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ON SOME GENERALIZATION OF COEFFICIENT 
CONDITIONS FOR COMPLEX HARMONIC MAPPINGS 

A b s t r a c t . Let h — u + iv, where u, v are real harmonic functions in the unit disc 
A. Such functions are called complex mappings harmonic in A. The function h may be 
written in the form h = f + g, where f,g are functions holomorphic in the unit disc, 
of course. Studies of complex harmonic functions were initiated in 1984 by J. Clunie and 
T. Sheil-Small ([2]) and were continued by many others mathematicians. We can find some 
papers on functions harmonic in A, satisfying certain coefficient conditions, e.g. [1], [4], 
[6], [7], [8], We investigate some more general problem, i. e. a coefficient inequality with 
any fixed sequence of real positive numbers. 

Let us consider functions h harmonic in A = {z G C : \z\ < 1} of the 
form 

oo oo 
(1) h = f + g, f ( z ) = z + ^2anzn, g(z) = J2bnZn, z G A , \h\ < 1. 

n=2 n = l 
For a fixed sequence {<£>n}n=2,3,... of real positive numbers we denote by 

H({<pn}) the class of functions h of the form (1) and satisfying the condition 
oo 

(2) M + I > n ( K I + M ) < 1. 
n=2 

Let next H°({<pn}) be the subclass of H({<pn}) of functions h such that 
b\ = 0 . 

REMARK 1. a) In the case <pn = n, n = 2,3,. . . , we have the classes HS, 
HS° investigated by Y. Avci and E. Zlotkiewicz [1], i. e. H({n}) = HS, 
H°({n}) = HS°. Each function of the class HS° is starlike ([1]). 

b) Ify> n = n2, n = 2,3, . . . , we obtain the classes HC, HC° examined also 
by Y. Avci and E. Zlotkiewicz [1], i. e. H({n2}) = HC, H°({n2}) = HC°. 
The functions of the class HC° are convex ([1]). 

1991 Mathematics Subject Classification: 30C45. 
Key words and phrases: harmonic functions, convexity, starlikness. 



318 G. Adamczyk, A. taz inska 

c) The case tpn = np, n = 2 , 3 , . . p > 0, was considered by A. Ganczar 
[4]-

d) We can also consider the sequence ipn = an + (1 — a)n2, n = 2,3, . . . , 
a e (0,1), i. e. H({an + (1 - a)n2}) = HS(a) (see [5]). This case is a kind 
of generalization of a) and b). 

e) In [6] the authors investigated the case ipn = 2ni_}~a, n = 2 ,3 , . . . , for 
« 6 ( 0 , 1 ) . 

f) If {¥>n}n=2,3,... is a sequence such that <pn > n, n = 2 , 3 , . . t h e n 
by (2) H({ipn}) C HS, H°({<pn}) C HS°, of course. It concerns the cases 
examined in [l](a) and b)), [4] (c) with p > 1), [5] (d)) and [6] (e)). 

g) If {</?„}„=2,3,... is such a kind of sequence that <pn > n2, n = 2,3, . . 
then H{{ipn}) c HC C HS and H°({<pn}) c HC° C HS°, respectively. 

Directly from the definition we get 

THEOREM 1. Let {y>n}n=2,3,... be a sequence of real positive numbers. If h € 
H{{ifn\), then functions 

z i-> r~1h(rz), z ^ e'^h^z), z € A , r € (0,1), t 6 R, 

also belong to H({<pn}). 

Theorem 1 holds also for the class ii0({y>n}). 

REMARK 2. Let {</>n}n=2,3,... be a sequence of real positive numbers. One 
can easily check that if h 6 H({<pn})), then the function ho of the form 

w - T ' i F ' 2 6 A ( N < 1 ) i 

belongs to the class H°({<pn}). However, note that if ho G H°({<pn}) and 
| < 1, then the function h of the form 

h(z) = ho(z) + 61/10(2), z € A , 

does not have to belong to H({tpn}) (see e. g. [1], [5]). 

We mentioned some inclusions for the considered classes. In view of the 
definition condition (2) we obtain 

THEOREM 2. Let {yn}n=2,3,..., {ipn}n=2,3,... be sequences of real positive num-
bers. If 

n = 2, 3, . . . , 

then the inclusions H({<pn}) C H({i>n}), H°({(pn}) C H°({ipn}) hold. 

