DEMONSTRATIO MATHEMATICA
Vol. XXXVII No 2 2004

Milan Matousek

BOOLEAN CARRIED HOMOMORPHISMS
IN ORTHOMODULAR LATTICES

Abstract. Let L, L; be orthomodular lattices. Let us say that a surjective homo-
morphism f : L — L; is Boolean carried if for any maximal Boolean subalgebra B; of
L; there is a maximal Boolean subalgebra B of L such that f(B) = Bj. In this note we
investigate the class Hpaqc of all L’s such that all surjective homomorphisms from L to
orthomodular lattices are Boolean carried. We prove as a main result that if L possesses
at most countably many infinite maximal Boolean subalgebras then L € Hpaqrs. We also
relate the class Hpaqc to the classes previously studied and provide some model-theoretic
properties of Hoaqc-

1. Preliminaries

We assume the basic notions of the theory of OMLs, universal algebra
and model theory to be known; the reader can find the necessary information
in e.g. [11], [6], [7]. For the convenience of the reader, let us briefly review
the basic notions of the theory of OMLs as we shall use them in the sequel.

DEFINITION 1.1. An orthomodular lattice (abbr., an OML) is an algebra L =
(X, A, V,*,0,1) of the type (2,2,1,0,0) such that L is an orthocomplemented
lattice satisfying the orthomodular law: If z < y, then y = z V (y A z1).
Let us denote by OMCL the class of all orthomodular lattices, and let us
denote by BA the class of all Boolean algebras.
A subset K of an OML L is called a subOML of L if K is a subalgebra
of L. If K is Boolean, then it is called a Boolean subalgebra.

DEFINITION 1.2. Let L be an OML. For z,y € L, let com(z,y) denote the
commutator of x,y, i.e. com(z,y) = (zVy)A(zVy ) Azt Vy) A(zt vyt).
(It should be noted that the notion of commutator is often defined in the
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dual way. For instance, in [1] this notion is defined in terms of lower and
upper commutator.)

Elements z,y of L are called commutative (abbr., zCy), if com(z,y)
= 0f. It is easily seen that z,y are commutative if and only if they are
contained in a Boolean subalgebra of L (see e.g. [11]). Let us put C(L) =
{a € L;aCb for any b € L} and call C(L) the centre of L. As known ([11]),
C(L) is a Boolean subalgebra of L.

PROPOSITION 1.3. Suppose that L € OML and ¢ € C(L). Then L 22 [0, c] X
[0, ct]. More explicitly, the mapping h : L — [0, ¢]x [0, ct] defined by putting
h(z) = (z Ac,x A ct) is an isomorphism of L onto [0, ¢] x [0, ct].

Proof is easy (see [11, p. 20]).

PROPOSITION 1.4. Suppose that L1,Lo, L € OML and f : L1 X Ly — L is
a surjective homomorphism. Put ¢y = f(11,,0L1,) , c2 = f(01,,11,). Then
c1,¢2 € C(L) and ¢; = ci. Moreover, if we define mappings f; : L; — L

(i = 1,2) by putting fi(z) = f(z,0), f2(y) = f(0,y), when = € L and
y € Lo, then f; (i = 1,2) become surjective homomorphisms from L; onto
[0, Ci] .
Proof. Let us sketch the proof of Prop. 1.4 for Ly. If z € L, then obviously
(z,0) < (1,0). Since f preserves the ordering, we have f(z,0) < f(1,0).
Thus, fi(z) < ¢; and therefore fi; maps L; into the interval [0, ¢4].

To show that f; is a morphism, take z,y € Li. Then we obtain

Nz Ay)=f(zAy,0) = f((z,0)A(y,0)) =
= f(z,0) A f(y,0) = fi(z) A fa(y);
fl(z—L) = f(:E'L,O) = f((:E—L’ 1) A (la 0)) = f(x.La 1) A f(17 0) =
= (f(2,0) At = (@) A = (faz)) e,
We see that fi preserves the operations A and + and therefore it has to be
a morphism in OML’s.

