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ON SEMIDERIVATIONS OF PRIME RINGS

Abstract. A semiderivation of a ring R is an additive mapping f : R — R together
with a function g : R — R such that f(zy) = f(z)g(y) + =f(y) = f(z)y + g(z) f(y) and
f(g(z)) = g(f(z)), for all z,y € R. If f is a non-zero semiderivation of a prime ring R,
then it is well known that g must necessarily be an endomorphism. Let R be a prime ring
with center Z(R), f a non-zero semiderivation with associated endomorphism g which is
one-one & onto, and o, 7 be two automorphisms of R such that fo =of, fr =1f,90 =
09,97 = 7g. Suppose that U is a non-zero (o, 7)-Lie ideal of R and C(R)s,r = {c € R |
co(z) = 7(z)e, for all = € R}. In the present paper it is shown that (i) if char R # 2
and f(U) € C(R)o,r, then R is commutative or U C C(R)o,r (ii) if char R # 2 and
fA2(U) =0, then U C Z(R) (iii) if char R # 2 and f(U) ¢ Z(R), then U C Z(R) (iv) if
char R # 2,3 and f(U) c U, f2(U) C Z(R), then U C Z(R).

1. Introduction

Let R be a ring with center Z(R), and U an additive subgroup of R. For
any z,y € R;[z,y] will denote the commutator zy — yz. Recall that a ring
R is prime if aRb = {0} implies @ = 0 or b = 0. An additive subgroup U
of R is said to be a Lie ideal of R if [U,R] C U. Let 6,7 : R — R be two
mappings. We set [z, ylo,r = zo(y) — 7(y)z. Then U is called a (o, 7)-right
Lie ideal (resp. (o, 7)-left Lie ideal) if [U, R, C U (resp. [R,Uls,- CU). U
is said to be (o, 7)-Lie ideal of R if U is both a (o, 7)-right Lie ideal as well
as (o, 7)-left Lie ideal of R. Note that every Lie ideal is a (1, 1)- right(left)
Lie ideal of R. But there exist (o, 7)-Lie ideals of R which are not Lie ideals

of R. For example, let
a,beZ;, U= a0 a€Zy,,
00

r={(55)
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(50)=(a0) ~(52)-(20)

Then o and 7 are automorphisms of R and U is a (o, 7)-Lie ideal of R, but
not a Lie ideal of R. Following Bergen (6], an additive mapping f : R — R
is called a semiderivation if there exists a function g : R — R such that (i)
f(zy) = f(=)9(y) + zf(y) = f(z)y + 9(z) f(y), and (ii) f(g(z)) = g(f())
hold for all z,y € R. If g = 1 -i.e., an identity mapping of R, then all
semiderivations associated with g are merely ordinary derivations. If g is any
endomorphism of R, then other examples of semiderivations are of the form
f(z) = z—g(z). For an example of a semiderivation which is not a derivation,
let R = Ry & Ry where Ry and Ry are any rings. Let a; : Ry — R; be an
additive map and as : R2 — Rj» be a left and right Ro-module map which
is not a derivation. Define f : R — R such that f((r1,72)) = (0, a2(rz))
and g : R — R such that g((r1,72)) = (@1(r1),0), 71 € Ry, 2 € Ry. Then
it can be easily seen that f is a semiderivation on R (with associated map g)
which is not a derivation. In case R is prime and f # 0, it has been shown
by Chang (7, Theoreml] that g must necessarily be a ring endomorphism.

Let d be a non-zero derivation of R. Then for a Lie ideal U of R, Bergen
et al. [5] proved the following: (i) If d(U) C Z(R), then U C Z(R). (ii) If
ad(U) =0 (ord(U)a =0)fora € R,thena=0o0r U C Z(R). (iii) If d*(U) =
0, then U C Z(R). Further, the above results were extended to (o, T)-Lie
ideals of R. (cf. [3], [16]). In the present paper our objective is to generalize
these results for semiderivations. In fact our theorems generalize the results
obtained in [1, Theorem 5], [3, Theorems 1 & 2] and [16, Theorem].

Throughout the present paper R will represent a prime ring with au-
tomorphisms ¢, and a non-zero semiderivation f (with associated en-
domorphism g) such that fo = of, fr = 7f,90 = o9, g7 = 79, and
C(R)or = {z € R | zo(y) = 7(y)z, for all y € R }. We shall use the
following relations frequently:

[zy, 2]o,r = zlY, 2o + [z, T(2)]y = 2]y, 0(2)] + [z, 2]0,rY
and
[z, y2]o,r = T(¥) [z, 2oy + [7,Y)oro(2).

