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Frantisek Katrnoska 

NOTE ON LOGICS OF IDEMPOTENTS 

Abstract. The main result of this paper is the characterization of certain logics 
of idempotents by Boolean semirings. Moreover some interesting examples are likewise 
added. 

1. Introduction 
Let R be a ring with identity 1. Denote by U(R) the set of all idempotents 

of the ring R. The following definition will play an important role in the 
sequel: 

DEFINITION 1. Let (L, < , 0 , 1 , ' ) be a poset with 0 and 1 as the least and 
the greatest element, respectively, and a unary operation ':L —• L (the 
orthocomplementation) such that: 

(i) p < q =• q' < p', p,qtL 

(ii) &/)' = ?, peL 
( i i i ) p v j f = l , pe L 
(iv) p < q' pV q exists in L, p, q G L 
(v) p < q =• q = p V (p' A q), p,q G L. 

Then L will be called a logic or also an orthomodular poset. If L is also a 
lattice, then L is called an orthomodular lattice. 

DEFINITION 2. Let L be a logic. A subset S of L is said to be a sublogic of 
L if the following conditions are satisfied: 

(i) If peS then p' G S. 
(ii) If p, q G S and p < q\ then p V q G S. 

Let L be a logic. We say that p, q G L are orthogonal (p ± q) if p < q'. 
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Let R be an associative ring with identity. In this paper we will further-
more suppose that the order in the set U(R) is defined always by setting 
(1) (p<q)^(pq = qp = p), p,qeU{R) 
and the orthocomplement by 
(2) p' = l - p , peU(R). 
It is well-known (see [2], [4], [5]) that the set U(R) is a logic with regard to 
conditions (1) and (2). In the next section we give a generalization of this 
result. 

Now we give some useful definitions and notions. An orthomodular lattice 
is a Boolean algebra if and only if it is distributive. 

DEFINITION 3. Let R be an associative ring with identity. A bijective map-
ping a:R—yR is said to be an automorphism of R if 

(i) a (a + b) = a(a) + ot(b), a, be R 
(ii) a(ab) = a(a)a(b), a,b € R 

(in) a ( l ) = 1. 
If p 6 U(R) then the element 1 — 2p is invertible and it can be shown that 
the mapping ap: R —• R defined by setting ap(x) = (1 — 2p) x (1 — 2p), x € R, 
is an automorphism of R. 

Let a be an automorphism of the ring R. We denote by a \ U(R) the 
restriction of a to U(R). 
PROPOSITION 1. Let R be an associative ring with identity. If a is a ring 
automorphism of R, then a \ U(R) is an automorphism of the logic (U(R), 
<,0,1, ') onto itself. 
P r o o f . The proof is clear. • 

Notice that many results which concern automorphisms of logics can be 
found in [12]. 

DEFINITION 4 ([8]). The algebra (S, + , •, 0 , 1 ) is said to be a semiring if the 
following conditions are satisfied: 

(i) The algebra (S, +, 0) is a commutative monoid with a neutral ele-
ment 0. 

(ii) The algebra (S, •, 1) is a monoid with a neutral element 1. 
(iii) If x, y, z 6 S then 

x(y + z) = xy + xz, (y + z)x = yx + zx. 
(iv) s • 0 = 0 • x = 0, x e S . 

DEFINITION 5. A semiring (S, +, •, 0,1) is said to be a Boolean semiring if 
all its elements are idempotents. 
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Concerning semirings see the book [8] and the papers [14], [15]. 
Let R be an associative commutative ring with identity. Let us now 

provide R with the following operations: 

(3) x © y = x + y - xy, x-y = xy, x,yeR. 
Then (U(R) , ffi, •, 0,1) is a commutative semiring. The Boolean algebra B = 
(expX, U ,n ,0 ,X) is a Boolean semiring. 

Let us introduce another example of a Boolean semiring. 

EXAMPLE 1. Let R be an associative ring with identity and suppose that 
p,q €U(R)\{0,1}, p / q and pq = qp. Then the set 
BV,Q = {O.P. 9> I - P. I - 9>P?> I - PQ,P - p q , q - p q A - p + pq, 

l - q + pq,p + q-pq,l-p-q + pq,p + q-2pq,l-p-q + 2pq, 1} 
is a Boolean semiring which is generated by two idempotents p,q G U(R), i.e. 
(JBPi9, ©, •, 0,1) is a Boolean semiring which is equipped with the operations 
ffi, • defined by (3). 

