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ON SEMIDERIVATIONS OF PRIME RINGS 

Abstract. A semiderivation of a ring R is an additive mapping / : R —• R together 
with a function g : R —• R such that f(xy) = f{x)g(y) + xf(y) = f(x)y + g(x)f(y) and 
f(g(x)) = g(f(x)), for all x,y G R. If / is a non-zero semiderivation of a prime ring R, 
then it is well known that g must necessarily be an endomorphism. Let R be a prime ring 
with center Z(R), f a non-zero semiderivation with associated endomorphism g which is 
one-one & onto, and a, r be two automorphisms of R such that f a = erf, fr = r f , go = 
ag, gr = rg. Suppose that U is a non-zero (cr, r)-Lie ideal of R and C(R)a,T = {c G R \ 
ca(x) = T(X)C, for all x € R}. In the present paper it is shown that (i) if char R 2 
and f(U) C C{R)a,T, then R is commutative or U C C{R)A,T (ii) if char R / 2 and 
f2(U) = 0, then U C Z{R) (iii) if char R^ 2 and f(U) C Z(R), then U C Z{R) (iv) if 
char R^ 2,3 and f{U) C U, f2(U) C Z(R), then U C Z(R). 

1. Introduction 
Let R be a ring with center Z(R), and U an additive subgroup of R. For 

any x,y 6 R] [x, y] will denote the commutator xy — yx. Recall that a ring 
R is prime if aRb = { 0 } implies a = 0 or b = 0. An additive subgroup U 
of R is said to be a Lie ideal of R if [U, J?] C U. Let a, r : R —> R be two 
mappings. We set [x, y]a>T = xa(y) — r(y)x. Then U is called a (a, r)-right 
Lie ideal (resp. (<r, r)-left Lie ideal) if \U,R\a>T C U (resp. [R, U]a^T C U). U 
is said to be (a, r ) -Lie ideal of R if U is both a (a, r)-right Lie ideal as well 
as (cr, r)-left Lie ideal of R. Note that every Lie ideal is a (1 ,1) - right(left) 
Lie ideal of R. But there exist (cr, r ) -Lie ideals of R which are not Lie ideals 
of R. For example, let 

R = a,b E U = a e 

1991 Mathematics Subject Classification: 16W25, 16U80. 
Key words and phrases: prime rings, derivations, semiderivations, Lie ideals, torsion 

free rings. 



276 M. Ashraf, N. Rehman 

J a 6 W . 0 \ » W o 

Vo o j V 0 0 / V 0 0 / V 0 0 / 

Then a and r are automorphisms of R and U is a (a, r)-Lie ideal of R, but 
not a Lie ideal of R. Following Bergen [6], an additive mapping / : R —> R 
is called a semiderivation if there exists a function g : R —> R such that (i) 
/ ( ® y ) = f(x)9(y) + xf(y) = f(x)y + g(x)f(y), a n d (ii) f(g(x)) = g{f(x)) 
hold for all x, y G R. If g = 1 -i.e., an identity mapping of R, then all 
semiderivations associated with g are merely ordinary derivations. If g is any 
endomorphism of R, then other examples of semiderivations are of the form 
f(x) = x—g(x). For an example of a semiderivation which is not a derivation, 
let R = Ri © i?2 where R\ and are any rings. Let a i : R\ —• R\ be an 
additive map and a<i : Ri —> Ri be a left and right i^-module map which 
is not a derivation. Define / : R —• R such that /((ri ,r2)) = (0, «2(^2)) 
and g : R —• R such that g((ri,r2)) = (ai(ri),0), r\ G Ri, G R2. Then 
it can be easily seen that / is a semiderivation on R (with associated map g) 
which is not a derivation. In case R is prime and / ^ 0, it has been shown 
by Chang [7, Theoreml] that g must necessarily be a ring endomorphism. 

