

Milan Matoušek

BOOLEAN CARRIED HOMOMORPHISMS IN ORTHOMODULAR LATTICES

Abstract. Let L, L_1 be orthomodular lattices. Let us say that a surjective homomorphism $f : L \rightarrow L_1$ is Boolean carried if for any maximal Boolean subalgebra B_1 of L_1 there is a maximal Boolean subalgebra B of L such that $f(B) = B_1$. In this note we investigate the class \mathcal{H}_{OML} of all L 's such that all surjective homomorphisms from L to orthomodular lattices are Boolean carried. We prove as a main result that if L possesses at most countably many infinite maximal Boolean subalgebras then $L \in \mathcal{H}_{OML}$. We also relate the class \mathcal{H}_{OML} to the classes previously studied and provide some model-theoretic properties of \mathcal{H}_{OML} .

1. Preliminaries

We assume the basic notions of the theory of OMLs, universal algebra and model theory to be known; the reader can find the necessary information in e.g. [11], [6], [7]. For the convenience of the reader, let us briefly review the basic notions of the theory of OMLs as we shall use them in the sequel.

DEFINITION 1.1. An *orthomodular lattice* (abbr., an OML) is an algebra $L = (X, \wedge, \vee^\perp, \mathbf{0}, \mathbf{1})$ of the type $(2, 2, 1, 0, 0)$ such that L is an orthocomplemented lattice satisfying the orthomodular law: If $x \leq y$, then $y = x \vee (y \wedge x^\perp)$.

Let us denote by OML the class of all orthomodular lattices, and let us denote by BA the class of all Boolean algebras.

A subset K of an OML L is called a *subOML* of L if K is a subalgebra of L . If K is Boolean, then it is called a *Boolean subalgebra*.

DEFINITION 1.2. Let L be an OML. For $x, y \in L$, let $com(x, y)$ denote the *commutator* of x, y , i.e. $com(x, y) = (x \vee y) \wedge (x \vee y^\perp) \wedge (x^\perp \vee y) \wedge (x^\perp \vee y^\perp)$. (It should be noted that the notion of commutator is often defined in the

1991 *Mathematics Subject Classification*: 06C15, 03G12.

Key words and phrases: Boolean algebra, orthomodular lattice, homomorphism, block, axiomatizable class.

This research was supported by the grant of the Czech Grant Agency No. 401/01/0218.

dual way. For instance, in [1] this notion is defined in terms of lower and upper commutator.)

Elements x, y of L are called *commutative* (abbr., xCy), if $com(x, y) = \mathbf{0}_L$. It is easily seen that x, y are commutative if and only if they are contained in a Boolean subalgebra of L (see e.g. [11]). Let us put $C(L) = \{a \in L; aCb \text{ for any } b \in L\}$ and call $C(L)$ the *centre* of L . As known ([11]), $C(L)$ is a Boolean subalgebra of L .

PROPOSITION 1.3. *Suppose that $L \in \mathcal{OML}$ and $c \in C(L)$. Then $L \cong [\mathbf{0}, c] \times [\mathbf{0}, c^\perp]$. More explicitly, the mapping $h : L \rightarrow [\mathbf{0}, c] \times [\mathbf{0}, c^\perp]$ defined by putting $h(x) = (x \wedge c, x \wedge c^\perp)$ is an isomorphism of L onto $[\mathbf{0}, c] \times [\mathbf{0}, c^\perp]$.*

P r o o f is easy (see [11, p. 20]).

PROPOSITION 1.4. *Suppose that $L_1, L_2, L \in \mathcal{OML}$ and $f : L_1 \times L_2 \rightarrow L$ is a surjective homomorphism. Put $c_1 = f(\mathbf{1}_{L_1}, \mathbf{0}_{L_2})$, $c_2 = f(\mathbf{0}_{L_1}, \mathbf{1}_{L_2})$. Then $c_1, c_2 \in C(L)$ and $c_2 = c_1^\perp$. Moreover, if we define mappings $f_i : L_i \rightarrow L$ ($i = 1, 2$) by putting $f_1(x) = f(x, \mathbf{0})$, $f_2(y) = f(\mathbf{0}, y)$, when $x \in L_1$ and $y \in L_2$, then f_i ($i = 1, 2$) become surjective homomorphisms from L_i onto $[\mathbf{0}, c_i]$.*

P r o o f. Let us sketch the proof of Prop. 1.4 for L_1 . If $x \in L_1$, then obviously $(x, \mathbf{0}) \leq (\mathbf{1}, \mathbf{0})$. Since f preserves the ordering, we have $f(x, \mathbf{0}) \leq f(\mathbf{1}, \mathbf{0})$. Thus, $f_1(x) \leq c_1$ and therefore f_1 maps L_1 into the interval $[\mathbf{0}, c_1]$.