2. Characterization of logics of idempotents 
In this section we introduce first of all some conditions which guarantee 

that a subset S of a logic L is a sublogic of L. We introduce at the same 
time some examples and also certain consequences and conclusions which 
immediately follow. 
THEOREM 1. Let R be an associative ring with identity and let S be a subset 
ofU(R). The following condition is sufficient for S to be a sublogic ofU(R): 
(4) If p, q e S and if pq — qp then BPiq C S. 
P r o o f . The proof is given in [6] and [7]. Remark furthermore that condition 
(4) guarantees the existence of the elements p V q, p A q if p, q € Bp,q. In this 
case p\/q = p + q — pq and p A q = pq. m 

Suppose now that C is the commutative field of all complex numbers. 
Denote by M.II{C) the set of all (2,2)-matrices over C. The set .A/i22(C) is 
a noncommutative ring with identity. 

We introduce now some examples of logics. 

EXAMPLE 2. The idempotents of the ring A^22(C) are the following matri-
ces: 

'0 0' 
, E = 

1 0' a b '0 0' 
, E = 

1 0' 
, A = 0 0 , E = 0 1. ) c d 

where 
o, 6, c, d € C, Tr(A) = 1, det(A) = 0. 

It can be shown that U(M.22{C)) is a logic which is a lattice. 
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The following example has undeniable connections with the foundation 
of the set of all states of the spin of an electron and therefore it belongs to 
the branch of quantum theory. 
E X A M P L E 3. Let H2 be a two-dimensional Hilbert space over the complex 
numbers. The space H2 among others corresponds to the set of all states of 
the spin of one electron. Let S be the set of (2,2)-matrices of the following 
forms: 

M2 = 

0 = 

r l —i 
2 2 
l 1 

L 2 2 

E = 

M3 = 

'1 
0 

0 
0 

Mi = 
r 1 

2 
1 

L 2 

in 
2 

1 
2 J 

M ' i = E - M i , < = 1 ,2 ,3 . 

It can be shown that the set S satisfies condition (4) of Theorem 1. Therefore 
(S, <, O, E, ') is a sublogic of the logic U(A^22(C)) °f all (2,2)-matrices over 
the field C. This sublogic S is an orthomodular lattice. Furthermore it is 
possible to show that 
(5) 5 = ( J BMiM,. 

¿=1,2,3 

The sublogic S is generated by the idempotent matrices Mi, M2, M3. Notice 
that there exists a connection between the matrices Mi, i = 1 ,2 ,3 , and 
the Pauli matrices Si, i — 1 ,2 ,3 . (See [6], [7].) Remember that the logic 
S can be generated also by the (0,1)-pasting of Boolean subalgebras Bi — 
{Mi, M[, 0, E}, i = 1 ,2 ,3 (see [11] or a special case of Definition 7 below). 

It is important to give some conditions for a given sublogic S of U (R) to 
be a Boolean algebra. The following proposition gives a sufficient condition. 

PROPOSITION 2. Let R be an associative ring with identity and let S be a 
subset of U(R) satisfying condition (4) of Theorem 1 and, moreover, assume 
that 
(6) all elements of S are pairwise commutative. 

Then the sublogic (S, <,0,1, ') is a Boolean algebra. 

P r o o f . The proof is given in [7]. • 

Condition (6) of Proposition 2 is a solution of an open problem intro-
duced in [6], 

COROLLARY 1. Let R be an associative ring with identity and suppose that 
p,q e U(R)\{0,1}, p^ q, and pq = qp. Then the set BPiq (see Example 1) 
is a Boolean subalgebra of the logic U(R). 

Further examples of (Boolean) subalgebras of logics of idempotents can 
be found in [3], [4], [5]. Determination of certain Boolean subalgebras of 
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logics of idempotents may play an important role in the investigation of 
physical systems, because then it is possible to use the methods of clas-
sical physics for the solution of some problems which appear in physical 
systems. 

In the following example we show the structure of the set Bpq, p,q G 
U(R). 

