

B. G. Pachpatte

NEW OSTROWSKI TYPE INEQUALITIES FOR MAPPINGS
 WHOSE DERIVATIVES BELONG TO L_p SPACES

Abstract. The aim of the present paper is to establish two new Ostrowski type inequalities for mappings whose derivatives belongs to L_p -spaces. The analysis used in the proofs is elementary and our results in the special cases yields the Ostrowski type inequality recently established by Dragomir and Wang.

1. Introduction

In 1938, Ostrowski proved the following inequality (See [4, p. 468]):

$$(1.1) \quad \left| f(x) - \frac{1}{b-a} \int_a^b f(t) dt \right| \leq \left[\frac{1}{4} + \frac{(x - \frac{a+b}{2})^2}{(b-a)^2} \right] (b-a)M$$

for $x \in [a, b]$, where $f : [a, b] \rightarrow R$ is continuous on $[a, b]$, differentiable on (a, b) and $|f'(x)| \leq M$ for all $x \in (a, b)$. In [1] Cerone, Dragomir and Roumeliotis proved the following Ostrowski type inequality:

$$(1.2) \quad \begin{aligned} & \left| f(x) - \frac{1}{b-a} \int_a^b f(t) dt - \left(x - \frac{a+b}{2} \right) f'(x) \right| \\ & \leq \left[\frac{1}{24} (b-a)^2 + \frac{1}{2} \left(x - \frac{a+b}{2} \right)^2 \right] \|f''\|_\infty \\ & \leq \frac{(b-a)^2}{6} \|f''\|_\infty \end{aligned}$$

where $f : [a, b] \rightarrow R$ be a twice differentiable mapping on (a, b) and $f'' : [a, b] \rightarrow R$ is bounded.

1991 *Mathematics Subject Classification*: 26D15, 41A55.

Key words and phrases: Ostrowski type inequalities, L_p -Spaces, Peano Kernel, Montgomery's identity, absolutely continuous mappings, Hölder's integral inequality.

The following interesting application of (1.2) in numerical integration is also given in [1]. Let $I_n : a = x_0 < x_1 < \dots < x_{n-1} < x_n = b$ be a division of the interval $[a, b]$, $\xi_i \in [x_i, x_{i+1}]$. Let $f : [a, b] \rightarrow R$ be a twice differentiable mapping on (a, b) whose second derivative $f'' : [a, b] \rightarrow R$ is bounded, i.e. $\|f''\|_\infty < \infty$. Then

$$\int_a^b f(x) dx = A(f, f', \xi, I_n) + R(f, f', \xi, I_n)$$

where

$$A(f, f', \xi, I_n) = \sum_{i=0}^{n-1} h_i f(\xi_i) - \sum_{i=0}^{n-1} f'_{i(\xi_i)} \left(\xi_i - \frac{x_i + x_{i+1}}{2} \right) h_i$$

and the remainder R satisfies the estimation

$$\begin{aligned} |R(f, f', \xi, I_n)| &\leq \left[\frac{1}{24} \sum_{i=0}^{n-1} h_i^3 + \frac{1}{2} \sum_{i=0}^{n-1} h_i \left(\xi_i - \frac{x_i + x_{i+1}}{2} \right)^2 \right] \|f''\|_\infty \\ &\leq \frac{\|f''\|_\infty}{6} \sum_{i=1}^{n-1} h_i^3, \end{aligned}$$

for all ξ_i as above, where $h_i = x_{i+1} - x_i$ ($i = 0, 1, \dots, n-1$).

For further applications of Ostrowski's inequality to the estimation of error bounds for some special means and some numerical quadrature rules, we refer the interested readers to [3].

In 1998, Dragomir and Wang [2] proved the following new inequality of Ostrowski type in L_p -norm:

$$(1.3) \quad \left| f(x) - \frac{1}{b-a} \int_a^b f(t) dt \right| \leq L(x) \|f'\|_p$$

for $x \in [a, b]$, where $f : [a, b] \rightarrow R$ is an absolutely continuous mapping for which $f' \in L_p[a, b]$, $p > 1$, $\frac{1}{p} + \frac{1}{q} = 1$,

$$(1.4) \quad L(x) = \frac{1}{(q+1)^{\frac{1}{q}}} \left[\left(\frac{x-a}{b-a} \right)^{q+1} + \left(\frac{b-x}{b-a} \right)^{q+1} \right]^{\frac{1}{q}} (b-a)^{\frac{1}{q}}$$

for $x \in [a, b]$ and

$$\|f'\|_p = \left(\int_a^b |f'(t)|^p dt \right)^{\frac{1}{p}}$$

the usual L_p -norm.

