

Muhammad Anwar Chaudhry, A. B. Thaheem

CENTRALIZING MAPPINGS AND DERIVATIONS ON SEMIPRIME RINGS

Abstract. In this paper we study some properties of centralizing mappings on semiprime rings. The main purpose is to prove the result: Let R be a semiprime ring and f an endomorphism of R , g an epimorphism of R such that the mapping $x \rightarrow [f(x), g(x)]$ is central. Then $[f(x), g(x)] = 0$ holds for all $x \in R$. We also establish some results about (α, β) -derivations.

1. Introduction

Throughout, R denotes a ring with center $Z(R)$. We write $[x, y]$ for $xy - yx$. Then $[xy, z] = x[y, z] + [x, z]y$ and $[x, yz] = y[x, z] + [x, y]z$ hold in R . R is *prime* if $aRb = 0$ implies either $a = 0$ or $b = 0$; it is *semiprime* if $aRa = 0$ implies $a = 0$. A prime ring is obviously semiprime. An additive mapping d from R into itself is called a *derivation* if $d(xy) = xd(y) + d(x)y$ for all $x, y \in R$. Let $a \in R$. Then the mapping $d : R \rightarrow R$ defined by $d(x) = [a, x]$ is a derivation and is called an *inner derivation* of R . In this case, we say that d is an *inner derivation* determined by a . A mapping f from R into itself is *commuting* if $[f(x), x] = 0$; and *centralizing* if $[f(x), x] \in Z(R)$ for all $x \in R$. We call a mapping $f : R \rightarrow R$ *central* if $f(x) \in Z(R)$ for all $x \in R$. Recall that if f is an additive commuting mapping from R into itself, then a linearization of $[f(x), x] = 0$ yields $[f(x), y] = [x, f(y)]$ for all $x, y \in R$. The study of centralizing and commuting mappings was initiated by Posner [14]. Considerable work has been done on centralizing and commuting mappings during the last couple of decades (see, e.g., [1, 3–7, 12, 13, 16, 17] and references therein). Derivations are generalized as α - or skew-derivations and (α, β) -derivations and have been applied in various

1991 *Mathematics Subject Classification*: Primary: 16A12, 16A70, 16A72; Secondary: 46L10.

Key words and phrases: derivation, automorphism, commuting map, centralizing map, α -derivation, (α, β) -derivation, prime ring, semiprime ring.

situations; in particular, in the solution of some functional equations (see, e.g., Brešar [6]). Let α, β be automorphisms of R . An additive mapping d of R into itself is called an (α, β) -derivation if $d(xy) = \alpha(x)d(y) + d(x)\beta(y)$ for all $x, y \in R$. If $\beta = 1$, where 1 is the identity mapping of R , then d is called an α -derivation or a skew-derivation. For instance, $d = \alpha - \beta$ is an (α, β) -derivation and $d = \alpha - 1$ is an α -derivation. Of course, a $(1, 1)$ -derivation or a 1-derivation is a derivation. For more information on α -derivations and (α, β) -derivations, we refer to [2, 6, 8, 10, 11, 14, 15, 18].

In Section 2, we prove some results on centralizing and commuting mappings on prime and semiprime rings. Our results are inspired by Vukman results [17, 18] (see also recent work of Thaheem and Samman [16, Theorem 2.1]). For instance, Vukman [18, Theorem 1] has proved that if R is a 2-torsion free semiprime ring and $D : R \rightarrow R$ is a derivation such that the mapping $x \rightarrow [D(x), x]$ is commuting on R , then $[D(x), x] = 0$ holds for all $x \in R$. We prove here an analogous result for a pair of mappings on semiprime rings. We show that if R is an epimorphism of R such that the mapping $x \rightarrow [f(x), g(x)]$ is central. Then $[f(x), g(x)] = 0$ holds for all $x \in R$.

Section 3 is devoted to the study of (α, β) -derivations on semiprime rings. We show that if d is a central (α, β) -derivation of a semiprime ring R , then $[x, y]d(u) = d(u)[x, y] = 0$ for all $x, y, u \in R$ (Proposition 3.1). We also show that the same conclusion holds if β is centralizing and d is a commuting (α, β) -derivation of a semiprime ring R (Proposition 3.2). Some well known results about derivations and α -derivations follow as application of these results.

2. The results

We begin with the following lemma which we need in the proof of the main result [Theorem 2.2].

