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BOOLEAN CARRIED HOMOMORPHISMS 
IN ORTHOMODULAR LATTICES 

Abstract. Let L, L\ be orthomodular lattices. Let us say that a surjective homo-
morphism / : L —• L\ is Boolean carried if for any maximal Boolean subalgebra Bi of 
Li there is a maximal Boolean subalgebra B of L such that f(B) = Bi. In this note we 
investigate the class "HOMC of all L's such that all surjective homomorphisms from L to 
orthomodular lattices are Boolean carried. We prove as a main result that if L possesses 
at most countably many infinite maximal Boolean subalgebras then L £ 'HoML- We also 
relate the class "HoMC to the classes previously studied and provide some model-theoretic 
properties of HOMC-

1. Preliminaries 
We assume the basic notions of the theory of OMLs, universal algebra 

and model theory to be known; the reader can find the necessary information 
in e.g. [11], [6], [7]. For the convenience of the reader, let us briefly review 
the basic notions of the theory of OMLs as we shall use them in the sequel. 

DEFINITION 1.1. An orthomodular lattice (abbr., an OML) is an algebra L = 
(X, A, V,-1-, 0,1) of the type (2,2,1,0,0) such that L is an orthocomplemented 
lattice satisfying the orthomodular law: If x < y, then y = x V (y A or1). 

Let us denote by OMC the class of all orthomodular lattices, and let us 
denote by BA the class of all Boolean algebras. 

A subset K of an OML L is called a subOML of L if K is a subalgebra 
of L. If K is Boolean, then it is called a Boolean subalgebra. 

DEFINITION 1.2. Let L be an OML. For x,y € L, let com(x,y) denote the 
commutator of x, y, i.e. com(x,y) — (xVy) A ( iVi/ 1 ) A (x1Vy) A ( i 1 Vt / 1 ) . 
(It should be noted that the notion of commutator is often defined in the 
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dual way. For instance, in [1] this notion is defined in terms of lower and 
upper commutator.) 

Elements x,y of L are called commutative (abbr., xCy), if com(x,y) 
= 0 I t is easily seen that x,y are commutative if and only if they are 
contained in a Boolean subalgebra of L (see e.g. [11]). Let us put C(L) = 
{a G L; aCb for any b e L} and call C(L) the centre of L. As known ([11]), 
C(L) is a Boolean subalgebra of L. 

PROPOSITION 1.3. Suppose that L G OMC and c G C(L). Then L = [0, c] x 
[0, c1-]. More explicitly, the mapping h : L —> [0, c] x [0, c-1-] defined by putting 
h(x) = (x A c, x A cr1-) is an isomorphism of L onto [0, c] x [0, cr1]. 

P r o o f is easy (see [11, p. 20]). 

PROPOSITION 1.4. Suppose that Lx,L2,L G OMC and f : L\ x L 2 L is 
a surjective homomorphism. Put c\ = / ( 1 l i > 0 l 2 ) > c 2 = / ( 0 l h 1 l 2 ) - Then 
ci,C2 6 C(L) and = . Moreover, if we define mappings fi : Li —> L 
(i - 1 , 2 ) by putting fi(x) = f(x, 0 ) , f2(y) = / ( 0 , Y ) , when x G L\ and 
y 6 L2, then fi (i = 1,2) become surjective homomorphisms from Li onto 
[0 ,a\. 

P r o o f . Let us sketch the proof of Prop. 1.4 for L\. If x e L\, then obviously 
(x, 0) < (1,0). Since / preserves the ordering, we have f(x, 0) < / (1 ,0 ) . 
Thus, fi{x) < ci and therefore f\ maps L\ into the interval [0, ci]. 

To show that f\ is a morphism, take x, y 6 L\. Then we obtain 

fi{x Ay) = f(x A y, 0) = f((x, 0) A (y, 0)) = 
= f(x,0)Af(y,0) = h(x)Af2(yy, 

Mx1) = fix1-, 0) = / ( ( x \ 1) A (1, 0)) = f(x±
t 1) A / (1 , 0) = 

= ( f ( x , 0))^ A C1 = ihix))1 A ci = ihix))1^. 
We see that fx preserves the operations A and -1 and therefore it has to be 
a morphism in OML's. 

Finally, let us verify that fx is surjective. Suppose that d € [0, ci] and 
choose such element (x, y) that f(x, y) = d. Then fi(x) = fix, 0) = 
fHx, y) A (1,0)) = fix, y) A f i 1,0) = d A Cx = d. 

