [5] (d)) and [6] (e)).

g) If {¢n}n=23,. is such a kind of sequence that ¢, > n?, n=2,3,...,
then H({yn}) C HC C HS and H°({pn}) c HC® C HS®, respectively.

Directly from the definition we get

THEOREM 1. Let {¢n}n=23,.. be a sequence of real positive numbers. If h €
H({pn}), then functions

2z 17 h(rz), z - e th(etz), z€ A, re(0,1), teR,
also belong to H({¢n}).
Theorem 1 holds also for the class H({¢,}).

REMARK 2. Let {¢n}n=23,.. be a sequence of real positive numbers. One
can easily check that if h € H({¢n})), then the function hg of the form

h(z) — bih(z
) = 2=

belongs to the class H°({¢n}). However, note that if hg € H°({y,}) and
|b1] < 1, then the function h of the form

h(z) = ho(2) + biho(2),  z €A,
does not have to belong to H({yn}) (see e. g. [1], [5]).

zeA (b < 1),

We mentioned some inclusions for the considered classes. In view of the
definition condition (2) we obtain

THEOREM 2. Let {pn}n=23..., {¥n}tn=23,. be sequences of real positive num-
bers. If :

(Pnzwn, n=2,3,...,
then the inclusions H({vn}) C H{¥n}), H*({¢n}) C H'({tn}) hold.

The above property is the generalization of Remark 1, of course.
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EXAMPLE 1. For a fixed sequence {¢n}n=23,.. of real positive numbers the
functions hj, hg of the forms
2

(3) hi(z) =2+, z€A,
P2
)

4 ho(z =z+—z— z€eA

(4) ) ;
P2

belong to the class H({p,}).
What is more, because of Theorem 1, superpositions of the functions h;,
h with rotations also belong to H°({¢,}).

Let {¢n}n=23,.. be a sequence of real positive numbers such that

©n ©o n—1
(5) 72(?) s n—2,3,....
REMARK 3. If p2 > 2, then the condition (5) implies the inequality ¢, > n,
n=2,3,.... In view of Remark 1 f) we have inclusions H({y,}) C HS and
H%({p,}) ¢ HS®. It means, among others, that the radius of starlikeness
of the class H%({(p,}) in this case is equal to 1.

Obviously, the inequality ¢, > n, n = 2,3, ..., does not imply the con-
dition (5).

EXAMPLE 2. Fix a € (0,1) and set ¢, = an+ (1 —a)n?, n=2,3,... (see
[5]). Obviously, we have ¢, > n, n = 2,3,.... If @ = 1, then (5) holds, of
course.
If « € (0,1), then
w2

——2—=2—a€(1,2), %=a+(1—-a)n, n=34,....

The real function k; of the form k;(z) = (2—a)*"! is increasing and convex
in R. The function k; of the form ke(z) = a+(1-a)z, z € R, is an increasing
linear function. Moreover, we have k1(1) = k2(1) = 1 and k1(2) = k2(2) =
2 — a. From these facts we conclude that

kl(fl!) > kg(fl)) y x> 2.

It means that for @ € (0,1) the considered sequence does not satisfy the
inequality (5).

REMARK 4. Fix a sequence {¢p}n=23,., ¥n >0, n=2,3,..., and consider
the condition o o
6 Yn ¥2
) 8
If 2 = 2, then the conditions (5) and (6) are equivalent, of course.
Let @2 < 2. If the sequence satisfies (6), then it satisfies the condition (5).

n=23,....
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Indeed, in this case we have
P2 p2\"!
— 2> = = ceen
2 = ( 2 ) 1 n 2, 3)
The converse implication does not hold.

Let o > 2. If the sequence satisfies (5), then it satisfies (6), but it does
not have to satisfy the inequality (5).

EXAMPLE 3. Let ¢, =n — %, n=2,3,.... We have
3 w2 3 ©n 1
= — _——= - —=1-—-—— =23.
P2 2’ 2 3’ n n2’ n IRt
Note that ¢, <n,n=2,3,....
The function z — 1 — & is increasing on the interval (0, +00). Hence

1 1 3
It means that the considered sequence satisfies the condition (6). In view of
Remark 4, the condition (5) holds in this case.

EXAMPLE 4. Let ¢, =n?, n=2,3,..., p > 0 (see [4]).
For p € (0,1) we can observe that for ¢ < 2 the inequalities (5) and (6)
are not equivalent (Remark 4). In this situation we have

n—1
fn _ o1 (-‘P—"’) =20-D-1) =923 ..., p<2
n 2
Moreover, we know that 2”1 > n, n = 2,3, .... Hence the sequence satisfies

(5). However, the condition (6) does not hold in this case.
Ifp> 1, then ¢, > n,n=2,3,..., but the sequence does not satisfy (5).

In view of Remark 3 and the above examples, it seems to be interesting
to consider a sequence {yp}n=23,. of real positive numbers with 3 < 2,
satisfying the condition (5). We require neither ¢, < n,n = 2,3,... (Ex-
ample 3), nor ¢, >n,n=3,4,... (e.g. p2=1, ppo=n,n=3,4,...).