2. Main results
We begin our discussion with the following theorem.

THEOREM 2.1. Let R be 2-torsion free, U a non-zero (o, 7)-right Lie ideal
of R. If associated endomorphism g of f is onto and f(U) C C(R),r, then
R is commutative or U C C(R),+.
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For easy references, we state the following known lemmas which will be
used in our subsequent discussion.

LEMMA 2.1 ([2, Lemma 2|). Let U be a non-zero (o, 7)-right Lie ideal of R
and a € R. If [U, alo,r € C(R)o,r, thena € Z(R) or U C C(R)q,r.

LEMMA 2.2 ([2, Corollary 2]). Let U be a non-zero (o, 7)- Lie ideal of R such
that U ¢ Z(R) and U ¢ C(R)g,r, for every a,b € R. If aUb = {0}, then
a=0o0rb=0.

LEMMA 2.3 ([3, Lemma 4]). Let U be a non-zero (o, 7)-left Lie ideal of R
such that U C C(R)g,r, then U C Z(R).

LEMMA 2.4 ([16, Lemmal)). Let U be a non-zero (o, 7)-left Lie ideal of R.
If [R,Ulo,r C Z(R), thenU C Z(R).

The following lemma has its independent interest. It can also be regarded
as a generalization of the main theorem due to Herstein [10] for semideriva-
tion in the case when char R # 2.

LEMMA 2.5. Let R be 2-torsion free, and associated endomorphism g of f
be onto. If a € R such that [a, f(z)] =0, for all z € R, then a € Z(R).

Proof. By our hypothesis, we have

(2.1) [a, f(z)] =0, forallzeR.

Replace z by zy in (2.1) and use (2.1), to get

(2.2) f(@)[a,y] + [a,9(z)]f(y) =0, forall z,y€R.

Now, replacing y by y + f(y) in (2.2), and using (2.1) & (2.2), we get

(2.3) [a,9(x)]f2(y) =0, forallz,y€R.

Replacing z by zz in (2.3) and using (2.3), we get [a, g(2)g(z) f%(y) = 0, for

all z,y,z € R. Hence [a, g(2)]Rf?(y) = {0}, and the primeness of R implies
that either [a, g(2)] = 0 or f2(y) = 0. Now suppose that

(2.4) f2(y)=0, forallyeR.
Replacing y by zy in (2.4), we get
F()g*(y) + f(2)d(9(®)) + f(2)g(f () + = f>(y) = 0.
Now, applying (2.4) and the fact that f(g(y)) = g(f(y)), we have
2f(z)f(g9(y)) = 0, for all z,y € R. This yields that
(2.5) f(z)f(g9(y)) =0, forall z,ye€R.

Replace z by yz in (2.5) and use (2.5), to get f(y)zf(g(y)) = 0, for all
z,y € R and hence either f(y) = 0 or f(g(y)) = 0. But since g is onto in
both the cases we find that f(z) =0, for all z € R, a contradiction. Hence
[a,g(2)] =0, for all z € R and since g is onto it implies the required result.
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Proof of Theorem 2.1. Since U is a (o, 7)-right Lie ideal of R; [u, z]or €
U, for all z € R,u € U. By our hypothesis, we have f(U) C C(R),,. and
hence f([z,u)s,r) € C(R)o,r -i-€., [f([4;Z]o,r),Ylor =0, for all z,y € R,u €
U. This can be rewritten as

[[f(’u.),g(:l:)]a,‘,-, y]a,‘r + [[’U, f(l‘)]a-,-r, y]a-,-r = 0.

Since g is onto, we find that [f(u), g(z)]s» = 0, and hence [[u, f(z)]s.r, Ylor
= 0, for all z,y € R, u € U. This implies that [u, f(z)]s,r € C(R)or
that is [U, f(R)]s,» C C(R)s,r. Hence application of Lemma 2.1 gives that
f(R) C Z(R) or U C C(R)s- If f(R) C Z(R), then by Lemma 2.5 R is
commutative.

Combining Lemma 2.3 with the above theorem we get the following:

COROLLARY 2.1. Let R be 2-torsion free, and U a non-zero (o, 7)-Lie ideal
of R. If associated endomorphism g of f is onto and f(U) C C(R),,r, then
U c Z(R).