DEFINITION 1.5. Let L e OMC and let I C L. Let us call I an ideal in L if 
the following conditions are satisfied: 

(i) a e I, b < a b G I, 
(ii) a, b € I => aV b € I. 

If I is an ideal and if there is an element a G L such that I = [0, a], where 
[0, a] = {b G L\ b < a}, then the ideal I is called principal. An important 
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example of an ideal in L is the commutator ideal, Ic, where Ic is the ideal 
generated by all elements of the form com(a, b) (a, b G L). 

D E F I N I T I O N 1 . 6 . Let V be a nontrivial variety of OML's and let X be a set. 
Let us denote by F x ( ^ ) the free OML over the set X in the variety V. For 
simplicity, let us agree to write F x (resp. B x ) instead of F x ( O M C ) (resp. 

D E F I N I T I O N 1 . 7 . Let V be a variety of algebras and let L G V. Let us say 
that L is a projective algebra in V if the following statement holds: 

If K G V and if / : K —> L is a surjective homomorphism, then there is a 
homomorphism g : L —> K such that gof = idi, where (gof)(x) := f(g(x)). 

P R O P O S I T I O N 1 . 8 . Let V be a variety of algebras, and let F G V be a free 
algebra in V. Then F is a projective algebra in V. 

P R O P O S I T I O N 1 . 9 . Let X be an uncountable set, f : Fx —> Bx be the 
uniquely defined homomorphism with /(x) = x for any x € X. Then there 
is no homomorphism g : B x —> F x such that g o / = id-Qx. 

Proof . See the proof of the main theorem of the paper [5]. 

T H E O R E M 1.10 (Bruns, Roddy [4, 5]). Let B e BA. Then B is a projective 
algebra in the variety OM.C if and only if B is at most countable. 

Let us recall [7] that a subalgebra G of an algebra F in a language C is 
said to be an elementary subalgebra, G •< F, if for any formula <p(x\,..., xn) 
of C and any a i , . . . , an G G, a i , . . . , an satisfies ip in G if and only if it 
satisfies ip in F. The following two facts are easy to prove. 

T H E O R E M 1 . 1 1 . Let V be a variety of algebras, and let F G V be a free 
algebra in V over an infinite set X. Let Y C X be an infinite subset and G 
be the subalgebra of F generated by the set Y. Then G <F. 

C O R O L L A R Y 1 . 1 2 . Let V be a variety of algebras, and let Fx, Fy E.V be free 
algebras in V over infinite sets X,Y. Then Fx = Fy [i.e. the algebras Fx 
and Fy are elementarily equivalent). 

2. Blocks in OMLs 

D E F I N I T I O N 2.1. Let L be an OML. A maximal Boolean subalgebra of L 
is called a block in L. The collection of all blocks in L will be denoted by 
Bl(L). 

The following two propositions can be found in e.g. [11, p. 38, 39]. 

P R O P O S I T I O N 2 . 2 . Suppose that L G OM£, X C L and the elements of the 
set X are pairwise commutative. Then there exists a block B of L such that 
XCB. 
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PROPOSITION 2.3. If B is a block of the orthomodular lattice L then the 
atoms of B are atoms of L. 

PROPOSITION 2.4. (i) Suppose that L, L\ € OMC and suppose that L\ is a 
subOML of L. Suppose further that B\ C L\. Then Bi E Bl(L\) if and only 
if Bi = Li n B for a block B € Bl(L). 

(ii) Suppose that Li € OMC (i € I). Put L = Xj e /Li, where X^Li 
is the Cartesian product of Li (i G I) (endowed with the operations coordi-
natewise). Then B € Bl(L) if and only if B = ~X.i&jBi, where every Bi is a 
block in the corresponding Li. 

P r o o f is easy (see e.g. [3, 12]). 

THEOREM 2.5. Let V be a nontrivial variety of OML's and let X be an 
infinite set. Then the algebra Fx(^) is atomless. 