Let d be a non-zero derivation of R. Then for a Lie ideal U of R, Bergen 
et al. [5] proved the following: (i) If d(U) C Z(R), then U C Z(R). (ii) If 
ad{U) - 0 (or d(U)a = 0) for a G R, then a = 0 or U c Z(R). (iii) If d2(U) = 
0, then U C Z(R). Further, the above results were extended to (a, r)-Lie 
ideals of R. (cf. [3], [16]). In the present paper our objective is to generalize 
these results for semiderivations. In fact our theorems generalize the results 
obtained in [1, Theorem 5], [3, Theorems 1 & 2] and [16, Theorem]. 

Throughout the present paper R will represent a prime ring with au-
tomorphisms a, r and a non-zero semiderivation / (with associated en-
domorphism g) such that fa = cr/, fr = r / , ga = ag, gr = rg, and 
C{R)a,r = G R | xa(y) = r(y)x, for all y G R }. We shall use the 
following relations frequently: 

[xy, z]<r,t = x[y, z]a>T + [x, T(z)]y = x[y, a(z)] + [x, z]^Ty 

and 
[x, yz]<r,T = r(y)[x, z]^T + [x, y]ff>T<r(z). 

2. Main results 
We begin our discussion with the following theorem. 

THEOREM 2.1. Let R be 2-torsion free, U a non-zero (A,r)-right Lie ideal 
of R. If associated endomorphism g of f is onto and f(U) C C(R)(TIT, then 
R is commutative or U C C(R)(TTT. 
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For easy references, we state the following known lemmas which will be 
used in our subsequent discussion. 

LEMMA 2.1 ([2, Lemma 2]). Let U be a non-zero (a,r)-right Lie ideal of R 
and a G R. If [U, a]^T G C(R)a<T, then a G Z(R) or U C C(R)<7tT. 

LEMMA 2 . 2 ([2, Corollary 2 ] ) . Let U be a non-zero (a , r ) - Lie ideal of R such 
that U <f_ Z(R) and U (£ C(R)^T, for every a,b E R. If aUb - {0} , then 
a — 0 or b = 0. 

LEMMA 2.3 ([3, Lemma 4]). Let U be a non-zero (cr,r)-left Lie ideal of R 
such that U C C(R)atT, then U C Z(R). 

LEMMA 2.4 ([16, Lemmal]). Let U be a non-zero (a,r)-left Lie ideal of R. 
If [R, C Z(R), then U C Z(R). 

The following lemma has its independent interest. It can also be regarded 
as a generalization of the main theorem due to Herstein [10] for semideriva-
tion in the case when char R ^ 2. 

LEMMA 2 . 5 . Let R be 2-torsion free, and associated endomorphism g of f 
be onto. If a G R such that [a, f(x)] = 0, for all x € R, then a 6 Z(R). 

P r o o f . By our hypothesis, we have 

(2.1) [o, f(x)] = 0, for all x € R. 

Replace x by xy in (2.1) and use (2.1), to get 

(2.2) f(x) [a, y] + [a, g(x)}f(y) = 0, for all x,y € R. 

Now, replacing y by y + f(y) in (2.2), and using (2.1) &; (2.2), we get 

(2.3) [a, g(x)]f2(y) = 0, for all x,y G R. 

Replacing x by zx in (2.3) and using (2.3), we get [o, g(z))g(x)f2(y) = 0, for 
all x,y,z G R. Hence [a, g(z)]Rf2(y) = {0} , and the primeness of R implies 
that either [a,g(z)\ = 0 or / 2 ( y ) = 0. Now suppose that 

(2.4) f{y) = 0, for all y € R. 

Replacing y by xy in (2.4), we get 

f2{x)g\y) + f{x)d{g{y)) + f(x)g(f(y)) + xf\y) = 0. 

Now, applying (2.4) and the fact that f(g(y)) = g{f(y)), we have 
2 f { x ) f { g { y ) ) = 0, for all x,y € R. This yields that 

(2.5) f(x)f(g(y)) = 0, for all x, y G R. 