Finally, let us verify that fi is surjective. Suppose that d € [0,¢;] and
choose such element (z,y) that f(z,y) = d. Then fi(z) = f(z,0) =

£((2,9) A (1,0)) = f(z,9) A F(1,0) =d A ey = d.
DEFINITION 1.5. Let L € OML and let I C L. Let us call I an ideal in L if
the following conditions are satisfied:

(iJ)ael,b<a=bel,

(ii)a, beI=>avbel.

If I is an ideal and if there is an element a € L such that I = [0, a], where
[0,a] = {b € L;b < a}, then the ideal I is called principal. An important
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example of an ideal in L is the commutator ideal, I, where I, is the ideal
generated by all elements of the form com(a, b) (a,b € L).

DEFINITION 1.6. Let V be a nontrivial variety of OML’s and let X be a set.
Let us denote by F x (V) the free OML over the set X in the variety V. For

simplicity, let us agree to write Fx (resp. By) instead of Fx(OML) (resp.
Fx(BA)).

DEFINITION 1.7. Let V be a variety of algebras and let L € V. Let us say
that L is a projective algebra in V if the following statement holds:

K eVandif f: K — L is asurjective homomorphism, then there is a
homomorphism g : L — K such that go f = idy,, where (go f)(z) := f(g(z)).

PROPOSITION 1.8. Let V be a variety of algebras, and let F € V be a free
algebra in V. Then F' is a projective algebra in V.

PROPOSITION 1.9. Let X be an uncountable set, f : Fx — Bx be the
uniquely defined homomorphism with f(z) = = for any x € X. Then there
is no homomorphism g : Bx — Fx such that go f =idp, .

Proof. See the proof of the main theorem of the paper [5].

THEOREM 1.10 (Bruns, Roddy [4, 5]). Let B € BA. Then B is a projective
algebra in the variety OML if and only if B is at most countable.

Let us recall [7] that a subalgebra G of an algebra F' in a language £ is
said to be an elementary subalgebra, G <X F, if for any formula ¢(z1,...,z,)
of £ and any ay,...,a, € G, ay,...,a, satisfies ¢ in G if and only if it
satisfies ¢ in F'. The following two facts are easy to prove.

THEOREM 1.11. Let V' be a variety of algebras, and let F € V be a free
algebra in V over an infinite set X. Let Y C X be an infinite subset and G
be the subalgebra of F' generated by the set Y. Then G X F.

COROLLARY 1.12. Let V' be a variety of algebras, and let Fx, Fy € V be free
algebras in 'V over infinite sets X, Y. Then Fx = Fy (i.e. the algebras Fx
and Fy are elementarily equivalent).

2. Blocks in OMLs

DEFINITION 2.1. Let L be an OML. A maximal Boolean subalgebra of L
is called a block in L. The collection of all blocks in L will be denoted by
BI(L).

The following two propositions can be found in e.g. {11, p. 38, 39].
PROPOSITION 2.2. Suppose that L € OML, X C L and the elements of the

set X are pairwise commutative. Then there exists a block B of L such that
X CB.
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PROPOSITION 2.3. If B is a block of the orthomodular lattice L then the
atoms of B are atoms of L.

PROPOSITION 2.4. (i) Suppose that L,L; € OML and suppose that Ly is a
subOML of L. Suppose further that By C Li. Then B € BI(L,) if and only
if By = LiN B for a block B € BI(L).

(ii) Suppose that L; € OML (i € I). Put L = X;¢rL;, where X;erL;
is the Cartesian product of L; (i € I) (endowed with the operations coordi-
natewise). Then B € BI(L) if and only if B = X;c1B;, where every B; is a
block in the corresponding L;.

Proof is easy (see e.g. [3, 12]).

THEOREM 2.5. Let V' be a nontrivial variety of OML’s and let X be an
infinite set. Then the algebra Fx (V') is atomless.