Proo f . Write F = Fx(V)- Let a be an arbitrary element of F different 
from Op. Then there exists a term t and elements x\,...,xn € X such 
that a = tF(xi,..., xn). Let us choose y € X different from all x\,..., xn. 
Such a choice is possible since X is infinite. We are going to show that 
Of < a A y < a. Clearly, OP < a A y < a. Let / : F —* F be the uniquely 
defined homomorphism such that /(y) = 1 p and f(x) = x for any element 
x e X , x ^ y . Then / ( a Ay) = / (a) A f{y) = tF{f{x i ) , . . . , f{xn)) A 1F = 
tp(x I , . . . ,XN) = a. Thus, / ( a Ay) ^ 0 F = /(OF). It follows that 0^ ^ a Ay. 
On the other hand, let g : F —• F be the uniquely defined homomorphism 
such that g(y) = Op and f(x) = x for any element x € X, x ^ y. Then 
g(a A y)—g(a) A g(y) = Op, g(a)=tF(g{x i ) , . . . , g(xn)) =tF(x i, ...,xn) = a. 
Thus, g(a Ay) ^ g(a). It follows that a Ay ^ a and the proof is complete. 

COROLLARY 2.6. Let V be a nontrivial variety of OML's and let X be an 
infinite set. Then every block of Fx{V) is infinite. 

Proo f . Suppose that B is a finite block of Fx(^ ) - Then B posesses an 
atom, a. According to Prop. 2.3, the element a is an atom in L. This is a 
contradiction with Theorem 2.5. 

THEOREM 2.7. Let V be a variety of OML's such that BA is a proper sub-
class ofV. Let X be an infinite set. Then the free algebra Fx(^) posesses 
uncountably many blocks. 

Proo f . Write F — Fx (^ ) - Consider a countable infinite subset 
Y = {®i, X2, . . . } C X . Let M = {mi, 7712,...} be an infinite subset of the set 
N of natural numbers, m\ <m% < Let us set t^ = xmi V xm2 V . . . V xmk 
(where the operation V is taken in F), k = 1,2, Then we have t\ < ¿2 < 
. . . in the algebra F. Thus, all the elements ti, ¿2, • • • of the algebra F are 
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pairwise commutative and therefore (see Prop. 2.2) there exists a block BM 
in F such that {£1, £2, • • •} C BM-

Let now P, Q C N be an infinite increasing subsets, P ^ Q. We shall 
prove that Bp ^ BQ. Let us suppose P = {pi,p2, •••}, Q = {9i><72) • • •}• 
Because P ^ Q, there is k > 1 such that p\ = QI, ..., PK-I = qk-1> PK I1 QK-
Let us show that the elements t = xpi V xP2 V . . . V xPkl V xPk and s — 
xpi V xP2 V . . . V xPk_1 V xqk do not commute. 

Since BA is a proper subclass of V, there is an algebra L € V such that 
L $ BA. As L is not Boolean, there exist elements a, b € L which do not 
commute. Let / : F —> L be the uniquely determined homomorphism such 
that f(xPk) = a, f(xqk) = b and f(x) = 0 L for any x € X \ {xPk,xqk}. 
Then we have f(t) = f(xPk) = a, f(s) = f(xqk) = b. The elements f(t) and 
f(s) are not commutative in L and therefore the elements t and s cannot 
be commutative in F. 

Since the elements t and s do not commute, we see that t £ BQ, thus 
Bp ^ BQ. Obviously, the set of all increasing sequences is uncountable and 
this completes the proof. 

3. Preservation of blocks 
The result from Thm. 3.2 has already been proved in [4]. Since its proof 

is short, we provide it here for the convenience of the reader. We first need 
the following auxiliary result. As before, xCy stands for x commutes with y. 

L E M M A 3 . 1 . Suppose that a\,...,an € L and choose indices ¿1 ,¿2 , • • • ,ik 
with 1 < ¿1 < ... < ifc < n. Then ap A . . . A a®n C a^1 A . . . A af*, where 
£1, . . . , en, £1, . . . , € {0,1} and a0 = a, a1 = a-1- for any element a € L. 

Proo f . Put a = a^1 A . . . A . Choose an index ij . Then a < a^3 and 
Ej . - 3 

therefore aCa^3. Thus, aCa^., and this means that aCalj^. Since j was 
arbitrary, we infer that aCa^ , ..., aCaand this implies that aCa^ A 
. . . A o g . 
T H E O R E M 3 . 2 . Let L e OMC , B € BA and f : L B be a surjective 
morphism. Let B be at most countable. Then there is a block B\ 6 Bl(L) 
such that f(B\) = B. 
Proo f . Write B = {£>1, b2,...}. Choose elements ai, 02,.. . 6 I such that 
f(ai) = bi (» = 1,2,. . .) . Put 

ci = ai, 
C2 = (ai A 02) V (af A 02), 
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Ci+1 = \ J (a®1 A . . . A a f A aj+i), ¿ = 1 , 2 , . . . , where (ei, . . .,£;) = e. 
ee{o,i y 