Replace x by yx in (2.5) and use (2.5), to get f(y)xf(g(y)) — 0, for all 
x, y G R and hence either f(y) = 0 or f(g(y)) = 0. But since g is onto in 
both the cases we find that f(x) = 0, for all x G R, a contradiction. Hence 
[a, g{z)] = 0, for all z G R and since g is onto it implies the required result. 
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Proof of T h e o r e m 2.1. Since U is a (a, T)-right Lie ideal of R; [u, G 
U, for all x G R, u G U. By our hypothesis, we have f(U) c C(i?)CTiT and 
hence f([x,u]atT) G C(R)^r -i.e., [f([u, x]atT), y]^T = 0, for all x,y G R,u G 
U. This can be rewritten as 

[[f(u),g(x)]a>T, y](T,T + [[«, f(x)]cTtT, V}<T,T = 0. 

Since g is onto, we find that [f(u), g(x)](rtT = 0, and hence f (x)}aiT,y]^T 
= 0, for all x,y 6 R, u G U. This implies that [u,f(x)]a<T G C(R)A^T 
that is [C/,/(i?)]CTiT C C(R)(TIT. Hence application of Lemma 2.1 gives that 
f(R) C Z(R) or U c C(R)AIT. If f(R) c Z(R), then by Lemma 2.5 R is 
commutative. 

Combining Lemma 2.3 with the above theorem we get the following: 

COROLLARY 2.1. Let R be 2-torsion free, and U a non-zero (a,r)-Lie ideal 
of R. If associated endomorphism, g of f is onto and f(U) C C(R)aT, then 
U c Z(R). 

LEMMA 2.6. Let R be 2-torsion free, U a non-zero (a,r)-Lie ideal of R, and 
associated endomorphism g of f be onto. If a 6 R such that f(U)a = 0 (or 
af(U) = 0), then a = 0 or U C Z(R). 

Proof . Since U is a (a, r)-Lie ideal of R, [x, u]CT)T e U, for all x € R, u € U. 
Now replace x by t ( u ) x , to get t ( u ) [ x , U]CT)T € U . Hence by our hypothesis, 
we find that f(r(u)[x,TT](7)T)A = 0, for all x G R,u € U. This yields that 

(2.6) f(r(u))[x, = 0, for all x G R, u G U. 

Replacing x by xf(v), where v G U in (2.6) and using the hypothesis, we 
obtain f(T(u))x[f(v),u]a:Ta = 0, for all x £ R,u,v £ U. Thus primeness of 
R forces that either / ( r(u)) = 0 or [f(v),u]^Ta = 0. This implies that for 
each u G U either f(u) = 0 or [f(v), v\CfTa = 0. Define H — {u G U | f(u) = 
0}, K = {u G U | [f (v), u)^Ta = 0, for 'all v G U}. Clearly H and K are ad-
ditive subgroups of U and U = HuK. Hence by using Brauer's trick K — U 
or H = U. Since f(U) / 0, H ± U and hence K = U i.e., [f(v),u]^Ta = 0, 
for all u,v G U. Now, in view of our hypothesis we get f(v)a(u)a = 0 and 
hence a~1(f(v))Ua~1(a) = 0. Hence application of Lemma 2.3 and Lemma 
2.2 yields that (T-1(/(v)) = 0 or a " 1 (a) = 0. This implies that f(U) = 0 or 
a = 0. But since f(U) ^ 0, we get the required result. 

Using similar arguments with necessary variations, we get the required 
result in case if af(U) = 0. 

LEMMA 2.7. Let R be 2-torsion free, and U a non-zero (a,r)-Lie ideal of R. 
If associated endomorphism g of f is one-one Sz onto and f2(U) = 0, then 
f(U) C Z(R). 
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P r o o f . Using the similar arguments as used in the begining of the proof 
of Lemma 2.6, we find that t(u)[x,u]CT)T G U, for all x G R,u G U. By our 
hypothesis, we have f2(r(u)[x, u]<t,t) = 0, for all x G R, u G U. This implies 
that 

f2(r(u))g2([x, u]^) + f(.T(u))f(g([x,uUT))+ 
f(r(u))g(f([x, u]a<T)) + r(u)f2([x, u],,T) = 0. 

Since f2(U) = 0 and f(g(u)) = g(f(u)), the above relation reduces to 
2f(T(u)) f(g([x,u]<r<T)) = 0. This yields that 

(2.7) f(r(u))f(g([x, u]„iT)) = 0, for all x G R, u G U. 