Denote A, = {z € C:|z| <7}, r >0, with A; = A.

THEOREM 3. Assume that h € H({pn}), where {¢on}n=23,.. is a sequence
of real positive numbers satisfying condition (5) and such that w3 < 2. Then
for any r € (0,%42) the function h is univalent and sens-preserving in the
disc A,.

Proof. Let the assumptions of Theorem 3 hold. From Theorem 1 with
h € H({p,}) the function h, of the form h, = r~1h(rz), z € A, r € (0,1),
belongs to H({¢n}). Moreover, for r € (0, £%) by (5) we have
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00 o0
> n (Janr™ ) + bar™ 1) = 3 nr" 2 (lan] + [bal) <

n=2 n=2

o0 n—1 oo
<Y n(2)" (anl + 1) < 3 onlanl +bnl) <1 ol

From this it follows that h € HS. According to the respective theorem from

the paper [1], h, is univalent and sense-preserving in A. As h(rz) = rh,(2),
z € A, so h is univalent and sense-preseving in the disc A,, r € (0, £).

THEOREM 4. If {¢n}n=23,. is a sequence of real positive numbers such
that pa < 2 and the condition (5) holds, then for r € (0, %) any function
h € H°({¢,}) maps the disc A, onto a domain starlike with respect to the
origin. The constant €2 is the best possible, so it is the radius of starlikeness
for the class H°({¢n}).

Proof. Under the above assumptions, from Theorem 3 and its proof we
observe that h, € HS?, r € (0, %2). Hence ([1]) h,(A) is a starlike domain.
Since

h(A)={weC:w=r{ A ¢ €h(A)},

we conclude that h(A;) is starlike for r € (0, £2).

Note that 42 is the radius of starlikeness of the class H%({¢5}). To prove
this fact we examine the function h; of the form (3) with ¢ € (0,2). Of
course, by € H%({,}) and it is holomorphic in A, h1(0) = 0, A} (0) = 1. In
view of the well known theorem ([3], p. 41) it is sufficient to examine the
sign of the expression Re %%]?(Zz)l for z € A.

Let z = pe', p € (0,1), t € R. We have

¥ 2
Re z 1(2) = Re P2z +2z2 _
hi(2) P2z + 2
_ Re[(ipape™ + 2p%**)(pape™™ + pPe %)
lpapeit + 2p2e2it|2
_ P’ (w% + 3p2pcost + 2p2) 3
T lpopeit + 20222 T
_ 3ip2p°
lpapeit + 2p2e2it|2

(cost + d(p)),

where

202 + 2 2
d(p) = L% _ +22 e,

3p20 3p2’  3p’
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Observe that d(p) > 0 for p € (0,1) and

2 2
lim d(p) = 400,  lim d(p) = 22%2

> 0.
P pol- 3p2

We also have
2 g 20"
d(p)=— -5 =——=, € (0,1).
(°) 3p2  3p%2  3pgp? peO:D)
Examining d’ and applying elementary methods we can check that

€ (0,22) U (ps,1) fo € (0,1),
i) > 1 pe (0, ) U(p1) for ¢y€(0,1)
p€ (0,2 for 2 €(1,2).
From this we can see that for p € (0, 42) we have cost +d(p) > 0, t € R.

Therefore, if z € A, 7 € (0, %2_>a then Re _l(z}:lll (:5) > 0.

If r € (¥%,1), then in the disc A, exists a point 29 = poe'®® such that
d(po) < 1 and costg+d(po) < 0, what implies Re %0)—)- < 0. Consequently,
for r € (%2, 1) the domain h;(A,) is not starlike.

REMARK 5. a) The function h; shows that the radius of starlikeness cannot
be improved in the respective class of holomorphic functions.

b) In the proof of Theorem 4 we can also consider the function hy of the
form (4) and examine the expression &arg (h(pe®)), p € (0,1), t € R.

From Theorem 4 and Remark 3 we obtain

COROLLARY 1. If {¢n}n=23,.. is a sequence of real positive numbers satisfy-
ing the condition (5), then the radius r. of starlikeness of the class H°({pn})
is equal to ry = min (£,1).

According to this fact and Example 4 we have

COROLLARY 2. The radius r. of starlikeness of H°({nP}), p € (0, 1), equals
T = 2P~ 1 (see [4]).

We have noted that if {¢n}n=23,.. is a sequence of real positive numbers
satisfying the condition (5) and @2 > 2, then all functions of the class
H%{pn}) are starlike (Corollary 1). We now remind that a function A of
the form (1) is called a harmonic function starlike of order 8 € (0,1) in A if
Larg (h(re)) > B for r € (0,1), t € (0,2m) (see [7]). Of course, a function
starlike of order 8 € (0,1) is starlike. H. Silverman ([7]) proved that if a
function h of the form (1) with b; = 0 satisfies the condition

OOn_ﬂ
7 nl +1bn]) <1
@ 3 T onl + 1)
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for § € (0,1), then the function h is starlike of order 3. This result we apply
to showing the next theorem.