Proof. Write F = Fx (V). Let a be an arbitrary element of F' different
from Op. Then ‘there exists a term ¢ and elements z;,...,z, € X such
that @ = tp(z1,...,2Zn). Let us choose y € X different from all zy,...,z,.
Such a choice is possible since X is infinite. We are going to show that
Or <aAy<a. Clearly, O <aAy < a. Let f: F — F be the uniquely
defined homomorphism such that f(y) = 1r and f(z) = z for any element
z€ X,z #y. Then f(aAy) = £(a) A f(y) = tr(f(@1), ., f(@a)) A Lp =
tr(z1,...,2n) = a. Thus, f(aAy) # O = f(OF). It follows that O # aAy.
On the other hand, let g : F — F' be the uniquely defined homomorphism
such that g(y) = O and f(z) = z for any element z € X, z # y. Then
g(a Ay)=g(a) A g(y) =0F, g(a) =tr(g(z1), .., 9(zn)) =tr(z1,...,2s) =a.
Thus, g(a Ay) # g(a). It follows that a A y # a and the proof is complete.

COROLLARY 2.6. Let V' be a nontrivial variety of OML’s and let X be an
infinite set. Then every block of Fx (V) is infinite.

Proof. Suppose that B is a finite block of Fx (V). Then B posesses an
atom, a. According to Prop. 2.3, the element a is an atom in L. This is a
contradiction with Theorem 2.5.

THEOREM 2.7. Let V be a variety of OML’s such that BA is a proper sub-
class of V. Let X be an infinite set. Then the free algebra F x (V') posesses
uncountably many blocks.

Proof. Write FF = Fx(V). Consider a countable infinite subset
Y = {z1,z9,...} € X. Let M = {mq, my,...} be an infinite subset of the set
N of natural numbers, m; < ma < ....Letusset ty = Ty, VZrmy V... VI,
(where the operation V is taken in F), k = 1,2,.... Then we have t; < t3 <
... in the algebra F'. Thus, all the elements t1, s, ... of the algebra F' are
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pairwise commutative and therefore (see Prop. 2.2) there exists a block By
in F such that {t1,t2,...} C By.

Let now P,@ C N be an infinite increasing subsets, P # Q. We shall
prove that Bp # Bg. Let us suppose P = {p1,p2,...}, @ = {q1,92,...}.
Because P # @, there is k > 1 such that p; = ¢i, ..., Pk—1 = Qk—1, Pk F# k-
Let us show that the elements ¢t = 25, V2, V...V 1z, _, VI, and s =
ZTp, VTp,V...VIp Vx4 donot commute.

Since BA is a proper subclass of V, there is an algebra L € V such that
L ¢ BA. As L is not Boolean, there exist elements a,b € L which do not
commute. Let f : F' — L be the uniquely determined homomorphism such
that f(zp,) = a, f(zq,) = b and f(z) = 0p, for any z € X \ {zp,, 2. }.
Then we have f(t) = f(zp,) = a, f(s) = f(zq,) = b. The elements f(t) and
f(s) are not commutative in L and therefore the elements ¢ and s cannot
be commutative in F'.

Since the elements ¢ and s do not commute, we see that t ¢ Bg, thus
Bp # Bg. Obviously, the set of all increasing sequences is uncountable and
this completes the proof.

3. Preservation of blocks

The result from Thm. 3.2 has already been proved in [4]. Since its proof
is short, we provide it here for the convenience of the reader. We first need
the following auxiliary result. As before, zCy stands for z commutes with y.

LeEMMA 3.1. Suppose that aj,...,an, € L and choose indices i,1s,.. .,
withl <41 <...<i <n. Thenai! A...Aai* C afll /\.../\af}’:, where
€1, 1Enr €1, ..., &k € {0,1} and a® = a, a® = at for any element a € L.

Proof. Put a = aj' A... Aag* . Choose an index ¢; . Then a < a:-:;j and
therefore aCaZj . Thus, aCa;;, and this means that aCa,-ij‘. Since j was
arbitrary, we infer that a,C'afl1 Y ey aCaf: and this implies that aC’a';cl1 A
A af: .

THEOREM 3.2. Let L € OML , B € BA and f : L — B be a surjective

morphism. Let B be at most countable. Then there is a block By € BI(L)
such that f(B;) = B.