The above property is the generalization of Remark 1, of course. 
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E x a m p l e 1. For a fixed sequence {</?n}n=2,3,... °f real positive numbers the 
functions hi, h^ of the forms 

(3) hi(z) = z + —, z e A, 
<P2 

~z? 
(4) h2(z) = z + —, z € A, 

<P2 

belong to the class H°({(pn}). 
What is more, because of Theorem 1, superpositions of the functions hi, 

h2 with rotations also belong to H°({ipn}). 
Let {(pn}n=2,3,... be a sequence of real positive numbers such that 

m iN?r'- " = 2-3 
R e m a r k 3. If tp2 > 2, then the condition (5) implies the inequality <pn > n, 
n = 2,3, In view of Remark 1 f) we have inclusions H({ipn}) C H S and 
i/°({</5n}) C HS°. It means, among others, that the radius of starlikeness 
of the class H°({<pn}) in this case is equal to 1. 

Obviously, the inequality <pn > n, n = 2,3, . . . , does not imply the con-
dition (5). 
E x a m p l e 2 . F i x a G ( 0 , 1 ) a n d s e t <pn = an + (1 - a)n2, n = 2 , 3 , . . . ( s e e 
(5)). Obviously, we have ipn > n, n = 2,3, If a = 1, then (5) holds, of 
course. 

If a € (0,1), then 

? = 2 - a € ( l , 2 ) , — = a + (1 — a)n, n = 3 ,4 , . . . . 
I n 

The real function ki of the form fci(z) = (2 — a)x~1 is increasing and convex 
in R. The function of the form ^ ( i ) = a+(l—a)x , x € R, is an increasing 
linear function. Moreover, we have fci(l) = £2(1) = 1 and fci(2) = ^ (2 ) = 
2 — a. From these facts we conclude that 

fci(x) > k2(x), x > 2. 
It means that for a € (0,1) the considered sequence does not satisfy the 
inequality (5). 

R e m a r k 4. Fix a sequence {<^n}n=2,3,..., Vn > 0, n = 2,3, . . . , and consider 
the condition 
(6) n = 2 , 3 „ . . . 

n 2 
If <p2 = 2, then the conditions (5) and (6) are equivalent, of course. 
Let <p2 < 2. If the sequence satisfies (6), then it satisfies the condition (5). 
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Indeed, in this case we have 
n-1 

, n = 2 ,3 , . . . . f l > ( f l \ 
2 ~\2 ) 

The converse implication does not hold. 
Let ip2 > 2. If the sequence satisfies (5), then it satisfies (6), but it does 

not have to satisfy the inequality (5). 

EXAMPLE 3. Let ipn = n - n = 2,3, . . . . We have 
_ 3 <f2 3 <pn 1 
— 2 ' T = I ' - = n = 

Note that ipn < n, n = 2,3, 
The function x 1 — is increasing on the interval (0, +oo). Hence 

It means that the considered sequence satisfies the condition (6). In view of 
Remark 4, the condition (5) holds in this case. 

EXAMPLE 4. L e t <pn = np, n = 2 , 3 , . . . , p > 0 (see [4]). 
For p € (0,1) we can observe that for <p2 < 2 the inequalities (5) and (6) 

are not equivalent (Remark 4). In this situation we have 

^ = = n = 2 , 3 , . . „ < 2. 

Moreover, we know that 2 n _ 1 > n, n = 2,3, Hence the sequence satisfies 
(5). However, the condition (6) does not hold in this case. 

If p > 1, then <pn > n, n = 2,3, . . . , but the sequence does not satisfy (5). 

In view of Remark 3 and the above examples, it seems to be interesting 
to consider a sequence {<pn}n=2,3,... of real positive numbers with tp2 < 2, 
satisfying the condition (5). We require neither <pn < n, n = 2 ,3 , . . . (Ex-
ample 3), nor tpn > n, n = 3 ,4 , . . . (e. g. ¥>2 = 1, tpn = n, n = 3,4, . . . ) . 

Denote A r = {z € C : \z\ < r}, r > 0, with Ai = A. 

THEOREM 3. Assume that h € H({ipn}), where {Vn}n=2,3,... is o. sequence 
of real positive numbers satisfying condition (5) and such that (p2 < 2. Then 
for any r € (0, the function h is univalent and sens-preserving in the 
disc A r . 

P roo f . Let the assumptions of Theorem 3 hold. Prom Theorem 1 with 
h G H({(pn}) the function hr of the form hT = r~1h(rz), z 6 A, r 6 (0,1), 
belongs to H({<pn}). Moreover, for r e (0, by (5) we have 
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oo oo 
¿ « ( K r " - 1 ! + Ibnr"-1!) = ¿ « r i d o n i + |6„|) < 
71=2 71=2 

< 
71=2 

00 / \ n—1 00 

E n ( T ) + ^ £ V«(KI +1^1) < i - M n •—0 V L / „=9 

OO n—1 

n = 2 

oo 

From this it follows that h € ifS". According to the respective theorem from 
the paper [1], hr is univalent and sense-preserving in A. As h(rz) = rhr(z), 
z 6 A, so h is univalent and sense-preseving in the disc A r , r € (0, ^r). 

