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ON THE LIMITS OF FUNCTIONS OF TWO VARIABLES

Abstract. We show some conditions concerning sections of real functions of two
variables which imply the existence of the double limit of considered function. Moreover
we observe that the set of points, where the real function has the finite limit is an Gs-set
and that a function having finite limit except a countable set is continuous except a
countable set.

Let R be the set of all reals and let R? =R x R.

It is well known that a function f : R? — R having continuous sections
fz(t) = f(z,t) and fY(t) = f(t,y), z,y,t € R, can be discontinuous on
the set of full plane Lebesgue measure pg ([1]). Evidently, if a function
f : R? — R with continuous sections f; and fY has the finite limit at a
point (u,v), then it is contiunous at this point (u,v). So there are functions
f : R? - R with continuous sections f; and f¥ which has not the finite
limits on a set of full plane measure.

On the other hand if sections f;, £ € R, are equicontinuous at a point u
(i.e. for each £ > 0 there is § > 0 such that for each point y with |y —u| < ¢
and for each point z the inequality |fz(y) — fz(u)| < € holds) and if the
section f* is continuous at a point v then f is continuous at the point (v, u)
as the function of two variables ([2]).

In this article we investigate some conditions concerning sections f, and
f¥ which imply the existence of the limit of f.

THEOREM 1. Let a function f : R? — R be such that for a point (u,v) € R?
there is a positive real r such that for sections fr, u # z € (u —r,u +71),
there are limits

lim f(@,9) = b(z,v) € R
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and for each positive real € there is a positive real § such that

1) |f(=z,y) - b(z,v)| <e
for v#éye(w—94,v+46) and u#z € (u—r,u+r).
If there is the limit
lim b(z,v) = a(y,v) € R,

then there is the limit
lim z,y) = a(u,v).
(e e, ] Y = 8 )
Proof. Fix a positive real €. By (1) there is a positive real § such that

13
Y Y f(z,y) = b(z,v)| < =.
z€(u—r,u+r)\{u} ye<v—6,v+6)\{v}| (#:9) = b, )] 2

Since there is the limit
:ll—% b(z,v) = a(u,v),
we can find a real s > 0 such that s <r and
|b(z, v) — a(u,v)| < g for uzze(u—s,u+s).
Consequently, for
(@ y) € (@—su+s)\{u}) x ((v=-&v+3)\ {v})
we obtain
|£(z,9) - a(w,v)| < |£(z,9) - b(a, v)| + b(e,v) - alu,v)] < £ +
This finishes the proof.

£
2

=E£.

As an immediate corollary from the above theorem we obtain:

COROLLARY 1. Let a function f : R* —» R be such that for a point (u,v) €
R? there is the limit a(u,v) € R of the section f¥ at the point u and there is a
positive real v such that sections fz, u # ¢ € (u—r,u+r), are equicontinuous
at the point v. Then there is the limit

lim z,y) = a{u,v).
(et w2 Y) = 2000)
Observe that hypotheses of last theorem and the assumption that there
is the limit ;1_% f(u,y) € R do not imply that there is the limit

lim z,y) = a(u,v).
(z,y)—'(u,v)f( v) (1)

For example sections f, of the function
f(z,y) =0 for z#0 and f(0,y)=1 for ye R



Functions of two variables 311

are equicontinuous and
liII(l) f(z,y) =0 forall ye R,
T—

but there is no limit

lim z,y).
Do) (V)

THEOREM 2. Let a function f : R? — R be such that for a point (u,v) € R?
there is a real v > 0 such that for sections f;, = € (u —r,u+r), there are
limits
lim, £(z,3) = b(z,0) € R
and for each positive real € there is a positive real 6 such that
If(z,y) —b(z,v)| <€ for v£y€ (v-95,v+6) and u#z € (u—r,u+r).
Let there exists limits
a!_i_lgb(a:, v) = lim f(z,v) = a(u,v) € R.