Making use of Lemma 3.1, we see that Cj+iCcj for any i,j with 1 < j < i. 
It follows that elements c\, C2,... are mutually commutative. Moreover, we 
see that 

f(c i) = / ( Q l ) = &i, 

f(ci+l) = f ( \ / ("i1 A • • • A a? A Oi+i)) = 
ve6{0,l>i J 

= V [ ( / ( o i ) ) e i A . . . A ( / ( o i ) ) e ' A / ( a i + 1 ) ] = 
£e{o,i}< 

= 6 i + i A ( \ / (&11 A . . . A 6?')) = f c i + i A l B = 6 i + i . 

If Bi is a block in L that contains all of the elements ci, C2,... , then f(B\) — 
B. The proof is complete. 

P R O P O S I T I O N 3 . 3 . Let L E OMC and let L possess a finite block. If f : L —> 
B (B 6 BA) is a surjective homomorphism, then B is finite. 
P r o o f . Let B\ be a finite block of L and let b\,..., bn be all atoms of 
B\. Then b\,... ,bn are atoms in L (see Prop. 2.3). Obviously, the element 
f(bi) = ai is either Ob or an atom of B. Since = 6i V . . . V bn, we also 
have / ( 1 L ) = f(bi) V . . . V f(bn). Thus, 1B = oi V . . . V an, where any 
element a» is either Og or an atom of B. Then for any element b 6 B we 
have b = (b A a\) V . . . V (b A an), where any element b A aj is either Og or a,. 
Thus, B has at most 2" elements and is therefore finite. 

Let us introduce some more notions which we shall use in the sequel. 

Definition and notation 3.4. Put 
HOMC = {L E OMC ; for any OML L\ and any surjective homomor-

phism / : L —> L\, if jBi G Bl(Li) is a block in L\, then there exists a block 
B € Bl(L) in L such that f(B)=Bi}, 

HBA — {L € OMC ; for any BA B\ and any surjective homomorphism 
/ : L Bi there exists a block B e Bl(L) such that f(B) = 

We shall now study the size of HOMC and HBA-

C O R O L L A R Y 3 . 5 . If L E OMC and if L possesses a finite block, then 
L € HBA-

P r o o f . It follows from Prop. 3.3 and Thm. 3.2. 

T H E O R E M 3 . 6 . Both of the following inclusions are proper: HOMC C HBA C 

OMC . 
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Proo f . The following proof of the inclusion HBA C OMC being proper was 
communicated to us by J.Harding [10]. Let X be an uncountable set, F x 
and B x be the free algebras from Definition 1.6. Let / : F x —> B x be a 
morphism such that f\X = idx• Suppose that there exists B\ 6 Bl(Fx) 
such that f(Bi) = Bx- Write / i = f\B\. Then / i : Bi —• B x is a surjective 
homomorphism. Because B x is a free Boolean algebra, B x is a projective 
algebra in the variety BA. Thus, there exists a homomorphism g : B x —> 
B\ such that g ° f i = idj$x. Then g is a homomorphism B x —> F x and 
g o / = id-Qx. This is a contradiction with Prop. 1.9. We see that there is 
no such block B\. As a consequence, F x ^ HBA-

Let B2 be a four-element BA. Let L be the horizontal sum (see [11, 
p. 306]) of the algebras B2 and Fx- Let L\ be the horizontal sum of the 
algebras B2 and Bx- According to Corollary 3.5, L € HBA• Let ¡p : L —> L\ 
be such a homomorphism that <p\B2 = ids2, ¥>|Fx = / ( / defined above). 
By the previous part of this proof, there is no block in L which can be 
mapped onto B x by ip. Thus, L HOMC• The proof is complete. 

THEOREM 3 . 7 . The classes TioMC and H.BA A R E closed under the formation 
of homomorphic images and finite products. 