THEOREM 4. If {</>7i}n=2,3,... is a sequence of real positive numbers such 
that ip2 < 2 and the condition (5) holds, then for r 6 (0, any function 
h 6 H°({<pn}) maps the disc A r onto a domain starlike with respect to the 
origin. The constant ^ is the best possible, so it is the radius of starlikeness 
for the class H°({<pn}). 

P r o o f . Under the above assumptions, from Theorem 3 and its proof we 
observe that hr e HS°, r 6 (0, Hence ([1]) hr(A) is a starlike domain. 
Since 

we conclude that h(Ar) is starlike for r € (0, 
Note that ^ is the radius of starlikeness of the class H°({ipn}). To prove 

this fact we examine the function h\ of the form (3) with <p2 € (0,2). Of 
course, hi G H°({(pn}) and it is holomorphic in A, h\(0) = 0, h\(0) = 1. In 
view of the well known theorem ([3], p. 41) it is sufficient to examine the 
sign of the expression Re j f ^ y for z € A. 

Let z = peil, p e (0,1), t € R . We have 

h( A r ) = {w EC :w = r( A C S hr( A)} 

Re [{ipipé1 + 2p2e2it)(if2pe-it + p2e~2i ')] 
\iP2peit + 2p2e2i t |2 

p2 ((p% + 3ip2pcost + 2p2) _ 
I <p2peu + 2p2e2it\2 

3<P2P* 
fapeP + 2p2e2it\2 

where 

d(p) = 
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Observe that d(p) > 0 for p 6 (0,1) and 

2 + Vn 
lim d(p) = +oo , lim d(p) = ' > 0. 

p~*0+ p—> l - ¿(fi2 

We also have 

Examining d' and applying elementary methods we can check that 

d{p) > 1 
'pe(0,f)U(¥P2,l) for <p2 € (0,1), 

pe( 0 , f ) for w € (1 ,2 ) . 

Prom this we can see that for p € (0, ^ ) we have cos t + d(p) > 0, t e R . 

Therefore, if z G A r , r € (0, i f ) , then Re > 0. 

If r G ( f , 1), then in the disc A r exists a point zo = poelt° such that 

d(po) < 1 and costo + d(po) < 0, what implies Re ^ f y f f < 0. Consequently, 

for r € ( ^ , 1) the domain hi(Ar) is not starlike. 

R e m a r k 5. a) The function h\ shows that the radius of starlikeness cannot 
be improved in the respective class of holomorphic functions. 

b) In the proof of Theorem 4 we can also consider the function /12 of the 
form (4) and examine the expression Jjarg (h(pelt)), p £ (0,1), t e R . 

From Theorem 4 and Remark 3 we obtain 

C O R O L L A R Y 1 . If {ipn}n=2,3,... is 0. sequence of real positive numbers satisfy-

ing the condition (5), then the radius r* of starlikeness of the class H°({<pn}) 

is equal to r* = min , 1). 

According to this fact and Example 4 we have 

COROLLARY 2. The radius r , of starlikeness of H°({np}), p 6 (0,1), equals 

r* - 2P~1 (see [4]). 

We have noted that if {(pn}n=2,3,... is a sequence of real positive numbers 
satisfying the condition (5) and <p2 > 2, then all functions of the class 
H° {{<pn}) are star like (Corollary 1). We now remind that a function h of 
the form (1) is called a harmonic function starlike of order f3 € (0,1) in A if 
jfcarg (h(rea)) > ¡3 for r G (0,1), t e (0, 2tt) (see [7]). Of course, a function 
starlike of order ¡3 e (0,1) is starlike. H. Silverman ([7]) proved that if a 
function h of the form (1) with 61 = 0 satisfies the condition 

00 a 

(7) £ ^ | ( | a n | + |&n|)<l 
71=2 " 
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for ¡3 € (0,1), then the function h is starlike of order ¡3. This result we apply 
to showing the next theorem. 

THEOREM 5. If{tpn}n=2,3,... a sequence of real positive numbers satisfying 
the condition (5) and Lpi > 2, then the functions of the class H°({tpn}) are 
starlike of order ¡3 — • 

P r o o f . Let the assumptions of Theorem 5 hold. Obviously, we can see that 
P — v l - l belongs to the interval (0,1). According to the mentioned result 
of H. Silverman, by (2) and (7), it suffices to show that 

n- ¡3 

YZTp - ' n = 2 , 3 , . . . . 

Because of the form of f3 we have 

_ = n ( — — + ¥ > 2 - l j , n = 2 , 3 , . . . . 

