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NEW OSTROWSKI TYPE INEQUALITIES FOR MAPPINGS
WHOSE DERIVATIVES BELONG TO L, SPACES

Abstract. The aim of the present paper is to establish two new Ostrowski type
inequalities for mappings whose derivatives belongs to L, -spaces.The analysis used in
the proofs is elementary and our results in the special cases yields the Ostrowski type
inequality recently established by Dragomir and Wang.

1. Introduction
In 1938, Ostrowski proved the following inequality (See [4, p. 468]):
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for € [a,b] , where f : [a,b] — R is continuous on [a,b]v, differentiable

on (a,b) and |f'(z)} < M for all z € (a,b). In [1} Cerone, Dragomir and

Roumeliotis proved the following Ostrowski type inequality:
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where f : [a,b] — R be a twice differentiable mapping on (a,b) and f” :
[a,b] — R is bounded.
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The following interesting application of (1.2) in numerical integration is
alsogivenin [1]. Let I, ta=2z9 < 71 < ... < Tn—-1 < Zn, = b be a division of
the interval [a, b], & € [z, Zit1]. Let f : [a,b] — R be a twice differentiable
mapping on (a,b) whose second derivitive f” : [a,b] — R is bounded, i.e.
lf"|loo < oo. Then

Sf(w dz = A(f, f',&, 1) + R(f, f', &, I.)

where
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and the remiander R satisfies the estimation
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for all &; as above, where h; = ;41 —z; (1=0,1,...,n—1).

For further applications of Ostrowski’s inequality to the estimation of
error bounds for some special means and some numerical qudrature rules,
we refer the interested readers to [3].

In 1998, Dragomir and Wang (2] proved the following new inequality of
Ostrowski type in L, -norm:

b

(1.3) -5 agf t) dt

< L@l

15

for € [a,b], where f : [a,b] — R is an absolutely continous mapping for
which f’ € Lp[a,b], p > 1, %+ % =1,
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the usual Ly-norm.
For some generalizations of Ostrowski’s inequality (1.1) and releted re-
sults see the book [4, pp. 468-484] by Mitrinovié, Pegari¢ and Fink, where
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further references are given . The main object of this paper is to establish
new inequalities involving two differentiable mappings whose derivatives be-
longs to the L, -spaces. The analysis used in the proofs is elementry and

based on the use of Peano kernel approch and Montgomery’s identity (see
[4, p. 585]).

2. Statement of results

Our main results are given in the following theorems.
THEOREM 1. Let f, g : [a,b] — R be absolutely continous mappings for which
fi ¢ € Lyla,b], p>1, 2 + 2 =1. Then

(2.1)

f(@) (— [ dt) + 9(o) (52 Sf(t) )

—2(% £ dt) (ﬁ fo(t) dt) ‘

<211 (32 sng(t)ldt) N §|f<t>|dt)]
for z € [a,b], where L(z) is given by (1.4).
THEOREM 2. Let f, g, f',g’ be as in Theorem 1. Then
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for z € [a,b], where L(z) is given by (1.4).
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3. Proofs of Theorems 1 and 2
From the hypotheses we have the following identities (see [4 , p. 585]):
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(3.1) @) = == 1O dt = o— k(= 1)1 (t) at,
1 : 1 :

(3.2) 9(z) = 7— fo(t)dt = t—a [ k(z, t)g'(t) dt

for = € [a,b] , where the Peano kernal k (z,t) : [a,b]> — R is given by
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The identities (3.1) and (3.2) can be eaisly proved dividing the integrals
on the right side into two integrals over the intervals [a,z] and (z,b] and
using the integration by parts formula. Multlplymg both sides of (3.1) and

(3.2) respectively by ;- S g(t)dt and &1 S f(t) dt and adding, we get

(3.4) (z)(# Ja0)dt) + 9(0) (5= Sf(t) )
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for any z € [a,b] . From (3.4) , using the properties of modules and Holder’s
integral inequality, we have
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Using the elementry calculation we have
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Using (3.6) in (3.5) we get the required inequality in (2.1).
Next, multiplying both sides of (3.1) and (3.2) respectively by g(z) and
f(z) and adding both sides of obtained equalities, we get
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for € [a,b]. From (3.7), using the properties of modulus and Holder’s
integral inequality, we have
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By making use of (3.6) in (3.8), we get the desired inequality in (2.2).

In concluding we note that , if we take g(z) = 1 and hence ¢'(z) = 0 in
Theorems 1 and 2, then we recapture the inequality (1.3) given by Dragomir
and Wang in [2].
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