Proof. Write B = {b1,bs,...}. Choose elements aj,ag,... € L such that
f(a,-) =b; (’L =1,2,.. ) Put

c1 = aa,

co = (a1 A ag) V (at A ag),
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Citl = \/ (@' A...A@i Aaiy1), 1 =1,2,..., where (e1,...,&) =¢.

e€{0,1}¢
Making use of Lemma 3.1, we see that c;1;Cc; for any ¢,j with 1 < j <.
It follows that elements cy, co, ... are mutually commutative. Moreover, we
see that

f(e1) = f(a1) = by,
fleiv1) = f( V (@A A /\ai+1)> =

e€{0,1}*
= V(@) A A(F(@) A flainn)] =
e€{0,1}*
= bi+1 A ( \/ (bil AN bf’)) = bi+1 Alpg = b,‘+1.
e€{0,1}*

If By is a block in L that contains all of the elements ¢j, ¢cg, ... , then f(B;) =
B. The proof is complete.

PROPOSITION 3.3. Let L € OMUL and let L possess a finite block. If f : L —
B (B € BA) is a surjective homomorphism, then B is finite.

Proof. Let B; be a finite block of L and let b,...,b, be all atoms of
Bj. Then by, ...,b, are atoms in L (see Prop. 2.3). Obviously, the element
f(bi) = a; is either Og or an atom of B. Since 11, = b; V...V b,, we also
have f(1r) = f(b1) V...V f(bn). Thus, 1 = a1 V ...V a,, where any
element q; is either Op or an atom of B. Then for any element b € B we
have b= (bAa1) V...V (bAa,), where any element bA a; is either Op or a;.
Thus, B has at most 2" elements and is therefore finite.

Let us introduce some more notions which we shall use in the sequel.

Definition and notation 3.4. Put

Home = {L € OML ; for any OML L; and any surjective homomor-
phism f: L — Ly, if By € BIl(L1) is a block in L1, then there exists a block
B € BI(L) in L such that f(B) = By},

Hpa = {L € OML ; for any BA B; and any surjective homomorphism
f : L — By there exists a block B € Bl(L) such that f(B) = Bi}.

We shall now study the size of Hoare and Hpa.

COROLLARY 3.5. If L € OML and if L possesses a finite block, then
L e Hpa.

Proof. It follows from Prop. 3.3 and Thm. 3.2.

THEOREM 3.6. Both of the following inclusions are proper: Home C Hpa C
OML .
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Proof. The following proof of the inclusion Hp4 C OML being proper was
communicated to us by J.Harding [10]. Let X be an uncountable set, Fx
and Bx be the free algebras from Definition 1.6. Let f : Fx — Bx be a
morphism such that f|X = idx. Suppose that there exists B; € Bl(Fx)
such that f(B;) = Bx. Write f; = f|B;. Then f; : By — By is a surjective
homomorphism. Because By is a free Boolean algebra, Bx is a projective
algebra in the variety B.A. Thus, there exists a homomorphism g : Bx —
Bj such that g o f1 = idg,. Then g is a homomorphism Bx — Fx and
go f = idg,. This is a contradiction with Prop. 1.9. We see that there is
no such block B;. As a consequence, Fx € Hpa.

Let By be a four-element BA. Let L be the horizontal sum (see [11,
p. 306]) of the algebras Bz and Fx. Let L; be the horizontal sum of the
algebras By and Bx. According to Corollary 3.5, L € Hp4. Let ¢ : L — L3
be such a homomorphism that ¢|By = idp,, ¢|Fx = f (f defined above).
By the previous part of this proof, there is no block in L which can be
mapped onto Bx by ¢. Thus, L € Hoac. The proof is complete.

THEOREM 3.7. The classes Hoae and Hpa are closed under the formation
of homomorphic images and finite products.