Consider two real functions li, I2 of the forms 

h(x)= ( ^ y \ h(x) = ^ p - + <P2-l, X 6 ( 0 , + 0 0 ) . 

We required <p2 > 2, so the function l\ is nondecreasing and convex in the 
interval (0, +00) and I2 is a nondecreasing concave function in the interval 
(0, +00). It implies that the graphs of the functions I2 have at most 2 
common points. We can see that Zi(l) = ^ ( l ) = 1 and ¿1 (2) = ¿2(2) = ^r-
Prom these properties of l\ and I2 we conclude that 

h(x)>h{x), x>2. 
Therefore by (5) we get TEf-c-v̂ -o-er̂  
It ends the proof. 

In the next part of the paper we make some notes on convexity of func-
tions of the considered classes. 
REMARK 6. Let {fn}n=2,3,... be a sequence of real positive numbers satisfying 
the condition (5) and such that <̂ 2 > 4. Then ipn > n2 , n = 2,3, 

Indeed, because of the inequality 
2 n _ 1 > n, n € N, 

for (p2 > 4 we have 

( y ) n 1 > 2 n _ 1 > n, n = 2 , 3 , . . . . 

Prom this and by (5) we get the required inequality. 
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In view of Remark lg) there hold respective inclusions and the radius of 
convexity of the class H°({ipn}) in this case equals 1. 

Theorem 6. //{<£„} n=2,3,... is a sequence of real positive numbers satisfying 
the condition (5) and ip2 < 4, then for r 6 (0, each function of the class 
H°({(pn}) maps the disc A r onto a convex domain. The constant ^ is the 
best possible, so it is the radius of convexity of the class H°({<pn}). 

P r o o f . Let {fn}n=2,3,... be a fixed sequence satisfying the assumtions of 
Theorem 6. For a function h € H°({<pn}) the function hr of the form hr = 
r~1h(rz), z € A, r G (0,1), belongs to H°({ipn}) (Theorem 1). Moreover, 
by (5) for r € (0, we have 

OO 0 0 

£ n2 ( | a n r n - 1 | + l ^ r " " 1 ! ) = £ n2rn~\\an\ + |6n|) < 
n=2 n=2 
oo , \ n - 1 oo 2 / , „ \ n - 1 

< I > 2 ( f ) w + = ( K i + IM) * 
n=2 N ' n=2 
oo 2 0 0 

^ E o^rr + ^ z E M K I + M ) < 1. 
n=2 Z 71 n=2 

According to the respective theorem from the paper [1], hr(A) is a convex 
domain. Consequently, h(Ar) is a convex domain. 

In order to check that ^ is the radius of convexity of the class H°({<p„}) 
for the fixed sequence we consider again the function hi of the form (3) with 
<P2 € (0,4). Because of the known results for holomorphic functions it is 
sufficient to examine the sign of the expression 1 + Re for z € A ([3], 
p. 42). 

For z = pelt, p E (0,1), t € R, after some computations, we obtain 

h[{z) <p2 + 2pelt \<p2 + 2pelt\2 

6ptp2 

\<P2 + 2peit\2 (cos t + p(p)), 

where p(p) = p e (0,1). Note that p(p) > 0, p e (0,1), and 

8 2 
lim p(p) = +oo, lim p(p) = > 0. 

Moreover, we have 
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Examining the properties of the function p we get 

> € ( 0 , f ) U ( f , l ) for ¥>2 6 ( 0 , 2 ) , 
P(P) > 1 

I pe{ for ip2 G (2,4). 

Analogously as in the proof of Theorem 4, we conclude that hi(Ar) is 
convex for r G (0, ^p) and not convex for r G (^p, 1). 

Prom Remark 6 and Theorem 6 we obtain 

COROLLARY 3. If {ipn}n=2,3,... is a sequence of real positive numbers satisfy-
ing the condition (5), then the radius rc of convexity of the class H°({ipn}) 
is equal to rc = m i n (^p , 1). 

REMARK 7. a) As in Remark 4, we note that the radius of convexity cannot 
be improved in the respective class of holomorphic functions. 

b) In the proof of Theorem 6 we can a' 
the form (4) and examine the expression J j 
t G R. 

so consider the function h^ of 
arg{-§-th(peit))] for p G (0,1), 

Theorems 5 and 6 complement and generalize the corresponding results 
from papers [1], [4], [5]. It seems to be interesting that the mentioned re-
sults coincide for the sequence {cm + (1 — a)n2}n=2,3,..., a G (0,1) (see [5]), 
although for a G (0,1) it does not satisfy the condition (5) (Example 2). 
An analogous comment concerns also the case (pn = np, n = 2,3, . . . , p > 1, 
from Example 4 (see [4]). 
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