LEMMA 2.1. *Let R be a semiprime ring, f be an additive mapping of R into itself and g an endomorphism of R such that the mapping $x \rightarrow [f(x), g(x)]$ is central. Then in this case $2[f(x), g(x)] = 0$ holds for all $x \in R$.*

P r o o f. By assumption $[f(x), g(x)] \in Z(R)$. Linearizing this, we get

$$(1) \quad [f(x), g(y)] + [f(y), g(x)] \in Z(R) \text{ for all } x, y \in R.$$

Replacing y by x^2 in (1), we have $[f(x), g(x^2)] + [f(x^2), g(x)] \in Z(R)$ for all $x \in R$, which gives

$$(2) \quad 2g(x)[f(x), g(x)] + [f(x^2), g(x)] \in Z(R) \text{ for all } x \in R.$$

From (2), we obtain

$$(3) \quad 2[g(x), f(x)][f(x), g(x)] + [[f(x^2), g(x)], f(x)] = 0 \text{ for all } x \in R.$$

Thus (3) gives $[[f(x^2), g(x)], f(x)] = -2[g(x), f(x)][f(x), g(x)]$. That is,

$$(4) \quad [[f(x^2), g(x)], f(x)] = 2[f(x), g(x)]^2 \text{ for all } x \in R.$$

We readily see from (4) that $[[f(x^2), g(x)], f(x)] \in Z(R)$. If we replace x by x^2 in $[f(x), g(x)] \in Z(R)$, then $[f(x^2), g(x^2)] \in Z(R)$, which implies

$$g(x)[f(x^2), g(x)] + [f(x^2), g(x)]g(x) \in Z(R)$$

for all $x \in R$. Thus

$$[g(x)[f(x^2), g(x)] + [f(x^2), g(x)]g(x), f(x)] = 0$$

for all $x \in R$. Hence

$$\begin{aligned} & [g(x), f(x)][f(x^2), g(x)] + g(x)[[f(x^2), g(x)], f(x)] \\ & \quad + [[f(x^2), g(x)], f(x)]g(x) + [f(x^2), g(x)][g(x), f(x)] = 0, \end{aligned}$$

which gives

$$2[g(x), f(x)][f(x^2), g(x)] = -2g(x)[[f(x^2), g(x)], f(x)].$$

Using (4), we get $2[g(x), f(x)][f(x^2), g(x)] = -4g(x)[f(x), g(x)]^2$ for all $x \in R$. Multiplying (4) by $2[f(x), g(x)]$ on the left, we get

$$\begin{aligned} 4[f(x), g(x)]^3 &= 2[[f(x^2), g(x)], f(x)][f(x), g(x)] \\ &= 2[[f(x^2), g(x)][f(x), g(x)], f(x)] \\ &\quad - 2[f(x^2), g(x)][[f(x), g(x)], f(x)] \\ &= -2[[g(x), f(x)][f(x^2), g(x)], f(x)] \\ &= [4g(x)[f(x), g(x)]^2, f(x)] = 4[g(x), f(x)][f(x), g(x)]^2 \\ &= -4[f(x), g(x)]^3. \end{aligned}$$

Hence $8[f(x), g(x)]^3 = 0$. Since the center of a semiprime ring contains no nonzero nilpotents, we conclude that $2[f(x), g(x)] = 0$ for all $x \in R$. ■

We now prove the main result of this section.

THEOREM 2.2. *Let f be an endomorphism and g an epimorphism of a semiprime ring R such that the mapping $x \rightarrow [f(x), g(x)]$ is central. Then $[f(x), g(x)] = 0$ holds for all $x \in R$.*

Proof. By assumption $[f(x), g(x)] \in Z(R)$. Linearizing this, we get

$$(5) \quad [f(x), g(y)] + [f(y), g(x)] \in Z(R) \text{ for all } x, y \in R.$$

By Lemma 2.1, we have

$$(6) \quad 2[f(x), g(x)] = 0 \text{ for all } x \in R.$$

Linearizing (6), we get

$$(7) \quad 2([f(x), g(y)] + [f(y), g(x)]) = 0 \text{ for all } x, y \in R.$$

Using (5)–(7) and the fact that $[f(x), g(x)] \in Z(R)$, the following identity follows easily

$$(8) \quad [f(x), g(xy + yx)] + [f(y), g(x^2)] = 0 \text{ for all } x, y \in R.$$

Replacing y by yx in (8), we get $[f(x), g(xyx + yx^2)] + [f(yx), g(x^2)] = 0$, which gives

$$(9) \quad g(xy + yx)[f(x), g(x)] + [f(x), g(xy + yx)]g(x) + f(y)[f(x), g(x^2)] + [f(y), g(x^2)]f(x) = 0 \text{ for all } x, y \in R.$$