Proo f . The first statement is obvious. To prove the second, let us assume 
that Li, L2 € HQMC • Suppose that / : L\ x L2 —» L is a surjective homo-
morphism and suppose further that B 6 Bl(L). Adopt the notation of Prop. 
1.4 and assume that h '. L —> [0, ci] x [0, C2] is the isomorphism defined in 
Prop. 1.3 (for ci = c, c2 = c-1). Then h(B) € Bl([0, ci] x [0, c2]) and therefore 
there are blocks Bi € Bl([0, <*]) (i = 1,2) such that h(B) = Bi x B2 (Prop. 
2.4). Since FI is a homomorphism from LI onto [0, Cj] and LI € HOMC-, there 
is a block B'i e Bl{L{) such that fi(B[) = Bi (i = 1,2). Since B[ x B'2 6 
Bl{L\ x L2), it suffices to prove f(B[ x B'2) = B. Since h is an isomorphism, 
this means that we have to verify the equality h(f(B[ x B'2)) = h(B). Now 

h(B) = Bi x B2, 

h(f(B[ x B'2)) = { h ( f ( x , y ) ) ; x € B[,y € B'2} 

= { h { h { x ) y f2{y)]x e B[,y e B'2} 

= { ( h ( x ) , f 2 ( y ) y , x e B [ , y e B ' 2 } 

= h ( B [ ) X f2{B'2) = B I X B 2 = 

= h(B). 

This completes the proof for HOMC• The closedness of HBA under the for-
mation of finite products can be proved analogously. 

The following proposition will be applied in Thm. 3.9. 
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PROPOSITION 3.8. If L G OML and if the commutator ideal Ic is principal, 
then L G HBA-

P r o o f . Suppose that Ic = [0,a]. Then a G C(L) (see e.g. [11]) and therefore 
L = [0, a] x [0, a-1]. Moreover, [0, a1] = L/[0, a] = L/Ic G BA. We shall now 
show that [0, a] does not admit a Boolean quotient. To this end, assume 
that / i : [0, a] —• Bi is surjective. Put B2 = [0, a-1] and = ^[o.a-1]- Define 
a morphism / : L —> B\ x B2 by setting 

f(x) = (f1(xAa),f2(xAa±)). 

Then we obtain f(a) = ( / I (A) , 0B 2 ) . AS B\ X B2 is a Boolean algebra, a G Ic, 
it follows that f(a) = 0B1XB2- Thus, fi(a) = 0Bx and B\ has to be trivial, 
which completes the proof. 

Let us now recall two classes of OMLs which appeared naturally in the 
course of developing the theory of OMLs. Let L be an OML. Let us say 
that L is commutator-finite if the set Com(L) = {com(x,y);x,y G L} is 
finite, and let us say that L satisfies the relative centre property if C([0, a]) = 
{a A c;c G C{L)} for any a G L. 

THEOREM 3.9. (i) If L is commutator finite, then L G HBA-
(ii) If L is complete and satisfies the relative centre property, then L G 

HBA- A consequence: The lattice of all projections in a von Neumann algebra 
belongs to TIBA-

Proo f . If L satisfies either (i) or (ii), then it satisfies the assumption of 
Prop. 3.8 (see [2] and [8]). 

THEOREM 3.10. The class Hba is n°t closed under the formation of subal-
gebras. 

P r o o f . Let FX and L denote the same OML's as in the proof of Thm 3.6. 
Then FX is a subalgebra of L, L G HBAI but F X 0 HBA-

PROPOSITION 3.11. Let L G CMC and let K G Hba for any subalgebra K 
of L. Then L G HOMC-

P r o o f . Let / : L —• L\ be a surjective homomorphism, L\ G OML and let 
B\ be a block in L\. Let us write K — f~1(B{). Then K is a subalgebra 
of L and therefore K G Hba- It follows that there is a block, B, in K such 
that f(B) = Bv If we extend B to a block, B, of L, we see that f(B) = B\. 

THEOREM 3.12. Let L e OML and let card(L) < N0- Then L € HOMC-

P r o o f . Let us first show that L G HBA- Suppose that / : L —• B is a 
surjective morphism. Then card(5) < No, and we can use Thm. 3.2. 
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To complete the proof, let i f be a subalgebra of L. Then we also have 
card (K) < Ho- From the previous part of this proof it follows that K G HBA-
According to Prop. 3.11 we see that L G HOMC-

Prior to the formulation of our main result, let us agree to denote by 
BZoo(L) the set of all infinite blocks of L. 