THEOREM 5. If {¢n}n=23,.. is a sequence of real positive numbers satisfying
the condition (5) and o > 2, then the functions of the class H({,}) are
starlike of order B = %.

Proof. Let the assumptions of Theorem 5 hold. Obviously, we can see that
B = ﬂ}% belongs to the interval (0,1). According to the mentioned result

v2
of H. Silverman, by (2) and (7), it suffices to show that

n
mﬁ(ﬂn, TL=2,3,....

Because of the form of # we have

n—=0_ (2= _
l—ﬂ_n( - + 2 1), n=23,....
Consider two real functions I, I3 of the forms

z—1 92—
zl(x>=(%3) D k@)= g1, e (0400)

We required @2 > 2, so the function /3 is nondecreasing and convex in the
interval (0, +00) and ls is a nondecreasing concave function in the interval
(0, +00). It implies that the graphs of the functions [;, l; have at most 2
common points. We can see that [;(1) = lo(1) = 1 and [1(2) = I2(2) = £.
From these properties of I; and Iy we conclude that

Li(z) > (), z>2.
Therefore by (5) we get
n— 2—p2 o\t
= — < = < =
-3 n( —— T2 1) _n<2) <n, n=23,
It ends the proof.

In the next part of the paper we make some notes on convexity of func-
tions of the considered classes.

REMARK 6. Let {¢n}n=23,.. be asequence of real positive numbers satisfying
the condition (5) and such that ¢ > 4. Then ¢, > n2, n=2,3,....
Indeed, because of the inequality

ol > p, n €N,
for 9 > 4 we have

n—1
(%) >l > qp n=23,....

From this and by (5) we get the required inequality.
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In view of Remark 1g) there hold respective inclusions and the radius of
convexity of the class H%({y,}) in this case equals 1.

THEOREM 6. If {¢n}n=23,.. is a sequence of real positive numbers satisfying
the condition (5) and 2 < 4, then for r € (0,%2) each function of the class
H 0({c,on}) maps the disc A, onto a convexr domain. The constant %’- is the
best possible, so it is the radius of convezity of the class HO({pn}).

Proof. Let {¢n}n=23,.. be a fixed sequence satisfying the assumtions of
Theorem 6. For a function h € H°({¢,}) the function A, of the form h, =
r~lh(rz), z € A, r € (0,1), belongs to H%({¢,}) (Theorem 1). Moreover,
by (5) for r € (0, £2) we have

o0 o0
> 1 (lanr™ 4 bar™ 1) = 3 02" (lan| + foul) <
n=2

n=2

0o n—1 00 2 n-1
P n
<3 (2)" danl+1a) = X 57 () (lanl +[en) <
n=2

E 2:_ ‘p"(lan|+lb <Y enllan] + [ba]) < 1.

n=2 n=2

According to the respective theorem from the paper [1], hr(A) is a convex
domain. Consequently, h(A,) is a convex domain.

In order to check that £2 is the radius of convexity of the class H%({¢s})
for the fixed sequence we consider again the function h; of the form (3) with
w2 € (0,4). Because of the known results for holomorphic functions it is

sufficient to examine the sign of the expression 1 + Re —hr’z(—zy for z € A ([3],
p. 42).
For z = pe®, p € (0,1), t € R, after some computations, we obtain

zhf(2) 2pett 4p? + 2pp3 cost
=1 . A cost _
A o P 2 20
6pp2
= Toa + 2067 (cost +p(p)),
where p(p) = %—Z—:’%, p € (0,1). Note that p(p) > 0, p € (0,1), and
, . 8 + 3
1 =400, 1 =2T% 5
Jim, p(p) = +o0 Jim ple) = —% ~

Moreover, we have

8p2 - ‘P2
/ _ 2
b (P) - 6P2(P2 9 P € (07 1)
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Examining the properties of the function p we get
pE(0,)U(F1) for p2e(02),

p(p) > 1=
@) { pe(0,8)  for pre(2,4)

Analogously as in the proof of Theorem 4, we conclude that hy(A;) is
convex for r € (0,%42) and not convex for r € (£2,1).

From Remark 6 and Theorem 6 we obtain

COROLLARY 3. If {¢n}n=23,.. is a sequence of real positive numbers satisfy-
ing the condition (5), then the radius r. of convezity of the class H({pn})
is equal to r. = min (£, 1).

REMARK 7. a) As in Remark 4, we note that the radius of convexity cannot
be improved in the respective class of holomorphic functions.

b) In the proof of Theorem 6 we can also consider the function hy of
the form (4) and examine the expression 383 [a'rg ({%h(pe“))] for p € (0,1),
teR.

Theorems 5 and 6 complement and generalize the corresponding results
from papers [1], [4], [5]. It seems to be interesting that the mentioned re-
sults coincide for the sequence {an + (1 — @)n?}p=23.., @ € (0,1) (see [5]),
although for a € (0,1) it does not satisfy the condition (5) (Example 2).
An analogous comment concerns also the case ¢, =nP, n=2,3,..., p > 1,
from Example 4 (see [4]).
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