For some generalizations of Ostrowski's inequality (1.1) and related results see the book [4, pp. 468–484] by Mitrinović, Pečarić and Fink, where

further references are given. The main object of this paper is to establish new inequalities involving two differentiable mappings whose derivatives belongs to the L_p -spaces. The analysis used in the proofs is elementry and based on the use of Peano kernel approach and Montgomery's identity (see [4, p. 585]).

2. Statement of results

Our main results are given in the following theorems.

THEOREM 1. *Let $f, g : [a, b] \rightarrow R$ be absolutely continuous mappings for which $f', g' \in L_p[a, b]$, $p > 1$, $\frac{1}{p} + \frac{1}{q} = 1$. Then*

$$(2.1) \quad \left| f(x) \left(\frac{1}{b-a} \int_a^b g(t) dt \right) + g(x) \left(\frac{1}{b-a} \int_a^b f(t) dt \right) - 2 \left(\frac{1}{b-a} \int_a^b f(t) dt \right) \left(\frac{1}{b-a} \int_a^b g(t) dt \right) \right| \leq L(x) \left[\|f'\|_p \left(\frac{1}{b-a} \int_a^b |g(t)| dt \right) + \|g'\|_p \left(\frac{1}{b-a} \int_a^b |f(t)| dt \right) \right]$$

for $x \in [a, b]$, where $L(x)$ is given by (1.4).

THEOREM 2. *Let f, g, f', g' be as in Theorem 1. Then*

$$(2.2) \quad \left| 2f(x)g(x) - g(x) \left(\frac{1}{b-a} \int_a^b f(t) dt \right) - f(x) \left(\frac{1}{b-a} \int_a^b g(t) dt \right) \right| \leq L(x) [\|f'\|_p |g(x)| + \|g'\|_p |f(x)|]$$

for $x \in [a, b]$, where $L(x)$ is given by (1.4).

3. Proofs of Theorems 1 and 2

From the hypotheses we have the following identities (see [4, p. 585]):

$$(3.1) \quad f(x) - \frac{1}{b-a} \int_a^b f(t) dt = \frac{1}{b-a} \int_a^b k(x, t) f'(t) dt,$$

$$(3.2) \quad g(x) - \frac{1}{b-a} \int_a^b g(t) dt = \frac{1}{b-a} \int_a^b k(x, t) g'(t) dt,$$

for $x \in [a, b]$, where the Peano kernel $k(x, t) : [a, b]^2 \rightarrow R$ is given by

$$(3.3) \quad k(x, t) = \begin{cases} t - a & \text{if } t \in [a, x], \\ t - b & \text{if } t \in (x, b]. \end{cases}$$

The identities (3.1) and (3.2) can be easily proved dividing the integrals on the right side into two integrals over the intervals $[a, x]$ and $(x, b]$ and using the integration by parts formula. Multiplying both sides of (3.1) and (3.2) respectively by $\frac{1}{b-a} \int_a^b g(t) dt$ and $\frac{1}{b-a} \int_a^b f(t) dt$ and adding, we get

$$(3.4) \quad \begin{aligned} & f(x) \left(\frac{1}{b-a} \int_a^b g(t) dt \right) + g(x) \left(\frac{1}{b-a} \int_a^b f(t) dt \right) \\ & - 2 \left(\frac{1}{b-a} \int_a^b f(t) dt \right) \left(\frac{1}{b-a} \int_a^b g(t) dt \right) \\ & = \left(\frac{1}{b-a} \int_a^b k(x, t) f'(t) dt \right) \left(\frac{1}{b-a} \int_a^b g(t) dt \right) \\ & + \left(\frac{1}{b-a} \int_a^b k(x, t) g'(t) dt \right) \left(\frac{1}{b-a} \int_a^b f(t) dt \right) \end{aligned}$$

for any $x \in [a, b]$. From (3.4), using the properties of modules and Hölder's integral inequality, we have