THEOREM 3.13. Let L G OMC and let c a rd ( B i o o ( L ) ) < N 0 . Then L € 

HOMC-

Proo f . Let us first show that L G HBA- Suppose that f : L B is a 
surjective morphism. If card(B) < Ho, then we can use Thm. 3.2. Suppose 
therefore that card(S) > Ho- Let £?i,i?2, • • • be all infinite blocks in L and 
let us assume that f(B{) ^ B for any i 6 N . Then there are elements 
bi, i>2, • • • € B such that 6j G B\ f(Bi). Without any loss of generality, we 
may assume that the set {6j; i G N } is infinite (otherwise we can extend it to 
a countable subset of B). Consider now the Boolean algebra, B, generated 
by {bi;i G N } in B. Put K = / - 1 ( 5 ) and set g = f\K_. According to Thm. 
3.2, there is a block B* € Bl(K) such that g(B*) = B. Since B is infinite, 
B* has to be infinite, too. It follows that there is an i (i € N ) such that 
B* C Bi. Then f(Bi) D f(B*) = B. But bt £ f(Bi) which is a contradiction. 
Thus, L G HBA-

To complete the proof, let i f be a subalgebra of L. Then we also have 
(see Prop. 2.4) card(£Zoo(.iQ) < Ho- Prom the previous part of this proof it 
follows that K € HBA- According to Prop. 3.11 we see that L G HOMC and 
the proof is complete. 

In order to express our next result in a lucid form, let us further refine 
the classes investigated so far. 

DEFINITION 3.14. Let us write 
GMCfo = {L € OMC ; card(BZ(L)) < H0} (an L G OM£fb is some-

times called block-finite, see [11]); 
OMCCB = {LE OMC ; card(BZ(L)) < N0 } ; 
OMCCNB = {LE OMC ; card ( B Z o o ( £ ) ) < M -

THEOREM 3.15. All of the following inclusions are proper: 

BA C OMCFO c OMCCb c OMCCNB c HOMC-

Proo f . For the inclusions BA C OMC^ C OMCcb C OMCcnb it is 
obvious. According to Thm. 3.13, there is OMCcnb C HOMC• Now, let X 

be a countable infinite set. Then the free OML F x over the set X is also 
countable and therefore (Thm. 3.12) F x G HOMC• Finally, from Thm. 2.7 
and Corollary 2.6 it follows that Fx & OMCcnb. This completes the proof. 



264 M. Matousek 

P R O P O S I T I O N 3 . 1 6 . The classes OMCfo, OMCcB and OMCcnB are closed 
under the formation of homomorphic images. 
Proof . Suppose that L is block-finite and / : L —• L\ is surjective. Then 
L e HOMC and therefore any block B\ € BL(L\) is a homomorphic image 
of certain block of L. It follows that L\ has at most finitely many blocks. 
For L 6 OMCcb or L € OMCcnb the proof is analogous. 

In the paper [2] the authors denoted by WBEP the class of the OMLs 
determined by the following properties: 

L G WBEP if and only if every subOML of L generated by the union 
of finitely many blocks is block-finite. 

We can now contribute to the investigation carried in [2] by proving the 
following result: 
P R O P O S I T I O N 3 . 1 7 . The class WBEPfXHoMC is closed under the formation 
of homomorphic images. 
Proof . Suppose that L € WBEP fl HOMC and consider a surjective ho-
momorphism / : L —• L\. According to Thm. 3 . 7 , L\ € HOMC-

Let us assume that Bi,...,Bn are blocks of L\. Then there are blocks 
B[,..., B'n 6 Bl{L) such that = B{ (i = 1 , . . . , n). Suppose that S' is 
the (block-finite) subOML of L generated by the set U B[. Put S = f(S'). 

Then S is a block-finite subOML in L (see Prop. 3.16) generated by the set 

Recall for our final result that a class K of algebras for a language C is 
called axiomatizable if there exists a theory T in C such that K is exactly 
the class of all models of T. 
THEOREM 3.18. The classes 'HOMC AND 7~LBA a r e n°t axiomatizable. 
Proof . Every axiomatizable class is closed under elementary equivalence. 
Let us choose two infinite sets, say X, Y, where X is countable and Y is 
uncountable. Prom Corollary 1.12 we infer that F x = Fy. The algebra F x 
is countable and therefore F x £ "HOMC according to Thm. 3.12. On the 
other hand, Fy ^ HBA according to the proof of the Theorem 3.6. 

Let us finally formulate two open questions related to our investigation. 
(1) Let us introduce a new class, X, of BAs by setting 
X = {B £ BA ; for any orthomodular lattice L and for any surjective 

/ : L B there exists a block Bx e Bl(L) such that f(Bi) = B}. 
Observe that each at most countable BA does belong to X (Thm. 3.2). Is 
there an uncountable BA which belongs to X ? 

n 

i=1 
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(2) Is there a variety of OMLs, some V, such that BA C V C Hba ? 
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