To show that f_1 is a morphism, take $x, y \in L_1$. Then we obtain

$$\begin{aligned} f_1(x \wedge y) &= f(x \wedge y, \mathbf{0}) = f((x, \mathbf{0}) \wedge (y, \mathbf{0})) = \\ &= f(x, \mathbf{0}) \wedge f(y, \mathbf{0}) = f_1(x) \wedge f_2(y); \\ f_1(x^\perp) &= f(x^\perp, \mathbf{0}) = f((x^\perp, \mathbf{1}) \wedge (\mathbf{1}, \mathbf{0})) = f(x^\perp, \mathbf{1}) \wedge f(\mathbf{1}, \mathbf{0}) = \\ &= (f(x, \mathbf{0}))^\perp \wedge c_1 = (f_1(x))^\perp \wedge c_1 = (f_1(x))^\perp_{[\mathbf{0}, c_1]}. \end{aligned}$$

We see that f_1 preserves the operations \wedge and $^\perp$ and therefore it has to be a morphism in \mathcal{OML} 's.

Finally, let us verify that f_1 is surjective. Suppose that $d \in [\mathbf{0}, c_1]$ and choose such element (x, y) that $f(x, y) = d$. Then $f_1(x) = f(x, \mathbf{0}) = f((x, y) \wedge (\mathbf{1}, \mathbf{0})) = f(x, y) \wedge f(\mathbf{1}, \mathbf{0}) = d \wedge c_1 = d$.

DEFINITION 1.5. Let $L \in \mathcal{OML}$ and let $I \subseteq L$. Let us call I an *ideal* in L if the following conditions are satisfied:

- (i) $a \in I$, $b \leq a \Rightarrow b \in I$,
- (ii) $a, b \in I \Rightarrow a \vee b \in I$.

If I is an ideal and if there is an element $a \in L$ such that $I = [\mathbf{0}, a]$, where $[\mathbf{0}, a] = \{b \in L; b \leq a\}$, then the ideal I is called *principal*. An important

example of an ideal in L is the *commutator ideal*, I_c , where I_c is the ideal generated by all elements of the form $\text{com}(a, b)$ ($a, b \in L$).

DEFINITION 1.6. Let V be a nontrivial variety of OML's and let X be a set. Let us denote by $\mathbf{F}_X(V)$ the free OML over the set X in the variety V . For simplicity, let us agree to write \mathbf{F}_X (resp. \mathbf{B}_X) instead of $\mathbf{F}_X(\mathcal{OML})$ (resp. $\mathbf{F}_X(\mathcal{BA})$).

DEFINITION 1.7. Let V be a variety of algebras and let $L \in V$. Let us say that L is a *projective algebra* in V if the following statement holds:

If $K \in V$ and if $f : K \rightarrow L$ is a surjective homomorphism, then there is a homomorphism $g : L \rightarrow K$ such that $g \circ f = \text{id}_L$, where $(g \circ f)(x) := f(g(x))$.

PROPOSITION 1.8. Let V be a variety of algebras, and let $F \in V$ be a free algebra in V . Then F is a projective algebra in V .

PROPOSITION 1.9. Let X be an uncountable set, $f : \mathbf{F}_X \rightarrow \mathbf{B}_X$ be the uniquely defined homomorphism with $f(x) = x$ for any $x \in X$. Then there is no homomorphism $g : \mathbf{B}_X \rightarrow \mathbf{F}_X$ such that $g \circ f = \text{id}_{\mathbf{B}_X}$.

Proof. See the proof of the main theorem of the paper [5].

THEOREM 1.10 (Bruns, Roddy [4, 5]). Let $B \in \mathcal{BA}$. Then B is a projective algebra in the variety \mathcal{OML} if and only if B is at most countable.

Let us recall [7] that a subalgebra G of an algebra F in a language \mathcal{L} is said to be an *elementary subalgebra*, $G \preceq F$, if for any formula $\varphi(x_1, \dots, x_n)$ of \mathcal{L} and any $a_1, \dots, a_n \in G$, a_1, \dots, a_n satisfies φ in G if and only if it satisfies φ in F . The following two facts are easy to prove.

THEOREM 1.11. Let V be a variety of algebras, and let $F \in V$ be a free algebra in V over an infinite set X . Let $Y \subseteq X$ be an infinite subset and G be the subalgebra of F generated by the set Y . Then $G \preceq F$.

COROLLARY 1.12. Let V be a variety of algebras, and let $F_X, F_Y \in V$ be free algebras in V over infinite sets X, Y . Then $F_X \equiv F_Y$ (i.e. the algebras F_X and F_Y are elementarily equivalent).

2. Blocks in OMLs

DEFINITION 2.1. Let L be an OML. A maximal Boolean subalgebra of L is called a *block* in L . The collection of all blocks in L will be denoted by $Bl(L)$.

The following two propositions can be found in e.g. [11, p. 38, 39].