LEMMA 2.6. Let R be 2-torsion free, U a non-zero (o, 7)-Lie ideal of R, and
associated endomorphism g of f be onto. If a € R such that f(U)a =0 (or
af(U)=0), thena=0 orU C Z(R).

Proof. Since U is a (o, 7)-Lie ideal of R, [z,u]sr € U, forallz € R,u € U.
Now replace z by 7(u)z, to get 7(u)[z, u],, € U. Hence by our hypothesis,
we find that f(7(u)[z,u]sr)a =0, for all z € R,u € U. This yields that

(2.6) f(r(@)[z,u]lsra=0, forallze R,uel.

Replacing x by zf(v), where v € U in (2.6) and using the hypothesis, we
obtain f(r(u))z[f(v),ulsra =0, for all z € R,u,v € U. Thus primeness of
R forces that either f(7(u)) = 0 or [f(v), u)s,ra = 0. This implies that for
each u € U either f(u) = 0or [f(v),u)sra = 0. Define H = {u € U | f(u) =
0}, K={uecU|[f(v),ulora=0, forallve U}. Clearly H and K are ad-
ditive subgroups of U and U = HUK. Hence by using Brauer’s trick K = U
or H="U. Since f(U) # 0,H # U and hence K =U i.e, [f(v),u]sra =0,
for all u,v € U. Now, in view of our hypothesis we get f(v)o(u)e = 0 and
hence 0~1(f(v))Us~1(a) = 0. Hence application of Lemma 2.3 and Lemma
2.2 yields that o~1(f(v)) = 0 or 0~1(a) = 0. This implies that f(U) =0 or
a = 0. But since f(U) # 0, we get the required result.

Using similar arguments with necessary variations, we get the required
result in case if af(U) = 0.

LEMMA 2.7. Let R be 2-torsion free, and U a non-zero (o, T)-Lie ideal of R.
If associated endomorphism g of f is one-one & onto and f?(U) = 0, then

FfU) C Z(R).
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Proof. Using the similar arguments as used in the begining of the proof
of Lemma 2.6, we find that 7(u)[z,u)sr € U, for all z € R,u € U. By our
hypothesis, we have f2(7(u)[z,ulsr) =0, for all z € R,u € U. This implies
that

FA(r(u)g* ([, vo,r) + £((w) f(9([z, uloir))+
F(r(@)g(f ([, ulo,r)) + 7(w)f*([z, ulor) = 0.
Since f2(U) = 0 and f(g(u)) = g(f(u)), the above relation reduces to
2f(r(u)) f(g([z,u]s,r)) = 0. This yields that

(2.7) Fr(u) f(9([z,ulor)) =0, forallze Ruel.

It is eassy to show that f(U) + U is a (o, 7)-Lie ideal of R. In fact for any
u,v € U,z € R, we have

[f(u) + v, m]U,T = [f(u)a m]U,T + [‘U, x]”ﬂ'
= f([u,9(2)}o;7) + [V, 2o — [u, f(2)]o,r € F(U) + U.

This implies that f(U)+ U is a (o, 7)-right Lie ideal of R. Similarly we can
show that f(U)+U is a (o, 7)-left Lie ideal of R, and hence a (o, 7)-Lie ideal
of R. Further more if f2(U) = 0, then f(f(U)+U) Cc f(U) c f(U)+U
and f2(f(U)+U) = 0. Therefore, without loss of generality we may assume
that if U is a (o, 7)-Lie ideal of R such that f2(U) = 0, then f(U) C U.

Now replace u by u + f(v) in (2.7), to get f(7(u))f(9([z, f(v)]s,r)) =0,
for all z € R,u,v € U, and hence f(u)7}(f(g([z, f(v)]o,r))) = 0. Now
application of Lemma 2.6 gives that U C Z(R) or 7= 1(f(g([z, f(v)]s,r))) =
0. 1 7-(f(g([z, f(0)]o,r))) = O, then g(f([z, f(¥)]oir)) = O, for all = €
R,v € U. Since g is one-one, the last equation gives that f([z, f(v)]o,r) =0,
for all z € R,v € U. Thus if U C Z(R), then f(U) C Z(R). On the other
hand if f([z, f(v)]o,r) = 0, then in view of our hypothesis the above relation
reduces to

(2.8) [f(z), fW)]oyr=0, forallzeR,vel.