E X A M P L E 4. Let be the set introduced in Example 1. According to 
the commutativity of the elements p, q it follows that all elements of Bp^q 
must be pairwise commutative. Therefore, by Proposition 2, the set Bp q 
is a Boolean subalgebra of the logic U(R). The Boolean subalgebra Bp<q is 
drawn in Figure 1. 

1 

0 

Fig. 1. 

Notice that the structure of every sublogic S of the logic U (R) can be 
completely described by its Boolean subalgebras BPig, p,q 6 S. 

REMARK. It is well-known (see [11]) that to each physical system S it is 
possible to associate a logic L of propositions so that to the elements of S 
correspond to the propositions which can be verified by experiments. The 
ordering of the logic L, resp. the orthocomplementation on L, correspond 
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to the implication, resp. to the negation, of the propositions. In accord with 
this interpretation to the lattice operations A, resp. V, correspond the logical 
operations of conjunction, resp. disjunction, of propositions. Then of course 
all elements of BPtq can be expressed with the help of A, V, and Therefore 
for example we have p + q — pq = p\/q, 1 — pq = p' V q', 1 — p + pq = 
p' V q, 1 — q + pq = p V q', p,q 6 U(R). This last result is completely in 
accord with results of the monograph [11]. 

As a conclusion of this section we introduce a characterization of a 
sublogic S of U(R). 

THEOREM 2. Let R be an associative ring with identity and let S be a sublogic 

of the logic U{R). Suppose furthermore that S satisfies condition (4) intro-

duced by Theorem 1. Then 

(7) S= \J Bp,q. 

Proo f . By condition (4) we have Bpq c S if p, q € S. Therefore [J BPtq 

C S. But then we have also the reverse inclusion, i.e., p^es 

s c U BP.9-
p,qes 

The equality (7) is also satisfied, so the proof is finished. • 

3. Concluding notices 
In this section we consider some results which concern the pasting. 

DEFINITION 6. Let L be a logic. A maximal Boolean subalgebra B of L is 

called a block of L. 

Now we introduce the general pasting technique from [10]. 

DEFINITION 7. Let £ be a family of logics such that all P,Q e C, P / Q, 

satisfy the following conditions: 

0) p < £ Q , 
(ii) P n Q is a sublogic of both P and Q and the partial orderings and 

the orthocomplementations of P and Q coincide on P fl Q. 

Endow the set L = [J M with the relation < l and the unary operation , L 

MeC 
defined as follows: 

a <Lb (a = b'L, resp.) iff a <m b (a = b'M, resp.) for some M € C 

The set L with <i, , L is called the pasting of the family C. 
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Historically, R. Greechie was the first who utilized the pasting technique 
for constructing "stateless logics". In the paper [13], V. Rogalewicz has 
shown that every orthomodular poset is a pasting of Boolean algebras. In 
this paper we introduce only one example using the pasting technique for 
the description of the structure of the system of n electrons which do not 
mutually interact. 

A pasting of n blocks B\, B2,..., Bn which intersect only in the elements 
0,1 will be called the (0, l)-pasting of i?i, £2, • • •, Bn and denoted by B\ © 
B2® • • • ©B n . For further information see [10] and [16]. Remember that the 
logic S from Example 3 has as blocks the sets B{ = {Mi, M[, 0, E}, i = 1,2,3, 
so that S can be obtained by pasting of its blocks i.e. S = B\ (&B2 ©-B3. 
If we investigate the system which consists of n electrons (without mutual 
interactions) then each electron el, i = 1,2, . . . , n , can be characterized 
by three proper Boolean subalgebras Bzi,B?,i+i,Bzi+2- The logic S which 
corresponds to the system of n electrons can be expressed by pasting of its 
blocks Bki k = 1 ,2 ,3 , . . . , 3n. The following figure shows the Hasse diagram 
of that logic S. 

1 

0 

Fig. 2. 

As introduced above (see Example 2), the logic U(M22(R)) is an ortho-
modular lattice if R is the field of all complex numbers. This proposition is 
also valid if R is either a commutative field or an integral domain with iden-
tity. In contrast to this, the logic U(A4nn(R)) with n > 3 is not a lattice. This 
fact follows immediately from [9], Prop. 1. Moreover notice that all blocks of 
the logic U(Mnn(R)) have only the following form: IB A = {0, E,A,E — ^4}, 
A e U(Mnn(R)). 
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