It is eassy to show that f(U) + U is a (cr, r)-Lie ideal of R. In fact for any 
u,v G U,x G R, we have 

[/(it) + V, x)^r = [ / (« ) , x]Ctr + [u, x)a,T 

= f{[u,g{x))^T) + [v, x]„,T - [u, f(x)]9,r e f(U) + U. 

This implies that f(U) + U is a (cr, r)-right Lie ideal of R. Similarly we can 
show that f(U) + U is a (cr, r)-left Lie ideal of R, and hence a (cr, r)-Lie ideal 
of R. Further more if f2(U) = 0, then f(f(U) + U) C f(U) C f(U) + U 
and f2(f(U) + U) = 0. Therefore, without loss of generality we may assume 
that if U is a (cr, r)-Lie ideal of R such that f2(U) = 0, then f(U) C U. 

Now replace u b y « + f(v) in (2.7), to get f(T(u))f(g([x, f(v)}(7>T)) = 0, 
for all x G R,u,v G U, and hence / ( t i )T _ 1 ( / (^( [x , /(v)]<r,r))) = 0. Now 
application of Lemma 2.6 gives that U C Z(R) or T~1(f(g([x, /(w)]a,r))) = 
0. If T - 1 ( / ( < ? ( [ * , / W W ) ) ) = 0, then gtfdxJiv)}^)) = 0, for all x G 
R,v € U. Since g is one-one, the last equation gives that / ( [x , f(v)]a,r) = 0, 
for all x G R, v G U. Thus if U C Z(R), then f(U) C Z(R). On the other 
hand if / ( [x , /(u)]CT)T) = 0, then in view of our hypothesis the above relation 
reduces to 

(2.8) [ / ( x ) , f{v)]a,T = 0, for all x G R, v G U. 

Replacing x by xf(u) in (2.8), we get f(x)[f(u), / (v ) ] £ r , r +[ / (x ) , t ( / ( v ) ) ] / ( u ) 

= 0, and in view of equation (2.8), we have [ / (x ) , r(f(v))]f(u) = 0, for all 
x G R,u,v G U. Again application of Lemma 2.6 yields that U C Z(R) 
or [ / (x ) , r ( / ( u ) ) ] = 0. If [ / (a : ) ,T(/(u))] = 0, then by using Lemma 2.5, we 
get t ( / ( « ) ) G Z(R), for all v G U. This implies that f(v) G Z(R), for all 
v G U i.e., / ( [ / ) C Z(R). On the other hand if U C Z(R), then again 
f(U) C Z(R). 

THEOREM 2.2. Let R be 2-torsion free, and U a non-zero (a, r)-Lie ideal 
of R. If associated endomorphism g of f is one-one & onto and f2(U) = 0, 
then U C Z{R). 
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P r o o f . Since U is a (cr, r)-Lie ideal of R, [x, tt]CTiT 6 U, for all x E R, u E U. 
Now, replace x by xa(u), to get [x, u]a>Ta(u) E U, for all x E R,u E U. 
Hence by our hypothesis we find that / 2 ( [x , u]a>Ta(u)) — 0. This yields that 

f([x, u]a,T)g
2{o{u)) + f([x, u]aiT)f(g(a(u)))+ 

f([x,u}a,T)g{f(a(u))) + [x ,u] a , T /V(<z)) = 0. 

Since f2(U) = 0 and f(g(u)) = g(f(u)), the above relation reduces to 

(2.9) / ( [x , u]^T)g(f(cr(u))) = 0, for all x E R, u E U. 

Now, replacing u by u + v in (2.9) and using (2.9), we get 

/([®, vUr)g(f(^(u))) + f([x, u]a,T)g(f(a(v))) = 0, for all xeR,u,veU. 

Multiplying from right by g(f(cr(u))) in the last equation , we get 

/ ( [ * , i , r ) j ( / W « ) ) 2 ) + f([x, uUT)g(f(a(v))f(a(u))) = 0, 

for all x E R , u, v E U. 

Now application of Lemma 2.7 and (2.9) yields that 

(2.10) f([x, v]a,T)g(f(a(u))
2) = 0, for all X E R , U , V E U . 