PROPOSITION 2.2. Suppose that $L \in \mathcal{OML}$, $X \subseteq L$ and the elements of the set X are pairwise commutative. Then there exists a block B of L such that $X \subseteq B$.

PROPOSITION 2.3. *If B is a block of the orthomodular lattice L then the atoms of B are atoms of L .*

PROPOSITION 2.4. (i) *Suppose that $L, L_1 \in \mathcal{OML}$ and suppose that L_1 is a subOML of L . Suppose further that $B_1 \subseteq L_1$. Then $B_1 \in Bl(L_1)$ if and only if $B_1 = L_1 \cap B$ for a block $B \in Bl(L)$.*

(ii) *Suppose that $L_i \in \mathcal{OML}$ ($i \in I$). Put $L = \mathbf{X}_{i \in I} L_i$, where $\mathbf{X}_{i \in I} L_i$ is the Cartesian product of L_i ($i \in I$) (endowed with the operations coordinatewise). Then $B \in Bl(L)$ if and only if $B = \mathbf{X}_{i \in I} B_i$, where every B_i is a block in the corresponding L_i .*

Proof is easy (see e.g. [3, 12]).

THEOREM 2.5. *Let V be a nontrivial variety of OML's and let X be an infinite set. Then the algebra $\mathbf{F}_X(V)$ is atomless.*

Proof. Write $F = \mathbf{F}_X(V)$. Let a be an arbitrary element of F different from $\mathbf{0}_F$. Then there exists a term t and elements $x_1, \dots, x_n \in X$ such that $a = t_F(x_1, \dots, x_n)$. Let us choose $y \in X$ different from all x_1, \dots, x_n . Such a choice is possible since X is infinite. We are going to show that $\mathbf{0}_F < a \wedge y < a$. Clearly, $\mathbf{0}_F \leq a \wedge y \leq a$. Let $f : F \rightarrow F$ be the uniquely defined homomorphism such that $f(y) = \mathbf{1}_F$ and $f(x) = x$ for any element $x \in X$, $x \neq y$. Then $f(a \wedge y) = f(a) \wedge f(y) = t_F(f(x_1), \dots, f(x_n)) \wedge \mathbf{1}_F = t_F(x_1, \dots, x_n) = a$. Thus, $f(a \wedge y) \neq \mathbf{0}_F = f(\mathbf{0}_F)$. It follows that $\mathbf{0}_F \neq a \wedge y$. On the other hand, let $g : F \rightarrow F$ be the uniquely defined homomorphism such that $g(y) = \mathbf{0}_F$ and $g(x) = x$ for any element $x \in X$, $x \neq y$. Then $g(a \wedge y) = g(a) \wedge g(y) = \mathbf{0}_F$, $g(a) = t_F(g(x_1), \dots, g(x_n)) = t_F(x_1, \dots, x_n) = a$. Thus, $g(a \wedge y) \neq g(a)$. It follows that $a \wedge y \neq a$ and the proof is complete.

COROLLARY 2.6. *Let V be a nontrivial variety of OML's and let X be an infinite set. Then every block of $\mathbf{F}_X(V)$ is infinite.*

Proof. Suppose that B is a finite block of $\mathbf{F}_X(V)$. Then B possesses an atom, a . According to Prop. 2.3, the element a is an atom in L . This is a contradiction with Theorem 2.5.

THEOREM 2.7. *Let V be a variety of OML's such that \mathcal{BA} is a proper sub-class of V . Let X be an infinite set. Then the free algebra $\mathbf{F}_X(V)$ possesses uncountably many blocks.*

Proof. Write $F = \mathbf{F}_X(V)$. Consider a countable infinite subset $Y = \{x_1, x_2, \dots\} \subseteq X$. Let $M = \{m_1, m_2, \dots\}$ be an infinite subset of the set \mathbb{N} of natural numbers, $m_1 < m_2 < \dots$. Let us set $t_k = x_{m_1} \vee x_{m_2} \vee \dots \vee x_{m_k}$ (where the operation \vee is taken in F), $k = 1, 2, \dots$. Then we have $t_1 < t_2 < \dots$ in the algebra F . Thus, all the elements t_1, t_2, \dots of the algebra F are

pairwise commutative and therefore (see Prop. 2.2) there exists a block B_M in F such that $\{t_1, t_2, \dots\} \subseteq B_M$.

Let now $P, Q \subseteq \mathbf{N}$ be an infinite increasing subsets, $P \neq Q$. We shall prove that $B_P \neq B_Q$. Let us suppose $P = \{p_1, p_2, \dots\}$, $Q = \{q_1, q_2, \dots\}$. Because $P \neq Q$, there is $k \geq 1$ such that $p_1 = q_1, \dots, p_{k-1} = q_{k-1}, p_k \neq q_k$. Let us show that the elements $t = x_{p_1} \vee x_{p_2} \vee \dots \vee x_{p_{k-1}} \vee x_{p_k}$ and $s = x_{p_1} \vee x_{p_2} \vee \dots \vee x_{p_{k-1}} \vee x_{q_k}$ do not commute.