Since $[f(x), g(x)] \in Z(R)$ and $2[f(x), g(x)] = 0$, therefore $[f(x), g(x^2)] = g(x)[f(x), g(x)] + [f(x), g(x)]g(x) = 2g(x)[f(x), g(x)] = 0$ for all $x \in R$. When we combine this with (8), then from (9), we get

$$[[g(x), g(y)] + 2g(y)g(x)][f(x), g(x)] - [f(y), g(x^2)]g(x) + [f(y), g(x^2)]f(x) = 0,$$

which implies

$$(10) \quad [g(x), g(y)][f(x), g(x)] + [f(y), g(x^2)](f(x) - g(x)) = 0 \text{ for all } x, y \in R.$$

Now,

$$\begin{aligned} [f(y), g(x^2)] &= g(x)[f(y), g(x)] + [f(y), g(x)]g(x) \\ &= g(x)[f(y), g(x)] + [f(y), g(x)]g(x) + g(x)[f(x), g(y)] \\ &\quad + [f(x), g(y)]g(x) - g(x)[f(x), g(y)] - [f(x), g(y)]g(x) \\ &= g(x)[[f(y), g(x)] + [f(x), g(y)]] + [[f(y), g(x)] \\ &\quad + [f(x), g(y)]]g(x) - g(x)[f(x), g(y)] - [f(x), g(y)]g(x). \end{aligned}$$

That is, $[f(y), g(x^2)] = 2g(x)[[f(y), g(x)] + [f(x), g(y)]] - g(x)[f(x), g(y)] - [f(x), g(y)]g(x)$. By (7), the above expression becomes

$$[f(y), g(x^2)] = -g(x)[f(x), g(y)] - [f(x), g(y)]g(x).$$

So, from (10), we obtain

$$[g(x), g(y)][f(x), g(x)] - (g(x)[f(x), g(y)] + [f(x), g(y)]g(x))(f(x) - g(x)) = 0$$

for all $x, y \in R$. Fix x , then by the ontoneess of g , we get $[g(x), y][f(x), g(x)] - (g(x)[f(x), y] + [f(x), y]g(x))(f(x) - g(x)) = 0$ for all $x, y \in R$; in particular, when $y = f(x)$, we get $[g(x), f(x)][f(x), g(x)] = 0$ or $[f(x), g(x)]^2 = 0$. Since x is arbitrary, therefore $[f(x), g(x)]^2 = 0$ for all $x \in R$. Since a semiprime ring has no nontrivial central nilpotents, therefore $[f(x), g(x)] = 0$ for all $x \in R$. ■

3. (α, β) -derivations

In this section we investigate some properties of (α, β) -derivations on semiprime rings.

PROPOSITION 3.1. *Let R be a semiprime ring and d be a central (α, β) -derivation of R . Then $d(u)[x, y] = 0$ holds for all $x, y, u \in R$.*

Proof. Since d is central, therefore $0 = [d(y\beta^{-1}(x)), x] = [\alpha(y)d(\beta^{-1}(x)) + d(y)\beta(\beta^{-1}(x)), x] = [\alpha(y)d(\beta^{-1}(x)), x] + [d(y)x, x] = \alpha(y)[d(\beta^{-1}(x)), x] + [\alpha(y), x]d(\beta^{-1}(x)) + d(y)[x, x] + [d(y), x]x = [\alpha(y), x]d(\beta^{-1}(x))$ for all $x, y \in R$. Since α is onto, we get $[y, x]d(\beta^{-1}(x)) = 0$. Replacing x by $\beta(x)$, we get

$$(11) \quad [y, \beta(x)]d(x) = 0 \text{ for all } x, y \in R.$$

Replacing y by yz in (11), we have $0 = [yz, \beta(x)]d(x) = y[z, \beta(x)]d(x) + [y, \beta(x)]zd(x)$. Using (11), we get

$$(12) \quad [y, \beta(x)]zd(x) = 0 \text{ for all } x, y, z \in R.$$

Linearizing (11) (in x), we get

$$\begin{aligned} 0 &= [y, \beta(x+u)]d(x+u) \\ &= [y, \beta(x)]d(x+u) + [y, \beta(u)]d(x+u) \\ &= [y, \beta(x)]d(x) + [y, \beta(x)]d(u) + [y, \beta(u)]d(x) + [y, \beta(u)]d(u). \end{aligned}$$