Replacing x by T(V)X in (2.10) and using (2.10),we get 

(2.11) f(r(v))[x, v]^Tg(f(a(u))
2) = 0, for all x E R , U , V E U . 

Linearize (2.11) on v and use (2.11), to get 
(2.12) f(r(v))[x,w]c,r9(f(^))2) + / ( t H ) M W < 7 ( / (*(u)) 2) = 0, 

for all x E R,u,v,w E U. 

Multiplying (2.12) from left by f(r(v)) and applying Lemma 2.7 and (2.11), 
we get 

(2.13) f(r(v))2[x, w]atTg(f(a(u))
2) = 0, for all x E R, u, v, w E U. 

Replace x by yf([x,wi]CT,r) in (2.13), to get 

/ ( r M ) 2 { y [ / ( [ o ; , U ; i ] C T , T ) , a H ] + [y,^] f f ,T/([x,^i]C T ,T)}5(/(c7(n))2) = 0. 

Now in view of (2.10), we find that f{T(v))2R[f([x, ioi]ffiT), a(w)]g(f(a(u))2) 
= {0} , for all x E R,u, v, w, w\ E U and hence primeness of R implies that 
either f(r(v))2 = 0 or [f([x,Wl}a,T),a(w))g(f(o(u))2) = 0. If f(r(v))2 = 0 
for all v E U, then r{f(v)2) = 0 and hence / ( C ) 2 = 0. Thus for all U,veU 
0 = f(u+v)2 = f(u)2+2f(u)f(v)+f(v)2. Hence this yields that /(u)/(v) = 0, 
for all u,v E U, by Lemma 2.6 we get f(U) = 0, and hence by Corollary 2.1, 
we have U C Z(R). On the other hand if [f([x,wi]<TtT),a(w)]g(f(a(u))2) = 
0, then application of (2.10) gives that f([x,w\])a(w)g(f(a(u))2) = 0, for 
all x E R,u,w,wi E U, and hence a~1(f([x,wi\<7tT))Ug(f(u)2) = 0. Thus 
by Lemma 2.2, we find that a~1(f([x,wi]<JiT)) = 0 or g(f(u)2) = 0. If 
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g(f(u)2) = 0, then f{u)2 = 0, for all u G U i.e., f(U)2 = 0. Now using the 
similar arguments as above we get the required result. On the other hand if 
°~ 1 U { [ x , w i ]c ,t ) ) = 0, then 

(2.14) f([x, wi]a,r) = 0, for all x G R, wi G U. 

Replace x by xa[w\) in (2.14) and use (2.14), to get 

(2.15) [x,w\]a^T f(a(wi)) = 0, for all x e R ^ e U . 

Replacing x by xy in (2.15) and using (2.15), we get [x,T(wi)]yf(a(wi)) = 0, 
for all x, y G R, w\ £ U. Hence for each w\ G U primeness of R forces 
that either f(cr(w\)) = 0 or [x, r(tyi)] = 0, for all x G R. Thus we find 
that for each w\ G U either f(w\) = 0 or w\ G Z(R). Now we define 
H = {t«! € U I f(wi) = 0},K = {wi € U \ wi E Z(R)}. Then it can be 
seen that H and K are additive subgroups of U. Moreover, U = HUK. But 
a group can not be a set theoretic union of two of its proper subgroups and 
hence H = U or K = U. By assumption U <f_ Z(R) and therefore U = H. 
This gives that f(U) = 0 and by Corollary 2.1, U c Z(R), a contradiction. 
This completes the proof of the above theorem. 

THEOREM 2.3. Let R be 2-torsion free, and U a non-zero (a,r)-Lie ideal 
of R. If associated endomorphism g of f is one-one & onto and f(U) C 
Z(R), then U c Z(R). 