Since \mathcal{BA} is a proper subclass of V , there is an algebra $L \in V$ such that $L \notin \mathcal{BA}$. As L is not Boolean, there exist elements $a, b \in L$ which do not commute. Let $f : F \rightarrow L$ be the uniquely determined homomorphism such that $f(x_{p_k}) = a$, $f(x_{q_k}) = b$ and $f(x) = \mathbf{0}_L$ for any $x \in X \setminus \{x_{p_k}, x_{q_k}\}$. Then we have $f(t) = f(x_{p_k}) = a$, $f(s) = f(x_{q_k}) = b$. The elements $f(t)$ and $f(s)$ are not commutative in L and therefore the elements t and s cannot be commutative in F .

Since the elements t and s do not commute, we see that $t \notin B_Q$, thus $B_P \neq B_Q$. Obviously, the set of all increasing sequences is uncountable and this completes the proof.

3. Preservation of blocks

The result from Thm. 3.2 has already been proved in [4]. Since its proof is short, we provide it here for the convenience of the reader. We first need the following auxiliary result. As before, xCy stands for x commutes with y .

LEMMA 3.1. *Suppose that $a_1, \dots, a_n \in L$ and choose indices i_1, i_2, \dots, i_k with $1 \leq i_1 \leq \dots \leq i_k \leq n$. Then $a_1^{\varepsilon_1} \wedge \dots \wedge a_n^{\varepsilon_n} C a_{i_1}^{\xi_1} \wedge \dots \wedge a_{i_k}^{\xi_k}$, where $\varepsilon_1, \dots, \varepsilon_n, \xi_1, \dots, \xi_k \in \{0, 1\}$ and $a^0 = a$, $a^1 = a^\perp$ for any element $a \in L$.*

Proof. Put $a = a_1^{\varepsilon_1} \wedge \dots \wedge a_n^{\varepsilon_n}$. Choose an index i_j . Then $a \leq a_{i_j}^{\varepsilon_{i_j}}$ and therefore $aCa_{i_j}^{\varepsilon_{i_j}}$. Thus, aCa_{i_j} , and this means that $aCa_{i_j} \xi_j$. Since j was arbitrary, we infer that $aCa_{i_1}^{\xi_1}, \dots, aCa_{i_k}^{\xi_k}$ and this implies that $aCa_{i_1}^{\xi_1} \wedge \dots \wedge a_{i_k}^{\xi_k}$.

THEOREM 3.2. *Let $L \in \mathcal{OML}$, $B \in \mathcal{BA}$ and $f : L \rightarrow B$ be a surjective morphism. Let B be at most countable. Then there is a block $B_1 \in Bl(L)$ such that $f(B_1) = B$.*

Proof. Write $B = \{b_1, b_2, \dots\}$. Choose elements $a_1, a_2, \dots \in L$ such that $f(a_i) = b_i$ ($i = 1, 2, \dots$). Put

$$c_1 = a_1,$$

$$c_2 = (a_1 \wedge a_2) \vee (a_1^\perp \wedge a_2),$$

$$c_{i+1} = \bigvee_{\varepsilon \in \{0,1\}^i} (a_1^{\varepsilon_1} \wedge \dots \wedge a_i^{\varepsilon_i} \wedge a_{i+1}), \quad i = 1, 2, \dots, \text{ where } (\varepsilon_1, \dots, \varepsilon_i) = \varepsilon.$$

Making use of Lemma 3.1, we see that $c_{i+1} C c_j$ for any i, j with $1 \leq j \leq i$. It follows that elements c_1, c_2, \dots are mutually commutative. Moreover, we see that

$$\begin{aligned} f(c_1) &= f(a_1) = b_1, \\ f(c_{i+1}) &= f\left(\bigvee_{\varepsilon \in \{0,1\}^i} (a_1^{\varepsilon_1} \wedge \dots \wedge a_i^{\varepsilon_i} \wedge a_{i+1})\right) = \\ &= \bigvee_{\varepsilon \in \{0,1\}^i} [(f(a_1))^{\varepsilon_1} \wedge \dots \wedge (f(a_i))^{\varepsilon_i} \wedge f(a_{i+1})] = \\ &= b_{i+1} \wedge \left(\bigvee_{\varepsilon \in \{0,1\}^i} (b_1^{\varepsilon_1} \wedge \dots \wedge b_i^{\varepsilon_i})\right) = b_{i+1} \wedge 1_B = b_{i+1}. \end{aligned}$$

If B_1 is a block in L that contains all of the elements c_1, c_2, \dots , then $f(B_1) = B$. The proof is complete.