$$(3.5) \quad \begin{aligned} & \left| f(x) \left(\frac{1}{b-a} \int_a^b g(t) dt \right) + g(x) \left(\frac{1}{b-a} \int_a^b f(t) dt \right) \right. \\ & \left. - 2 \left(\frac{1}{b-a} \int_a^b f(t) dt \right) \left(\frac{1}{b-a} \int_a^b g(t) dt \right) \right| \\ & \leq \left(\frac{1}{b-a} \int_a^b |k(x, t)| dt \right) \left(\frac{1}{b-a} \int_a^b |f'(t)| dt \right) \left(\frac{1}{b-a} \int_a^b |g(t)| dt \right) \\ & + \left(\frac{1}{b-a} \int_a^b |k(x, t)| dt \right) \left(\frac{1}{b-a} \int_a^b |g'(t)| dt \right) \left(\frac{1}{b-a} \int_a^b |f(t)| dt \right) \\ & \leq \frac{1}{b-a} \left(\int_a^b |k(x, t)|^q dt \right)^{\frac{1}{q}} \\ & \times \left[\|f'\|_p \left(\frac{1}{b-a} \int_a^b |g(t)| dt \right) + \|g'\|_p \left(\frac{1}{b-a} \int_a^b |f(t)| dt \right) \right]. \end{aligned}$$

Using the elementry calculation we have

$$\begin{aligned}
 (3.6) \quad \int_a^b |k(x, t)|^q dt &= \int_a^x |t - a|^q dt + \int_x^b |b - t|^q dt \\
 &= \int_a^x (t - a)^q dt + \int_x^b (b - t)^q dt \\
 &= \frac{(x - a)^{q+1} + (b - x)^{q+1}}{q + 1} \\
 &= \frac{1}{q + 1} \left[\left(\frac{x - a}{b - a} \right)^{q+1} + \left(\frac{b - x}{b - a} \right)^{q+1} \right] (b - a)^{q+1}.
 \end{aligned}$$

Using (3.6) in (3.5) we get the required inequality in (2.1).

Next, multiplying both sides of (3.1) and (3.2) respectively by $g(x)$ and $f(x)$ and adding both sides of obtained equalities, we get

$$\begin{aligned}
 (3.7) \quad 2f(x)g(x) - g(x) \left(\frac{1}{b - a} \int_a^b f(t) dt \right) - f(x) \left(\frac{1}{b - a} \int_a^b g(t) dt \right) \\
 = g(x) \left(\frac{1}{b - a} \int_a^b k(x, t) f'(t) dt \right) + f(x) \left(\frac{1}{b - a} \int_a^b k(x, t) g'(t) dt \right)
 \end{aligned}$$

for $x \in [a, b]$. From (3.7), using the properties of modulus and Hölder's integral inequality, we have

$$\begin{aligned}
 (3.8) \quad & \left| 2f(x)g(x) - g(x) \left(\frac{1}{b - a} \int_a^b f(t) dt \right) - f(x) \left(\frac{1}{b - a} \int_a^b g(t) dt \right) \right| \\
 & \leq \frac{1}{b - a} \left(\int_a^b |k(x, t)|^q dt \right)^{\frac{1}{q}} [\|f'\|_p |g(x)| + \|g'\|_p |f(x)|].
 \end{aligned}$$

By making use of (3.6) in (3.8), we get the desired inequality in (2.2).

In concluding we note that, if we take $g(x) = 1$ and hence $g'(x) = 0$ in Theorems 1 and 2, then we recapture the inequality (1.3) given by Dragomir and Wang in [2].

References

- [1] P. Cerone, S. S. Dragomir and J. Roumeliotis, *An inequality of Ostrowski type for mappings whose second derivatives are bounded and applications*, RGMIA Research Report Collection, Vol. 1, No. 1 (1998), 33–39.
- [2] S. S. Dragomir and S. Wang, *A new inequality of Ostrowski type in L_p norm*, Indian. J. Math. 40 (3) (1998), 299–304.

- [3] S. S. Dragomir and S. Wang, *Applications of Ostrowski's inequality to the estimation of error bounds for some special means and some quadrature rules*, Appl. Math. Lett. 11 (1998), 105–109.
- [4] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, *Inequalities for Functions and their Integrals and Derivatives*, Kluwer Academic Publishers, Dordrecht, 1994.

57, Shri Niketen Colony
Near Abhinay Talkies
AURANGABAD 431001
MAHARASHTRA, INDIA

Received October 17, 2002; revised version August 31, 2003.