Proof . By our hypothesis, we have f([x,u]<7^T)GZ(R), for all x£R, U&U. 
Hence, replacing x by xf(v) and using the fact that f(U)cZ(R), we arrive at 
g([x, u}afT)f2(v)€Z(R), for all x&R, u,veU. Since f(U)cZ(R) implies that 
f2{U) C Z(R) and R is prime, we find that either f2(v) — 0 or g([x, u]^^) G 
Z{R). If f2(v) — 0, for all veU, then by using Theorem 2.2 we get the re-
quired result. On the other hand if g([x, u]atT)eZ(R), then [x,u]atT€Z(R), 
for all xeR,u€U and by Lemma 2.4 we get the required result. 

It can be eassily seen that in case associated endomorphism g of / is 
onto, / ( [ / ) C Z(R) implies that f2(U) C Z(R). Thus it is natural to ask 
whether the conclusion of the above theorem remains true if the hypothesis 
f(U) C Z(R) is replaced by a weaker hypothesis that f2(U) C Z(R). The 
following theorem, under some additional condition, provides an affirmative 
answer to this question and improve the results obtaind in [1, Theorems 1 
Si 5] and [16, Theorem], 

THEOREM 2.4. Let R be 2-torsion free and 3-torsion free, U a non-zero 
(a,r)-Lie ideal of R. If associated endomorphism g of f is one-one &; onto 
and f(U) c U, f2{U) C Z(R), then U C Z(R). 

Proof . Since U is a (a, r)-Lie ideal of R, [x, u]atT 6 U, for all x 6 R, u € U. 
Thus by our hypothesis, we find that f2([x, u]CT)T) G Z(R), for all x G R, 
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u E U. This yields that 

(2.16) [/ 2 0r) , 5 2 (u)kr + 2[f(x),g(f(u))l,T + [x, f\u)UT G Z(R), 

for all x G R, u G U. 

Replacing x by xf2(v) in (2.16) and using (2.16) together with the fact that 
f2(U) C Z(R), we get 

2b(/(^) , f f 2 H] £ r , r/ 3 M + 25(/(x))[/3(t;))<7(52(u))] 

+ [g2(x),g\u)}„,Tf*(v) + g\x)[f\v),a(g(u))} 

+ 2 \g(x)M(u))]„,rf(v) + 2 g(x)[f(v),<T(g(f(u)))} G Z{R). 

Since /2(v),/3(v) and /4(v) are in Z(R), the above relation reduces to 

2 [9(f(x)),g2(u)UTf3(v) + [g2(x),g2(u)UTf*(v) 

+ 2[g(x),g(f(u))](,tTf3(v) € Z(R). 

This implies that 2f{[g(x),g(u)](rtT)f3(v) + [ p 2 ^ ) , * ? 2 ^ ) ] ^ / 4 ^ ) G Z(R), 
and hence 

(2.17) 2 f 3 ( v ) g ( f ( [ x , u ] ^ ) ) + g2([x, uUT)f4(v) G Z(R). 

Replacing x by xf2(w) in (2.17) and using the fact that f2(U) C Z(R), we 
get 

(2.18) {2 fHv)g(f([xM<r,r)) + 9 2 ( [ x M ^ \ v ) } g 2 ( f 2 { w ) ) + 

2 f(v)g([x, u]<rìT)g(f3(w)) G Z(R), for all x E R,u,v,w €. U. 

Since f 2 (w) is central, we find that 

(2.19) ff2(/2H) e Z(R), for all w G U. 
Combining (2.17) and (2.19) with (2.18), we get f3(v)g([x,u}atTf3(w)) G 
Z(R), for all x G R, u, v, w G U. But since R is prime and f3(U) C Z(R); 
the above relation yields that either f3(v) = 0 or g([x,u](TtTf3(w)) G Z(R). 
If u]CiTf3(w)) G Z(R), then [x,u]^rf3(w) G Z(R), and again either 
f3(w) = 0 or [ x , « ] ^ G Z(R). If [x^]^'e Z{R), for all x G R, u G U then 
by Lemma 2.4, we find that U C Z(R). Now, suppose that f3(U) = 0. In 
view of the arguments given in the first paragraph of the proof of Lemma 2.6, 
we have r(it)[x, u]CTiT G U, for all x G R, u G U, and hence / 3 ( T ( u ) [ X , u]atT) 
= 0. This yields that 

f3(r(u))g3([x,uUr) + f2(r(u))f(g2([x,u].,r)) 