PROPOSITION 3.3. *Let $L \in \mathcal{OML}$ and let L possess a finite block. If $f : L \rightarrow B$ ($B \in \mathcal{BA}$) is a surjective homomorphism, then B is finite.*

Proof. Let B_1 be a finite block of L and let b_1, \dots, b_n be all atoms of B_1 . Then b_1, \dots, b_n are atoms in L (see Prop. 2.3). Obviously, the element $f(b_i) = a_i$ is either 0_B or an atom of B . Since $1_L = b_1 \vee \dots \vee b_n$, we also have $f(1_L) = f(b_1) \vee \dots \vee f(b_n)$. Thus, $1_B = a_1 \vee \dots \vee a_n$, where any element a_i is either 0_B or an atom of B . Then for any element $b \in B$ we have $b = (b \wedge a_1) \vee \dots \vee (b \wedge a_n)$, where any element $b \wedge a_i$ is either 0_B or a_i . Thus, B has at most 2^n elements and is therefore finite.

Let us introduce some more notions which we shall use in the sequel.

Definition and notation 3.4. Put

$\mathcal{H}_{\mathcal{OML}} = \{L \in \mathcal{OML} ; \text{ for any OML } L_1 \text{ and any surjective homomorphism } f : L \rightarrow L_1, \text{ if } B_1 \in Bl(L_1) \text{ is a block in } L_1, \text{ then there exists a block } B \in Bl(L) \text{ in } L \text{ such that } f(B) = B_1\}$,

$\mathcal{H}_{\mathcal{BA}} = \{L \in \mathcal{OML} ; \text{ for any BA } B_1 \text{ and any surjective homomorphism } f : L \rightarrow B_1 \text{ there exists a block } B \in Bl(L) \text{ such that } f(B) = B_1\}$.

We shall now study the size of $\mathcal{H}_{\mathcal{OML}}$ and $\mathcal{H}_{\mathcal{BA}}$.

COROLLARY 3.5. *If $L \in \mathcal{OML}$ and if L possesses a finite block, then $L \in \mathcal{H}_{\mathcal{BA}}$.*

Proof. It follows from Prop. 3.3 and Thm. 3.2.

THEOREM 3.6. *Both of the following inclusions are proper: $\mathcal{H}_{\mathcal{OML}} \subset \mathcal{H}_{\mathcal{BA}} \subset \mathcal{OML}$.*

Proof. The following proof of the inclusion $\mathcal{H}_{BA} \subset \mathcal{OML}$ being proper was communicated to us by J. Harding [10]. Let X be an uncountable set, \mathbf{F}_X and \mathbf{B}_X be the free algebras from Definition 1.6. Let $f : \mathbf{F}_X \rightarrow \mathbf{B}_X$ be a morphism such that $f|X = id_X$. Suppose that there exists $B_1 \in Bl(\mathbf{F}_X)$ such that $f(B_1) = \mathbf{B}_X$. Write $f_1 = f|B_1$. Then $f_1 : B_1 \rightarrow \mathbf{B}_X$ is a surjective homomorphism. Because \mathbf{B}_X is a free Boolean algebra, \mathbf{B}_X is a projective algebra in the variety BA . Thus, there exists a homomorphism $g : \mathbf{B}_X \rightarrow B_1$ such that $g \circ f_1 = id_{\mathbf{B}_X}$. Then g is a homomorphism $\mathbf{B}_X \rightarrow \mathbf{F}_X$ and $g \circ f = id_{\mathbf{B}_X}$. This is a contradiction with Prop. 1.9. We see that there is no such block B_1 . As a consequence, $\mathbf{F}_X \notin \mathcal{H}_{BA}$.

Let B_2 be a four-element BA. Let L be the horizontal sum (see [11, p. 306]) of the algebras B_2 and \mathbf{F}_X . Let L_1 be the horizontal sum of the algebras B_2 and \mathbf{B}_X . According to Corollary 3.5, $L \in \mathcal{H}_{BA}$. Let $\varphi : L \rightarrow L_1$ be such a homomorphism that $\varphi|B_2 = id_{B_2}$, $\varphi|\mathbf{F}_X = f$ (f defined above). By the previous part of this proof, there is no block in L which can be mapped onto \mathbf{B}_X by φ . Thus, $L \notin \mathcal{OML}$. The proof is complete.