Using (11), we have

$$(13) \quad [y, \beta(x)]d(u) = -[y, \beta(u)]d(x).$$

Using (13) and replacing z by $d(u)v(-[y, \beta(u)]d(x))$ in (12), we get $0 = [y, \beta(x)]d(u)v[y, \beta(x)]d(u)$. Since β is onto, therefore $[y, x]d(u)v[y, x]d(u) = 0$ for all $x, y, u, v \in R$. Since d is central, we may write this expression as

$$(14) \quad d(u)[x, y]vdu[x, y] = 0 \text{ for all } x, y, u \in R.$$

By (14) and the semiprimeness of R , we get $d(u)[x, y] = 0$ for all $x, y, u \in R$. ■

The following corollary shows that semiprime rings do not admit non-trivial central inner derivations.

COROLLARY 3.2. *Let d be a central inner derivation of a semiprime ring R , then $d = 0$.*

Proof. Let d be the central inner derivation of R determined by $a \in R$. Thus, $d(u) = [a, u] \in Z(R)$ for all $u \in R$. Now, Proposition 3.1 implies $[a, u][x, y] = 0$; in particular, $[a, u][a, u] = 0$ for all $u \in R$. Since R has no nonzero central nilpotents, therefore $[a, u] = d(u) = 0$ for all $u \in R$.

We now show that if β is centralizing, then every commuting (α, β) -derivation of a semiprime ring is central.

PROPOSITION 3.3. *Let β be centralizing and d a commuting (α, β) -derivation of a semiprime ring R . Then $[x, y]d(u) = 0 = d(u)[x, y]$ for all $x, y, u \in R$; in particular, d maps R into its center.*

Proof. Since β is a centralizing automorphism, therefore by Theorem 2.2 (taking $f = \beta, g = 1$), β is commuting. Thus $[\beta(x), y] = [x, \beta(y)]$. Also, $[d(x), y] = [x, d(y)]$ for all $x, y \in R$ (because d is commuting).

We consider

$$(15) \quad [d(yx), x] = [yx, d(x)] = y[x, d(x)] + [y, d(x)]x = [y, d(x)]x$$

and

$$\begin{aligned} (16) \quad [d(yx), x] &= [\alpha(y)d(x) + d(y)\beta(x), x] \\ &= [\alpha(y)d(x), x] + [d(y)\beta(x), x] \\ &= [\alpha(y), x]d(x) + \alpha(y)[d(x), x] + d(y)[\beta(x), x] + [d(y), x]\beta(x) \\ &= [\alpha(y), x]d(x) + [d(y), x]\beta(x) = [\alpha(y), x]d(x) + [y, d(x)]\beta(x). \end{aligned}$$

From (15) and (16), we get $[y, d(x)]x = [\alpha(y), x]d(x) + [y, d(x)]\beta(x)$. Thus

$$(17) \quad [\alpha(y), x]d(x) = [y, d(x)](x - \beta(x)) = -[d(x), y](x - \beta(x))$$

for all $x, y \in R$. We further consider

$$\begin{aligned} (18) \quad [x, \beta(xy)] &= [x, \beta(x)\beta(y)] = [x, \beta(x)]\beta(y) + \beta(x)[x, \beta(y)] \\ &= \beta(x)[x, \beta(y)], \end{aligned}$$

and

$$(19) \quad [x, \beta(xy)] = [\beta(x), xy] = [\beta(x), x]y + x[\beta(x), y] = x[x, \beta(y)].$$

From (18) and (19), we get $\beta(x)[x, \beta(y)] = x[x, \beta(y)]$. Since β is onto, therefore

$$(20) \quad \beta(x)[x, y] = x[x, y] \text{ for all } x, y \in R.$$

Replacing y by $d(y)$ in (20), we have

$$(21) \quad 0 = [x - \beta(x)][x, d(y)] = [x - \beta(x)][d(x), y].$$

Using (21), from (17), we get $[\alpha(y), x]d(x) = 0$. Since α is onto, therefore

$$(22) \quad [y, x]d(x) = 0 \text{ for all } x, y \in R.$$

Replacing y by yz in (22), we get $y[z, x]d(x) + [y, x]zd(x) = 0$, which along with (22) yields

$$(23) \quad [y, x]zd(x) = 0 \text{ for all } x, y, z \in R.$$

Linearizing (22) (in x), we get

$$(24) \quad [y, x]d(u) = [u, y]d(x) \text{ for all } x, y, u \in R.$$

Replacing z by $d(u)z[u, y]$ in (23), we have $0 = [y, x]d(u)z[u, y]d(x) = [y, x]d(u)z[y, x]d(u)$. The semiprimeness of R implies

$$(25) \quad [y, x]d(u) = 0 \text{ for all } x, y, u \in R.$$

Replacing x by $d(u)$ in (25), we get $[y, d(u)]d(u) = 0$ for all $y \in R$. Thus $d(u) \in Z(R)$ from Herstein [9, Lemma 1.1.4]. Hence (25) implies $[x, y]d(u) = 0 = d(u)[x, y]$ for all $x, y, u \in R$. ■