+ f2(r(u))g(f(g([x,uUr))) + rf(r(u))f2(g([x,uUT)) 

+ / 2 ( r ( u ) ) j ( j ( / ( [ x , i , T ) ) ) + f(r(u))f(g(f([x,uUr))) 

+ f(r(u))g(f2([.r, < T ) ) + T(u)f3{[x, u]a,T) = 0 . 
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Since f3(U) = 0 and f(g(u)) — g(f(u)), the above gives that 

3f2(r(n))g2(f([x,u].,r)) + 3 f(r(u))g(f2([x,uUr)) = 0, 
for all x 6 R,u € U. 

This implies that f2(r(u))g2(f([x,u]^r)) + f(T(u))g(f2{[x,u]a:r)) = 0. Now, 
replacing u by f(u) in the above equation and using the fact that f3{U) = 0, 
we have /2 (r (u) )p(/2 ( [ i ,/(u)]C T ) T ) ) = 0, for all x € R, u € U, and hence 
/2 (u)T-1 (5(/2 ( [x,/(t i ) ]<r ,T ) ) ) = 0. Since f2(U) C Z(R) and R is prime, we 
have either f2(u) = 0 or T_1((/(/2([a:, f{u)]atT))) = 0. This implies that for 
each ueU either f2(u) = 0 or /2 ( [x, /(U)]<t,T) = 0. Thus the set H = {u <£ 

U | f2(u) = 0},K = {u e U | /2([x,/(u)']CT>r) = 0, for all x € R} are 
additive subgroups of U whose union is U. Hence we find that U = H or 
U = K. If U = H, then we find that f2(U) = 0. Hence by Theorem 2.2 we 
get the required result. On the other hand if U = K then 

(2.20) f2([x, f(u)]VtT) = 0, for all x e R, u e U. 

Replacing x by xa(f(u)) in (2.20), we get f2([x, /(u)]CT)T(t(/(u))) = 0, for 
all x € ii, u € U. -i.e. 

/2([z, f(u)]a<T)a(f(u)) + 5(/([x, /(«)]»,r))/(a(/(«)))+ 

/(5([x, f(u)Ur))f2(a(u)) + g2([x, f(u)]a,T)f3{a(u)) = 0. 

Now applying (2.20) and using the fact that f3(U) = 0, we have 
iK/ ( [ s ,/ (u ) ] , , r ) )/V ( t i ) ) = 0» and hence ^ - ^ ( / ( [ s . / i u ) ] ^ ) ) ) / 2 ^ ) = 0, 
for all x € R,u € £/. Since f2(U) C Z(R) and i? is prime, we find that 
for each u € U either }2{u) = 0 or a~1(g(f([x,f(u)](TtT))) = 0. Hence 
again using Brauer's trick we have either f2(u) = 0 for all u € U or 
g(f([x, f(u)]a>T)) = 0 for all u e U,x € R. If f2(u) = 0, for all u € U, 

then again by Theorem 2.2 we get U C Z(R). On the other hand if 
g(f([xJ(u)Ur)) = 0, then 

(2.21) f([x, f(u)]a<T) = 0, for all x € R, u € U. 

Now, replace x by xa(f(u)) in (2.21) and use (2.21), to get 

(2.22) [®, /(u)] f f >Ta(/2(u)) = 0, for all x € -R, u € U. 

Again replacing x by xy in (2.22) and using (2.22), we find that 
[x, T(f(u))]ycr(f2(u)) = 0, for all x, y € R, u 6 U. Now primeness of R 

implies that either a(f2(u)) = 0 or [x, r (/(it ) ) ] = 0. If a(f2(u)) = 0, then 
f2{u) = 0, for all u E U. Hence again by Theorem 2.2, we get the requried 
result. On the other hand if [a;, r (/ (u) ) j = 0, then [ r - 1 ( x ) , f(u)] = 0, for 
all x € R, u € U. Thus [y, f (u)] = 0, for all y G R, u G U, implies that 
/(£/) C Z(R). Hence, by Theorem 2.3 we get the required result. 
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