Proof. The first statement is obvious. To prove the second, let us assume
that Ly, Ly € Homc - Suppose that f : Ly X Ly — L is a surjective homo-
morphism and suppose further that B € BI(L). Adopt the notation of Prop.
1.4 and assume that h : L — [0, ¢;] % [0, ¢g] is the isomorphism defined in
Prop. 1.3 (for ¢; = ¢, ca = c*). Then h(B) € BI([0, c;]x [0, c3]) and therefore
there are blocks B; € BI([0, ¢;]) (i = 1,2) such that h(B) = B; x By (Prop.
2.4). Since f; is a homomorphism from L; onto (0, ¢;] and L; € Hoa,, there
is a block B] € BI(L;) such that f;(B!) = B; (i = 1,2). Since B} x Bj €
Bl(L; x Lg), it suffices to prove f(Bj x B3) = B. Since h is an isomorphism,
this means that we have to verify the equality h(f(B] x Bj)) = h(B). Now

h(B) = B1 X Bz,
h(f(B1 x B3)) = {h(f(z,y));z € B,y € By}
= {h(fi(z) V f2(y);x € By, y € By}
= {(fi(z), f2(y)); = € By,y € B3}
= f1(B}) X f2(B3) = B1 x By =
= h(B).

This completes the proof for Hor. The closedness of Hp 4 under the for-
mation of finite products can be proved analogously.

The following proposition will be applied in Thm. 3.9.
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ProrosiTION 3.8. If L € OML aﬁd if the commutator ideal 1., is principal,
then L € Hpu.

Proof. Suppose that I, = [0,a]. Then a € C(L) (see e.g. [11]) and therefore
L = [0, a] x [0, a*]. Moreover, [0,a'] = L/[0,a] = L/I. € BA. We shall now
show that [0, a] does not admit a Boolean quotient. To this end, assume
that f1 : [0,a] — B is surjective. Put By = [0,a'] and fo = id[g,q1)- Define
a morphism f : L — B; X By by setting

f(@) = (filz Aa), fa(z Aab)).

Then we obtain f(a) = (fi(a),0p,). As By x B; is a Boolean algebra, a € I,
it follows that f(a) = 0p,xB,. Thus, fi(a) = 0p, and B; has to be trivial,
which completes the proof.

Let us now recall two classes of OMLs which appeared naturally in the
course of developing the theory of OMLs. Let L be an OML. Let us say
that L is commutator-finite if the set Com(L) = {com(z,y);z,y € L} is
finite, and let us say that L satisfies the relative centre propertyif C([0, a]) =
{aAc;ce C(L)} for any a € L.

THEOREM 3.9. (i) If L is commutator finite, then L € Hp4.

(i1) If L is complete and satisfies the relative centre property, then L €
Hpa. A consequence: The lattice of all projections in a von Neumann algebra
belongs to Hpa.

Proof. If L satisfies either (i) or (ii), then it satisfies the assumption of
Prop. 3.8 (see [2] and [8]).
THEOREM 3.10. The class Hp4 is not closed under the formation of subal-

gebras.

Proof. Let Fx and L denote the same OML’s as in the proof of Thm 3.6.
Then Fx is a subalgebra of L, L € Hp4, but Fx & Hp4.

PROPOSITION 3.11. Let L € OML and let K € Hpa for any subalgebra K
of L. Then L € Homc-

Proof. Let f: L — L; be a surjective homomorphism, L; € OML and let
B; be a block in L;. Let us write K = f~1(B;). Then K is a subalgebra
of L and therefore K € Hp4. It follows that there is a block, B, in K such
that f(B) = B;. If we extend B to a block, B, of L, we see that f(B) = B.

THEOREM 3.12. Let L € OML and let card(L) < Rg. Then L € Homc-

Proof. Let us first show that L € Hp4. Suppose that f : L — B is a
surjective morphism. Then card(B) < Rg, and we can use Thm. 3.2.
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To complete the proof, let K be a subalgebra of L. Then we also have
card(K) < Ng. From the previous part of this proof it follows that K € Hp 4.
According to Prop. 3.11 we see that L € Hopmc.

Prior to the formulation of our main result, let us agree to denote by
Bl (L) the set of all infinite blocks of L.

THEOREM 3.13. Let L € OML and let card(Bleo(L)) < Ro. Then L €
Homc.