We close the paper with the following remarks.

REMARK 3.4. We observe that some well known results in the literature follow as application of our results.

(a) If we take $\beta = 1$ in Proposition 3.3, then it follows that every commuting α -derivation d of a semiprime ring R is central and satisfies

$$d(u)[x, y] = [x, y]d(u) = 0 \quad \text{for all } x, y, u \in R.$$

(b) Let α be a centralizing automorphism of a semiprime ring R , then $d = \alpha - 1$ is a commuting α -derivation. So by (a), $(\alpha - 1)$ maps R into its center and $(\alpha - 1)(u)[x, y] = [x, y](\alpha - 1)(u) = 0$; that is, $\alpha(u)[x, y] = u[x, y]$ and $[x, y]\alpha(u) = [x, y]u$ for all $x, y, u \in R$.

Acknowledgments. The authors gratefully acknowledge the support provided by the King Fahd University of Petroleum and Minerals during this research.

References

- [1] R. Awtar, *On a theorem of Posner*, Proc. Cambridge Philos. Soc. 73 (1973), 25–27.
- [2] I. Beidar, Y. Fong, W. F. Ke and C. H. Lee, *Posner's Theorem for generalized (σ, τ) -derivations*, Second International Tainan – Moscow Algebra Workshop (to appear).
- [3] H. E. Bell and W. S. Martindale, III, *Centralizing mappings of semiprime rings*, Canad. Math. Bull. 30 (1987), 92–101.
- [4] M. Brešar, *Centralizing mappings on von Neumann algebras*, Proc. Amer. Math. Soc. 111 (1991), 501–510.
- [5] M. Brešar, *On a generalization of the notion of centralizing mappings*, Proc. Amer. Math. Soc. 114 (1992), 641–649.
- [6] M. Brešar, *On the composition of (α, β) -derivations of rings, and application to von Neumann algebras*, Acta Sci. Math. (1992), 369–376.
- [7] M. Brešar, *Centralizing mappings and derivations in prime rings*, J. Algebra 156 (1993), 385–394.
- [8] T. C. Chen, *Special identities with (α, β) -derivations*, Riv. Mat. Univ. Parma 5 (1996), 109–119.
- [9] I. N. Herstein, *Rings with Involution*, The University of Chicago Press, 1976.
- [10] N. Jacobson, *Structure of rings*, Colloq. Publ. 37, Amer. Math. Soc. (1956).
- [11] V. K. Kharchenko and A. Z. Popov, *Skew derivations of prime rings*, Comm. Algebra 20 (1992), 3321–3345.
- [12] J. Luh, *A note on commuting automorphisms of rings*, Amer. Math. Monthly 77 (1970), 61–62.

- [13] J. H. Mayne, *Centralizing automorphisms of prime rings*, Canad. Math. Bull. 19 (1976), 113–115.
- [14] E. Posner, *Derivations in prime rings*, Proc. Amer. Math. Soc. 8 (1957), 1093–1100.
- [15] A. B. Thaheem and M. S. Samman, *A note on α -derivations on semiprime rings*, Demonstratio Math. 34 (2001), 783–788.
- [16] A. B. Thaheem and M. S. Samman, *Centralizing mappings on semiprime rings*, Int. J. Pure and Appl. Math. 3 (2002), 249–254.
- [17] J. Vukman, *Commuting and centralizing mappings in prime rings*, Proc. Amer. Math. Soc. 109 (1990), 47–52.
- [18] J. Vukman, *Derivations on semiprime rings*, Bull. Austral. Math. Soc. 53 (1995), 353–359.

DEPARTMENT OF MATHEMATICAL SCIENCES
KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
DHAHRAN 31261, SAUDI ARABIA
e-mail: chaudhry@kfupm.edu.sa
athaheem@kfupm.edu.sa

Received January 15, 2003; revised version April 8, 2003.