Replacing z by zf(u) in (2.8), we get f(z)[f(u), f(v)lo,r+[f(2), 7(f (v))](v)
=0, and in view of equation (2.8), we have {f(z), 7(f(v))]f(u) = 0, for all
z € R,u,v € U. Again application of Lemma 2.6 yields that U C Z(R)
or [f(z), 7(f(v))] = 0. If [f(z), 7(f(v))] = O, then by using Lemma 2.5, we
get 7(f(v)) € Z(R), for all v € U. This implies that f(v) € Z(R), for all
v € U ie., f(U) € Z(R). On the other hand if U C Z(R), then again
f(U) c Z(R).

THEOREM 2.2. Let R be 2-torsion free, and U a non-zero (o, 7)-Lie ideal
of R. If associated endomorphism g of f is one-one & onto and f3(U) =0,
then U C Z(R).
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Proof. Since U is a (o, 7)-Lie ideal of R, [z,u]sr € U, forallz € R,u € U.
Now, replace z by zo(u), to get [z,uls,0(u) € U, for all z € R,u € U.
Hence by our hypothesis we find that f2([z, u]s,0(u)) = 0. This yields that

2z, do,r)g* (0 (w) + f([z, ulor) f(9(0(w))+
f (2, uo,r)g(f (0 (W) + [, ulor f2(0(u)) = 0.
Since f2(U) = 0 and f(g(u)) = g(f(u)), the above relation reduces to
(2.9) f(lz,u)or)g(f(o(u))) =0, forallze RueU.
Now, replacing u by v + v in (2.9) and using (2.9), we get
£ (12, vlorr)g(F (W) + £([2 ulor)g(F(o()) =0, for all = € R,u,v € U.
Multiplying from right by g(f(c(u))) in the last equation , we get
£, o) g (F(e@W)?) + £, ulor)g(f (0(0)f (#(w)) =0,
for all z € Ryu,veU.
Now application of Lemma 2.7 and (2.9) yields that

(2.10) f([z, v]or)g(f(o(u))?) =0, forallz e Ru,vel.
Replacing z by 7(v)z in (2.10) and using (2.10),we get
(2.11) f(r () [z, v)org(f(o(u)?) =0, forallze R u,vel.

Linearize (2.11) on v and use (2.11), to get
(212)  f(r(0))[z, wlo,rg(f(o(w)?) + f(7(w))[z, v]o,rg(f(o(w))?) = 0,

for all z € R,u,v,w € U.

Multiplying (2.12) from left by f(7(v)) and applying Lemma 2.7 and (2.11),
we get

(2.13) F(r )2z, w]org(f(o(w)?) =0, forallz € R u,v,weU.
Replace z by yf([z,wi]sr) in (2.13), to get

Fr)*{ylf ([e, wilo,r), o ()] + [y, wlo,r f ([, wilo,r) Yo (f (0 (w))?) = 0.
Now in view of (2.10), we find that f(7(v))2R[f([z, w1]s,r), o (w)]g(f(co(u))?)
= {0}, for all z € R, u,v,w,w; € U and hence primeness of R implies that
either £(7(v))2 = 0 or [f([z, wilas), o(w)lg(f(o(w)?) = 0. If f(r(v))? = 0
for all v € U, then 7(f(v)?) = 0 and hence f(U)? = 0. Thus for all u,v € U
0= f(u+v)%=f(u)?+2f(u) f(v)+ f(v)?. Hence this yields that f(u)f(v)=0,
for all u,v € U, by Lemma 2.6 we get f(U) = 0, and hence by Corollary 2.1,
we have U C Z(R). On the other hand if [f([z,w1]o+), o(w)]g(f(o(u))?) =
0, then application of (2.10) gives that f([z,w:])o(w)g(f(co(u))?) = 0, for
all z € R,u,w,w; € U, and hence o7 1(f([z,w1]s,r))Ug(f(u)?) = 0. Thus
by Lemma 2.2, we find that o= }(f([z,w1]sr)) = 0 or g(f(u)?) = 0. If
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g(f(u)?) = 0, then f(u)?2 =0, for all u € U i.e., f(U)? = 0. Now using the
similar arguments as above we get the required result. On the other hand if
o (f ([, wr)or)) = O, then

(2.14) f(lz,wi]or) =0, forallze R w €lU.
Replace = by zo(w;) in (2.14) and use (2.14), to get
(2.15) [z, wi]erf(o(w1)) =0, forallze R,w; €U.