If there is a sequence of points y, # v such that nhngo Yn = v and for each
positive integer n there is a sequence of points u, k # u with

i upp =, lm f(un, o) = £ 90),

—00 k—o0
then there is the limit

lim z,y) = a(u,v).
(I,y)ﬂ(u,v)f( v) = afu,v)

Proof. If a sequence of points (wn, z,), wn # u, 2z, # v for n > 1, converges
to (u,v) then, by Theorem 1, there exists the limit

(2 nlg{.lo f(wn, zn) = a(u,v).

By the hypothesis there is the limit &(u,v) € R of the section f, at a point
v. We will prove that b(u,v) = a(u,v). For this purpose fix a real ¢ > 0. By
(2) there is a real § > 0 such that

f(2,9) —a(w,v)| < 3 for (z,y) € K((w,v),6) with o #u and y#v,
where
K((ua v)76) = {(may) : I(:L‘, y) - (ua v)' < 6}
Since nll»nolo f(u,yn) = b(u,v), there is a positive integer j such that

é €
ly; —v] < 5 and |f(u,y;) —b(u,v)| < 3

By the hypothesis there is a positive integer ¢ with

) €
luji —ul < 5 and |f (w54, 95) — F(u,5)] < 3
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Consequently, .
|b(u) ’U) - a(ua ’U)l < Ib(u) ’U) - f(ua yJ)I + If(u’ yj) - f(uj,nyj)l-l-

€ & £
Hf (i, 97) —a(wv) < 3+ 5 +3 =

Since £ > 0 was arbitrary chosen we end up with a(u,v) = b(u, v).
If a sequence of points z, # v converges to v, we have
nll.lgo fu, zn) = b(u,v) = a(u,v),
and the proof is completed.

As an immediate consequence we obtain:

COROLLARY 2. Conserve all hypotheses from Theorem 2 on the function
f :R? - R and on the point (u,v) € R2. If there is a sequence of points
Yn 7 v such that nlmgo Yn = v and sections f¥ are continuous at u forn > 1,

then there is the limit
lim z,y) = au, v).
ety T DY) = o)
Continuum Hypothesis (or Martin’s Axiom) implies that there is a set
A C R? which cuts each closed set of positive plane Lebesgue measure and
such that for every straight line ! the intersection !N A contains at most two
points ([4]). Then sections f; and fY, z,y € R, of the function
f(z,y) =1 for (z,y) € A and f(z,y) =0 for (x,y) e R*\ 4
have the finite limits at all points, but f has not the limit at any point.

REMARK 1. Let f : R?2 — R be a function and let (u,v) € R? be a point.
Assume that there is the limit

lim f(z,y) =a(u,v) €ER
(zy)—(uw)

and that there is a sequence of points (z,, yn) # (u, v) such that
nli_{lgo(zna yn) = (u7 U) and ,nll{go f(z'myn) = f(u,v).
Then the function f is continuous at (u, v).

Proof. The proof is evident. It suffices to observe that
nll{lgo f(zmyn) = a(ur ’U) = f(u7 'U)-

The continuity of sections f; and f¥, z,y € R, of a function f: R? - R
does not imply the existence of the double limit of f at each point (z,y).

However if sections f, of a function f : R2 — R belong to some special
subfamily of continuous functions and sections f¥ have the limit at each
point then f has also the double limit at every point (z,y).
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For this we will say that a family A of continuous real functions of one
real variable has the property () if there are: a positive integer n, functions
fi, foy..-, fn € A and points z1,29,...,2, € R such that each function
f € A is a combination

f=23 aifi and det[fi(z;))ij<n # 0,
i<n

where det denotes the determinant of a matrix.