THEOREM 3.7. *The classes \mathcal{H}_{OML} and \mathcal{H}_{BA} are closed under the formation of homomorphic images and finite products.*

Proof. The first statement is obvious. To prove the second, let us assume that $L_1, L_2 \in \mathcal{H}_{OML}$. Suppose that $f : L_1 \times L_2 \rightarrow L$ is a surjective homomorphism and suppose further that $B \in Bl(L)$. Adopt the notation of Prop. 1.4 and assume that $h : L \rightarrow [0, c_1] \times [0, c_2]$ is the isomorphism defined in Prop. 1.3 (for $c_1 = c$, $c_2 = c^\perp$). Then $h(B) \in Bl([0, c_1] \times [0, c_2])$ and therefore there are blocks $B_i \in Bl([0, c_i])$ ($i = 1, 2$) such that $h(B) = B_1 \times B_2$ (Prop. 2.4). Since f_i is a homomorphism from L_i onto $[0, c_i]$ and $L_i \in \mathcal{H}_{OML}$, there is a block $B'_i \in Bl(L_i)$ such that $f_i(B'_i) = B_i$ ($i = 1, 2$). Since $B'_1 \times B'_2 \in Bl(L_1 \times L_2)$, it suffices to prove $f(B'_1 \times B'_2) = B$. Since h is an isomorphism, this means that we have to verify the equality $h(f(B'_1 \times B'_2)) = h(B)$. Now

$$\begin{aligned} h(B) &= B_1 \times B_2, \\ h(f(B'_1 \times B'_2)) &= \{h(f(x, y)); x \in B'_1, y \in B'_2\} \\ &= \{h(f_1(x) \vee f_2(y)); x \in B'_1, y \in B'_2\} \\ &= \{(f_1(x), f_2(y)); x \in B'_1, y \in B'_2\} \\ &= f_1(B'_1) \times f_2(B'_2) = B_1 \times B_2 = \\ &= h(B). \end{aligned}$$

This completes the proof for \mathcal{H}_{OML} . The closedness of \mathcal{H}_{BA} under the formation of finite products can be proved analogously.

The following proposition will be applied in Thm. 3.9.

PROPOSITION 3.8. *If $L \in \mathcal{OML}$ and if the commutator ideal I_c is principal, then $L \in \mathcal{H}_{BA}$.*

Proof. Suppose that $I_c = [\mathbf{0}, a]$. Then $a \in C(L)$ (see e.g. [11]) and therefore $L \cong [\mathbf{0}, a] \times [\mathbf{0}, a^\perp]$. Moreover, $[\mathbf{0}, a^\perp] \cong L/[\mathbf{0}, a] = L/I_c \in \mathcal{BA}$. We shall now show that $[\mathbf{0}, a]$ does not admit a Boolean quotient. To this end, assume that $f_1 : [\mathbf{0}, a] \rightarrow B_1$ is surjective. Put $B_2 = [\mathbf{0}, a^\perp]$ and $f_2 = id_{[\mathbf{0}, a^\perp]}$. Define a morphism $f : L \rightarrow B_1 \times B_2$ by setting

$$f(x) = (f_1(x \wedge a), f_2(x \wedge a^\perp)).$$

Then we obtain $f(a) = (f_1(a), \mathbf{0}_{B_2})$. As $B_1 \times B_2$ is a Boolean algebra, $a \in I_c$, it follows that $f(a) = \mathbf{0}_{B_1 \times B_2}$. Thus, $f_1(a) = \mathbf{0}_{B_1}$ and B_1 has to be trivial, which completes the proof.

Let us now recall two classes of OMLs which appeared naturally in the course of developing the theory of OMLs. Let L be an OML. Let us say that L is *commutator-finite* if the set $Com(L) = \{com(x, y); x, y \in L\}$ is finite, and let us say that L satisfies the *relative centre property* if $C([\mathbf{0}, a]) = \{a \wedge c; c \in C(L)\}$ for any $a \in L$.

THEOREM 3.9. (i) *If L is commutator finite, then $L \in \mathcal{H}_{BA}$.*

(ii) *If L is complete and satisfies the relative centre property, then $L \in \mathcal{H}_{BA}$. A consequence: The lattice of all projections in a von Neumann algebra belongs to \mathcal{H}_{BA} .*

Proof. If L satisfies either (i) or (ii), then it satisfies the assumption of Prop. 3.8 (see [2] and [8]).

THEOREM 3.10. *The class \mathcal{H}_{BA} is not closed under the formation of subalgebras.*

Proof. Let \mathbf{F}_X and L denote the same OML's as in the proof of Thm 3.6. Then \mathbf{F}_X is a subalgebra of L , $L \in \mathcal{H}_{BA}$, but $\mathbf{F}_X \notin \mathcal{H}_{BA}$.

PROPOSITION 3.11. *Let $L \in \mathcal{OML}$ and let $K \in \mathcal{H}_{BA}$ for any subalgebra K of L . Then $L \in \mathcal{H}_{OML}$.*

Proof. Let $f : L \rightarrow L_1$ be a surjective homomorphism, $L_1 \in \mathcal{OML}$ and let B_1 be a block in L_1 . Let us write $K = f^{-1}(B_1)$. Then K is a subalgebra of L and therefore $K \in \mathcal{H}_{BA}$. It follows that there is a block, \bar{B} , in K such that $f(\bar{B}) = B_1$. If we extend \bar{B} to a block, B , of L , we see that $f(B) = B_1$.