Replacing = by zy in (2.15) and using (2.15), we get [z, 7(w1)]y f(o(w1)) = 0,
for all z,y € R,w; € U. Hence for each w; € U primeness of R forces
that either f(o(wi)) = 0 or [z,7(w1)] = 0, for all z € R. Thus we find
that for each wy; € U either f(w;) = 0 or w; € Z(R). Now we define
H={w €U| f(w1) =0},K = {w; € U | w1 € Z(R)}. Then it can be
seen that H and K are additive subgroups of U. Moreover, U = HUK . But
a group can not be a set theoretic union of two of its proper subgroups and
hence H = U or K = U. By assumption U ¢ Z(R) and therefore U = H.
This gives that f(U) = 0 and by Corollary 2.1, U C Z(R), a contradiction.
This completes the proof of the above theorem.

THEOREM 2.3. Let R be 2-torsion free, and U a non-zero (o,7)-Lie ideal

of R. If associated endomorphism g of f is one-one & onto and f(U) C
Z(R), thenU C Z(R).

Proof. By our hypothesis, we have f([z,u],r)€Z(R), for all ze R, ueU.
Hence, replacing z by = f(v) and using the fact that f(U)C Z(R), we arrive at
9([z, v)o,r) fA(v)EZ(R), for all z€ R, u,v€U. Since f(U) C Z(R) implies that
f2(U)CZ(R) and R is prime, we find that either f2(v)=0 or g([z,u)or)€
Z(R). If f2(v)=0, for all veU, then by using Theorem 2.2 we get the re-
quired result. On the other hand if g([z, u)s ) € Z(R), then [z,uls € Z(R),
for all ze R,u€U and by Lemma 2.4 we get the required result.

It can be eassily seen that in case associated endomorphism g of f is
onto, f(U) C Z(R) implies that f2(U) Cc Z(R). Thus it is natural to ask
whether the conclusion of the above theorem remains true if the hypothesis
f(U) C Z(R) is replaced by a weaker hypothesis that f2(U) ¢ Z(R). The
following theorem, under some additional condition, provides an affirmative

answer to this question and improve the results obtaind in [1, Theorems 1
& 5] and [16, Theorem).

THEOREM 2.4. Let R be 2-torsion free and 3-torsion free, U a non-zero

(0,7)-Lie ideal of R. If associated endomorphism g of f is one-one & onto
and f(U) c U, f2(U) c Z(R), then U C Z(R).

Proof. Since U is a (o, 7)-Lie ideal of R, [z,u),r € U, forallz € R,u € U.
Thus by our hypothesis, we find that f2([z,u],;) € Z(R), for all z € R,
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u € U. This yields that
(216)  [f*(2), *(w)lorr +2(f(2), 9(f (W), + [, f2(w)]o,r € Z(R),
forallze RyueU.
Replacing z by zf%(v) in (2.16) and using (2.16) together with the fact that
fA(U) c Z(R), we get
2(9(f(2)), 9*(Wlo.r £2(v) + 29(f (@))[f*(v), (9% (w))]
+[9%(2), 9 (W)]o,r 4 (v) + ¢*(@)[F*(v), o (9(w))]
+2[g(2), 9(f (u)))or f2(v) + 29(2)[f*(v), o (9(f*())] € Z(R).
Since f2(v), f3(v) and f%(v) are in Z(R), the above relation reduces to
2[9(f(@)), 9*Wloyr F2 () + [97(2), 9 ()]0 F4 ()
+2[g(z), 9(f ()]0, f*(v) € Z(R).
This implies that 2f([9(z), g(u)lo,r) f*(v) + [g%(z), *(Wlor f4(v) € Z(R),
and hence
(2.17) 213 ()g(f([z, ulo,r)) + 9*(lz, ulo,r) fH(v) € Z(R).
Replacing z by zf2(w) in (2.17) and using the fact that f2(U) C Z(R), we
get
(2.18) {22 ()g(f ([, ulo,r)) + 8*([2, ulo,r) f4(0) )92 (f2(w))+
23 (v)g([z, ¥or)g(f3(w)) € Z(R), forall z € R,u,v,w € U.
Since f?(w) is central, we find that
(2.19) ¢2(fi(w)) € Z(R), forallweU.