The following families have the property (x):

1. the family of polynomials of degree < k, where f;(z) = 7%, i =
0,1,...,k—1;

2. the family of trygonometric polynomials of degree < k, i.e. the family
of functions

f(z)= % + zk:(an cos(nz) + by, sin(nz)),
n=1
where
fai(z) = cos(iz), i=0,1,...,k and fo_i(z)=sin(iz), i1 =1,2,...,k.
3. generally the families of orthonormal polynomials of degree < k.
THEOREM 3. Let A be a family of continuous functions having the property
(*) and let f : R? — R be a function. If sections f¥Y € A and if sections

fz have the finite limit at each point of R (are continuous), then f has the
finite double limit at each point (is continuous).

Proof. Since the family .4 has the property (x), there are a positive integer
n, a family of functions fi,..., f,» € A and points z;,...,z, € R such that
each function g € A is the combination

g= ;a,- fi and det[fi(z;)}ij<n # 0.
For (z,y) € R? we hav;
f(z,y) = fU(z) = ; ai(y) fi(z).
Consequently, for j < n and y € R we obtain
3) fzj,y) = ; ai(y) fi(z;)-
Since det[f;(x;)] # 0, the system (3)—ha.s unique solution
ai(y) = det A;

det[fi(z;)]’
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where the matrix A; is formed from the matrix [fi(z;)] by the replacement
of ith-column by the column [f(z;,y)]. Sections y — fz,(y), i =1,2,...,n,
have finite limits (are continuous) at each point, as well as functions y —
a;(y), ¢ < n. Consequently, if

klim (uk,vk) = (z,y) # (uk,ve) for k> 1,
—00

then
Jim f(ug,ve) = Y (filz) Jm_ ai(vg)).

i<n
If sections f; are continuous then we obtain the continuity of f. This com-
pletes the proof.

Now let D € R? (or D C R) be a nonempty open set and let f : D — R
be a function.

It is well known that the set C(f) of all continuity points of f is an
Gs-set ([3]). We will prove that the set

L(f) = {(z,y) € D : there is a finite limit  lim )f(u, v)}

(wv)—(zy
is also an Gg-set. For this we introduce the following operation:
If A C D then let

(4) = {(z.v) € D: 3 K((@9),0)\ {(z,1)} C int(4)}.
Evidently for each set A the set [(A) is open.

REMARK 2. For arbitrary function f : D — R the set L(f) is of G type.
Proof. Forn=1,2,...and k=0,-1,1,-2,2,... let

k-1 k+1
Ak,n= {(m,y)GD:——zn—<f(m,y)< on }

Observe that o o
L(f) = n U l(Ak,n)a
n=1lk=—o00
and the proof is completed.

REMARK 3. If the set D\ L(f) is countable then the set D \ C(f) is also
countable.

Proof. If the function f is not continuous at a point (z,y) then there
are four rationals r(z, y), s(z, y), t(z, y), 2(z, y) such that r(z,y) < s(z,y) <
f(z,y) < t(z,y) < z(z,y) and for each open neighbourhood U of (z,y) there
is a point (u,v) € U with f(u,v) < r(z,y) or f(u,v) > z(z,y). Enumerate
all systems of four rationals in a sequence

(4) (r1,81,t1,21)y - - 5 (Tny Sny ny 2n), - - «



Functions of two variables 315

such that
(Tny Snytny 2n) # (Tm, Smytm, zm) for n#m,

and for n > 1 put

An = {(z,y) € D\ C(f) : (r(z,y), 5(z,9),t(2,9), 2(2,Y)) = (Tn, Sns tny 2n) }-
If the set D\ C(f) is uncountable then there is a positive integer k such
that the set Ay is also uncountable. Consequently, the sets

Ak N L(f)
and
B = {(z,y) € Ax N L(f) : (z,y) is a condensation point of Ag}

are also uncountable. Fix a point (u,v) € Bg. Then (u,v) € L(f). On the
other hand (u,v) € Ag, so in every neighbourhood U of (u,v) there are
a point (a,b) € A NU with s < f(a,b) < tx and (a,b) # (u,v) and a
point (c,d) € U with f(c,d) € R\ [rk, zx]- So (u,v) is not in L(f) and this
contradiction completes the proof.
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