THEOREM 3.12. *Let $L \in \mathcal{OML}$ and let $\text{card}(L) \leq \aleph_0$. Then $L \in \mathcal{H}_{OML}$.*

Proof. Let us first show that $L \in \mathcal{H}_{BA}$. Suppose that $f : L \rightarrow B$ is a surjective morphism. Then $\text{card}(B) \leq \aleph_0$, and we can use Thm. 3.2.

To complete the proof, let K be a subalgebra of L . Then we also have $\text{card}(K) \leq \aleph_0$. From the previous part of this proof it follows that $K \in \mathcal{H}_{BA}$. According to Prop. 3.11 we see that $L \in \mathcal{H}_{OML}$.

Prior to the formulation of our main result, let us agree to denote by $Bl_\infty(L)$ the set of all infinite blocks of L .

THEOREM 3.13. *Let $L \in OML$ and let $\text{card}(Bl_\infty(L)) \leq \aleph_0$. Then $L \in \mathcal{H}_{OML}$.*

Proof. Let us first show that $L \in \mathcal{H}_{BA}$. Suppose that $f : L \rightarrow B$ is a surjective morphism. If $\text{card}(B) \leq \aleph_0$, then we can use Thm. 3.2. Suppose therefore that $\text{card}(B) > \aleph_0$. Let B_1, B_2, \dots be all infinite blocks in L and let us assume that $f(B_i) \neq B$ for any $i \in \mathbb{N}$. Then there are elements $b_1, b_2, \dots \in B$ such that $b_i \in B \setminus f(B_i)$. Without any loss of generality, we may assume that the set $\{b_i ; i \in \mathbb{N}\}$ is infinite (otherwise we can extend it to a countable subset of B). Consider now the Boolean algebra, \bar{B} , generated by $\{b_i ; i \in \mathbb{N}\}$ in B . Put $K = f^{-1}(\bar{B})$ and set $g = f|K$. According to Thm. 3.2, there is a block $B^* \in Bl(K)$ such that $g(B^*) = \bar{B}$. Since \bar{B} is infinite, B^* has to be infinite, too. It follows that there is an i ($i \in \mathbb{N}$) such that $B^* \subseteq B_i$. Then $f(B_i) \supseteq f(B^*) = \bar{B}$. But $b_i \notin f(B_i)$ which is a contradiction. Thus, $L \in \mathcal{H}_{BA}$.

To complete the proof, let K be a subalgebra of L . Then we also have (see Prop. 2.4) $\text{card}(Bl_\infty(K)) \leq \aleph_0$. From the previous part of this proof it follows that $K \in \mathcal{H}_{BA}$. According to Prop. 3.11 we see that $L \in \mathcal{H}_{OML}$ and the proof is complete.

In order to express our next result in a lucid form, let us further refine the classes investigated so far.

DEFINITION 3.14. Let us write

$OML_{fb} = \{L \in OML ; \text{card}(Bl(L)) < \aleph_0\}$ (an $L \in OML_{fb}$ is sometimes called *block-finite*, see [11]);

$OML_{cb} = \{L \in OML ; \text{card}(Bl(L)) \leq \aleph_0\}$;

$OML_{cnb} = \{L \in OML ; \text{card}(Bl_\infty(L)) \leq \aleph_0\}$.

THEOREM 3.15. *All of the following inclusions are proper:*

$$BA \subset OML_{fb} \subset OML_{cb} \subset OML_{cnb} \subset \mathcal{H}_{OML}.$$

Proof. For the inclusions $BA \subset OML_{fb} \subset OML_{cb} \subset OML_{cnb}$ it is obvious. According to Thm. 3.13, there is $OML_{cnb} \subseteq \mathcal{H}_{OML}$. Now, let X be a countable infinite set. Then the free OML F_X over the set X is also countable and therefore (Thm. 3.12) $F_X \in \mathcal{H}_{OML}$. Finally, from Thm. 2.7 and Corollary 2.6 it follows that $F_X \notin OML_{cnb}$. This completes the proof.

PROPOSITION 3.16. *The classes \mathcal{OML}_{fb} , \mathcal{OML}_{cb} and \mathcal{OML}_{cnb} are closed under the formation of homomorphic images.*

P r o o f. Suppose that L is block-finite and $f : L \rightarrow L_1$ is surjective. Then $L \in \mathcal{H}_{OML}$ and therefore any block $B_1 \in Bl(L_1)$ is a homomorphic image of certain block of L . It follows that L_1 has at most finitely many blocks. For $L \in \mathcal{OML}_{cb}$ or $L \in \mathcal{OML}_{cnb}$ the proof is analogous.

In the paper [2] the authors denoted by $WBEP$ the class of the OMLs determined by the following properties:

$L \in WBEP$ if and only if every subOML of L generated by the union of finitely many blocks is block-finite.