Combining (2.17) and (2.19) with (2.18), we get f3(v)g([z,u)orf3(w)) €
Z(R), for all z € R,u,v,w € U. But since R is prime and f3(U) Cc Z(R);
the above relation yields that either f3(v) = 0 or g([z, u]o,r f3(w)) € Z(R).
If g([z,u)orf3(w)) € Z(R), then [z,u]sf3(w) € Z(R), and again either
f3(w) =0 or [z,4]o,r € Z(R). If [z,u]sr € Z(R), for all z € R,u € U then
by Lemma 2.4, we find that U C Z(R). Now, suppose that f3(U) = 0. In
view of the arguments given in the first paragraph of the proof of Lemma 2.6,
we have 7(u)[z,uls,r € U, for all z € R,u € U, and hence f3(7(u)[z, u]s,r)
= 0. This yields that

£ r(w)g*([z, o) + £(r(u) f(9*([2, ulo,r)

+ FA(r(w)g(f (9([z, vlor))) + rf(7(w)) (9, ulor)
+ £2(7(w))g(9(f ([, ulo,r))) + £(7(w)) £ (9(f [z, ¥lo,r)))
+ f(r(@)g(f([z, vlor)) + 7(w) F([z, ulor) = 0.
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Since f3(U) = 0 and f(g(u)) = g(f(u)), the above gives that

3f2(r(w)g*(f([z, Wlo,r)) + 3f((w)g(F*(Iz, ulo,r)) = O,
forall xe€ RyueU.

This implies that 2(r(w))g2(f (@, ulo:r)) + £ ((w))g(£2([2, o)) = 0. Now,
replacing u by f(u) in the above equation and using the fact that f3(U) = 0,
we have f2(7(u))g(f?([z, f(u)]or)) =0, for all z € R,u € U, and hence
)T Yg(F*([z, f(¥)]s.r))) = 0. Since f2(U) C Z(R) and R is prime, we
have either f2(u) = 0 or 77(g(f%([z, f(v)]s,r))) = 0. This implies that for
each u € U either f2(u) =0 or f?([z, f(u)]s,r) = 0. Thus the set H = {u €
U| fA(u) = 0},K = {u € U | f[z, f(u)lor) = 0, forallz € R} are
additive subgroups of U whose union is U. Hence we find that U = H or
U=K.IfU = H, then we find that f2(U) = 0. Hence by Theorem 2.2 we
get the required result. On the other hand if U = K then

(2.20) 2z, f(W]or) =0, forallze RucU.

Replacing z by zo(f(u)) in (2.20), we get f2([z, f(w)]sro(f(u))) = 0, for
alze R,ueU. -ie.

(e, f@)]o)o (f(w) +9(f ([, f(w)]or)) Fo(f(w))+

Flg([z, (W) f2 (0 (w) + g([z, f(W]or) f2(0(w)) = 0.
Now applying (2.20) and using the fact that f3(U) = 0, we have
9(f([z, f (W)]o,)) f*(0(u)) = 0, and hence o=} (g(f([z, f(w)]o,r))) f*(u) = O,
for all z € R,u € U. Since f2(U) C Z(R) and R is prime, we find that
for each u € U either f2(u) = 0 or o~ Y(g(f([z, f(u)]e,r))) = 0. Hence
again using Brauer’s trick we have either f2(u) = 0 for all w € U or
9(f([z, f(u))sr)) =0 forall u € U,z € R. If f2(u) = 0, for all u € U,
then again by Theorem 2.2 we get U C Z(R). On the other hand if
9(f([z, f(u)]o,r)) =0, then

(2.21) f([z, f(u)]o,r) =0, forallze Ruel.
Now, replace z by zo(f(u)) in (2.21) and use (2.21), to get
(2.22) [z, f(u)]oro(f2(u) =0, forallze RueU.

Again replacing = by zy in (2.22) and using (2.22), we find that
[z, 7(f(v))]yo(f3(u)) = O, for all z,y € R,u € U. Now primeness of R
implies that either o(f%(u)) = 0 or [z, 7(f(u))] = 0. If o(f%(u)) = 0, then
f2(u) = 0, for all u € U. Hence again by Theorem 2.2, we get the requried
result. On the other hand if [z, 7(f(u))] = 0, then [r~1(z), f(u)] = 0, for
all z € R,u € U. Thus [y, f(u)] = 0, for all y € R,u € U, implies that
f(U) € Z(R). Hence, by Theorem 2.3 we get the required result.
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