Proof. Let us first show that L € Hp4. Suppose that f : L — B is a
surjective morphism. If card(B) < R, then we can use Thm. 3.2. Suppose
therefore that card(B) > Rg. Let By, By, ... be all infinite blocks in L and
let us assume that f(B;) # B for any i € N. Then there are elements
by, b, ... € B such that b; € B\ f(B;). Without any loss of generality, we
may assume that the set {b;;7 € N} is infinite (otherwise we can extend it to
a countable subset of B). Consider now the Boolean algebra, B, generated
by {bi;i € N} in B. Put K = f~1(B) and set g = f|K. According to Thm.
3.2, there is a block B* € BI(K) such that g(B*) = B. Since B is infinite,
B* has to be infinite, too. It follows that there is an ¢ (i € N) such that
B* C B;. Then f(B;) 2 f(B*) = B. But b; ¢ f(B;) which is a contradiction.
Thus, L € Hp4.

To complete the proof, let K be a subalgebra of L. Then we also have
(see Prop. 2.4) card(Blw(K)) < Ro. From the previous part of this proof it
follows that K € Hp 4. According to Prop. 3.11 we see that L € Hoaqe and
the proof is complete.

In order to express our next result in a lucid form, let us further refine
the classes investigated so far.

DEFINITION 3.14. Let us write

OMLy, = {L € OML ; card(BI(L)) < No} (an L € OMLg, is some-
times called block-finite, see [11]);

OMLy, = {L € OML ; card(BI(L)) < Ro};

OMLp = {L € OML ; card(Bloo(L)) < Ro}-

THEOREM 3.15. All of the following inclusions are proper:
BAC OMLy C OML, COML, C Home-

Proof. For the inclusions BA C OMLg C OMLy, C OML it is
obvious. According to Thm. 3.13, there is OMLp, € Homc. Now, let X
be a countable infinite set. Then the free OML Fx over the set X is also
countable and therefore (Thm. 3.12) Fx € Hoaqc- Finally, from Thm. 2.7
and Corollary 2.6 it follows that Fx € OML_p,. This completes the proof.
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PROPOSITION 3.16. The classes OMLg,, OML, and OML .y, are closed
under the formation of homomorphic images.

Proof. Suppose that L is block-finite and f : L — L; is surjective. Then
L € Homc and therefore any block By € BI(L1) is a homomorphic image
of certain block of L. It follows that L; has at most finitely many blocks.
For L € OML, or L € OML_p, the proof is analogous.

In the paper [2] the authors denoted by WBEP the class of the OMLs
determined by the following properties:

L € WBERP if and only if every subOML of L generated by the union
of finitely many blocks is block-finite.

We can now contribute to the investigation carried in [2] by proving the
following result:

PropPOSITION 3.17. The class W BEPNHomc is closed under the formation
of homomorphic images.

Proof. Suppose that L € WBEP N Hoae and consider a surjective ho-
momorphism f : L — L;. According to Thm. 3.7, L1 € Homc-

Let us assume that Bj,..., B, are blocks of L;. Then there are blocks

., Bl € BI(L) such that f(B])=B; (i=1,. ) Suppose that S’ is

the (block finite) subOML of L generated by the set U Bi. Put S = f(5).
Then S is a block-ﬁmte subOML in L (see Prop. 3. 16) generated by the set
7(Gm)=Gn

Recall for our final result that a class K of algebras for a language L is
called aziomatizable if there exists a theory T in £ such that K is exactly
the class of all models of T'.

THEOREM 3.18. The classes Hoame and Hp4 are not axriomatizable.

Proof. Every axiomatizable class is closed under elementary equivalence.
Let us choose two infinite sets, say X,Y, where X is countable and Y is
uncountable. From Corollary 1.12 we infer that Fx = Fy. The algebra Fx
is countable and therefore Fx € Hoac according to Thm. 3.12. On the
other hand, Fy & Hp4 according to the proof of the Theorem 3.6.

Let us finally formulate two open questions related to our investigation.

(1) Let us introduce a new class, X, of BAs by setting

X = {B € BA ; for any orthomodular lattice L and for any surjective
f : L — B there exists a block By € Bl(L) such that f(B1) = B}.
Observe that each at most countable BA does belong to X (Thm. 3.2). Is
there an uncountable BA which belongs to X' ?
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(2) Is there a variety of OMLs, some V, such that BACV C Hgy ?
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