We can now contribute to the investigation carried in [2] by proving the following result:

PROPOSITION 3.17. *The class $WBEP \cap \mathcal{H}_{OML}$ is closed under the formation of homomorphic images.*

P r o o f. Suppose that $L \in WBEP \cap \mathcal{H}_{OML}$ and consider a surjective homomorphism $f : L \rightarrow L_1$. According to Thm. 3.7, $L_1 \in \mathcal{H}_{OML}$.

Let us assume that B_1, \dots, B_n are blocks of L_1 . Then there are blocks $B'_1, \dots, B'_n \in Bl(L)$ such that $f(B'_i) = B_i$ ($i = 1, \dots, n$). Suppose that S' is the (block-finite) subOML of L generated by the set $\bigcup_{i=1}^n B'_i$. Put $S = f(S')$. Then S is a block-finite subOML in L (see Prop. 3.16) generated by the set $f\left(\bigcup_{i=1}^n B'_i\right) = \bigcup_{i=1}^n B_i$.

Recall for our final result that a class K of algebras for a language \mathcal{L} is called *axiomatizable* if there exists a theory T in \mathcal{L} such that K is exactly the class of all models of T .

THEOREM 3.18. *The classes \mathcal{H}_{OML} and \mathcal{H}_{BA} are not axiomatizable.*

P r o o f. Every axiomatizable class is closed under elementary equivalence. Let us choose two infinite sets, say X, Y , where X is countable and Y is uncountable. From Corollary 1.12 we infer that $\mathbf{F}_X \equiv \mathbf{F}_Y$. The algebra \mathbf{F}_X is countable and therefore $\mathbf{F}_X \in \mathcal{H}_{OML}$ according to Thm. 3.12. On the other hand, $\mathbf{F}_Y \notin \mathcal{H}_{BA}$ according to the proof of the Theorem 3.6.

Let us finally formulate two open questions related to our investigation.

(1) Let us introduce a new class, \mathcal{X} , of BAs by setting

$\mathcal{X} = \{B \in \mathcal{BA} ; \text{ for any orthomodular lattice } L \text{ and for any surjective } f : L \rightarrow B \text{ there exists a block } B_1 \in Bl(L) \text{ such that } f(B_1) = B\}.$

Observe that each at most countable BA does belong to \mathcal{X} (Thm. 3.2). Is there an uncountable BA which belongs to \mathcal{X} ?

(2) Is there a variety of OMLs, some V , such that $\mathcal{BA} \subset V \subseteq \mathcal{H}_{\mathcal{BA}}$?

Acknowledgement. The author thanks Prof. P. Jirků and Prof. P. Pták for valuable discussions on the subject studied in this paper. The autor also thanks the referee for correcting the earlier version of this paper.

References

- [1] L. Beran, *Orthomodular Lattices, Algebraic Approach*, D. Reidel, Dordrecht, 1985.
- [2] G. Bruns, R. Greechie, *Blocks and commutators in orthomodular lattices*, Algebra Universalis 27 (1990), 1–9.
- [3] G. Bruns, J. Harding, *Algebraic aspects of orthomodular lattices*, in: B. Coecke, D. Moore and A. Wilce (eds.), *Current Research in Operational Quantum Logic*, 2000, 37–65.
- [4] G. Bruns, M. Roddy, *Projective orthomodular lattices*, Canad. Math. Bull. 37 (2) (1994), 145–153.
- [5] G. Bruns, M. Roddy, *Projective orthomodular lattices II*, Algebra Universalis 37 (1997), 143–153.
- [6] S. Burris, H. P. Sankappanavar, *A Course in Universal Algebra*, Springer-Verlag, New York Inc., 1973.
- [7] C. C. Chang, H. J. Keisler, *Model Theory*, North-Holland Publishing Company, Amsterdam, London, 1973.
- [8] G. Chevalier, *Commutators and decompositions of orthomodular lattices*, Order 6 (1989), 181–194.
- [9] A. B. d'Andrea, S. Pulmannová, *Boolean quotiens of orthomodular lattices*, Algebra Universalis 34 (1995), 485–495.
- [10] J. Harding, *Lectures on Orthomodular Lattices*, Prague 1997.
- [11] G. Kalmbach, *Orthomodular Lattices*, Academic Press, London, 1983.
- [12] P. Pták, S. Pulmannová, *Orthomodular Structures as Quantum Logics*, Kluwer Academic Publishers, Dordrecht/Boston/London, 1991.

DEPARTMENT OF LOGIC
 PHILOSOPHICAL FACULTY OF THE CHARLES UNIVERSITY
 Celetná 20
 116 42 PRAGUE 1, CZECH REPUBLIC
 e-mail: milan.matousek@ff.cuni.cz

Received May 20, 2003.

