
DEMONSTRATIO MATHEMATICA 
Vol. XXXVII No 2 2004 

Aldo Figallo Jr., Martin Figallo*, Alicia Ziliani 

FREE (n + 1)-VALUED LUKASIEWICZ BCK-ALGEBRAS 

Abstract. The cardinal of the finitely generated free (n + l)-valued Lukasiewicz 
SC/iT-algebras has been determined by different authors only for some values of n. In this 
article we find the formula that allows its calculus for every value of n. By the application 
of this formula for n = 1, n = 2, we corroborate the results obtained by L. Iturrioz and 
A. Monteiro (Rev. Un. Mat. Argentina, 22 (1966), 146) and L. Iturrioz and O.Rueda 
(Discrete Math., 18 (1977), 35-44). In addition we generalize the results found by A. V. 
Figallo (Rev. Un. Mat. Argentina, 41, 4 (2000), 33-43). 

1. Preliminaries 
In 1966, Y. Imai and K. Iseki [7] defined an important class of algebras 

which they called BCK-algebras. Later, S. Tanaka [18] studied the class of 
commutative .SCif-algebras and H. Yutani [21] proved that they constitute 
a variety. 

An important subvariety of the commutative -BCif-algebras are those 
which M. Palasiñski called Lukasiewicz BCK-algebvas in [15]. On the other 
hand, it is well-known that these algebras coincide with the dual algebras 
defined by Y. Komori in [11] under the name of C-algebras with the objec-
tive of obtaining the algebraic counterpart to the infinite-valued Lukasiewicz 
implicative calculus, which was investigated by A. J. Rodriguez Salas in [16]. 

Then, following M. Palasiñski's notation [15], we shall say that the Lu-
kasiewicz BCK-algebras (or BCKL-algebras) are algebras (A, —>, 1) of type 
(2,0), which satisfy these identities: 
(CI) 1 x = x, 
(C2) x -» (y x) = 1, 
(C3) (x - y) - ((y z)) = 1, 
(C4) (x y) y = (y x) x, 
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(C5) ((x - y) - (J, - x) ) - (y x) = 1. 

Notice that the previous introduction of the BC K L-algebras is unusual, 
since most of the literature referring to them uses the dual notion, i.e. a*/3 
and 0 instead of (3 —> a and 1, respectively. 

In these algebras the relation < defined by x < y if, and only if, x —> 
y = 1 is a partial order on A and x < 1, for every x G A. In addition (A, < ) 
is a join semilattice where x V y = (x —• y) —> y is the supremum of the 
elements x and y. 

A bounded BC XL-algebra, (or BCK L°-algebra) is an algebra 
(^4,->,0,1) of type (2,0,0) such that is a BCKL-aigebra and 
0 is the first element for <. 

We shall denote the varieties of BCK L-algebras and BCKL0-algebras 
by BCKL and BCKL°, respectively. 

In [16] it was proved that the variety BCKL° coincide with that of 
Wasjberg algebras. Also, it is well-known that the variety of Wasjberg al-
gebras is polynomially equivalent to the variety of Chang's MV-algebras 
[2], 

If K is one of the BCKL or BCKL° varieties, we shall denote the set 
of K-congruences and K-homomorphisms by Conj^(A) and Homj^(A, B), 
respectively. Besides, if S C A is a K-subalgebra of A, we shall write ¿><1k A 
and indicate by [G]K the K-subalgebra of A generated by G. The subindex 
K will be omitted where no confusion might arise. 

Let A e K . D C A is a deductive system of A if 1 G D and if x, x —> 
y G D, imply y G D. If V(A) is the set of all deductive systems of A, then 
ConK(A) = {R(D) : D G V{A)}, where R{D) = { (x ,y ) G A2 : x y,y 
x G D} ([3, 11, 16]). If R = R{D), we shall denote the quotient algebra by 
A/D. 

Let h G Homj£(A, B). The set Ker(h) = {x G A : h(x) - 1} is called the 
kernel of h. It is simple to verify that, if h G Hom^A, B), then Ker(h) G 
V{A). 

Let n be an integer, n > 1. A BCKLn+i-algebra (or BCKL^+l-algebxa) 
is a BCKL-algebra (or BCKL0-algebra) which satisfies the identity: 

(C6) (xn y) V x = 1, 

where x1 —» y = x —• y and xn + 1 —» y = x —» (xn —> y), for n = 1,2, — 
We shall denote the varieties of the £?C.KX„+i-algebras and BCKL^+1-

algebras by BCKLn+1 and BCKL„+1, respectively. 
Now we shall indicate some properties of the BCKXn+i-algebras, for the 

demonstration of which the reader is referred to the bibliography included 
below: 
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(PI) Let Cn+1 = {0, . . . , 1 } be the set of rational fractions. Then, 
(C„+i ,—1) 6 BCi<rL„+i, where x —> y = min {1,1 — x + y}, for 
every x, y e C„+ 1 . 

(P2) If 5 <bcìcl„+ i Cn+i and \S\ > 1, then S ^BCKLo Ct+i, where t < n 
t + 1 

([3])-
In what follows, we shall denote the set {x € A : a < x < 6} by [a, 6]. 

(P3) 1] < Cn+1 for every t, 0 < t < n. In addition, 1] ~ C t+i since 
the operation —* is determined by the order over a finite chain ([3, 16, 
19]). 

(P4) If A e BCKLn+l is non-trivial, then A is isomorphic to a subalgebra 
of P = n A/M, where A4 (A) is the set of the maximal deductive 

MeM(A) 
systems of A. Also, if A G BCKL°n+1 is finite, then A~P ([3, 16]). 

(P5) BCKLn+1 has the congruence extension property ([3]). 
(P6) If A G BCKLn+1, then the following conditions are equivalent ([3]): 

(i) M e M(A), 
(ii) there exists h € Hom(A, Cn+1) such that Ker{h) = M, 

(iii) A/M ~ Cj+1 for some j, 1 < j < n. 

2. Free BCKLn+1-algebras 
In what follows, we shall denote by £(n, c) the BCKLn+i-algebra with 

a set G of free generators, such that |G| = c, where c is a cardinal number. 
The cardinal of £(n, c) was determined for some particular cases by dif-

ferent authors. In 1966, L. Iturrioz and A. Monteiro in [9], determined it for 
n = 1 and showed that the formula is 

| £ ( l ,m) | = p i - l ^ f y - T T - ' . 

Later, in 1977, L. Iturrioz and O. Rueda, in [10], obtained the cardinal 
of £(n, c) for n = 2, giving the formula: 

|£(2, m)\ = p i - 1 ) ^ 1 Q * 2(2fc-1)-3m"'c • 3 3 m - f c - 2 m - \ 

In 1989, A.V. Figallo [4] determined a method to calculate \L(n,m)\ for 
some particular values of n, generalizing the results obtained in [9] and [10]. 

The aim of this paper is to determine the cardinal of |£(n, m)| for every 
pair n, rri of positive integers. For this purpose we shall use some results 
obtained in [4], which will be revised now. 

Let X C A be an ordered set. We shall denote the set of minimal elements 
of X by M(X). 
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(P7) Let A € BCKL, X C A and [X]BCKL = A. Then 
(i) / x ( X ) = FI(A), 

(ii) the following conditions are equivalent: 
(a) X = N(A), 

(b) X is an antichain. 
(P8) If G is a set of free generators of £(n, c) such that |G| = c, then 

G = fi(H(n,c)). 
(P9) L(n,c)= U [9,1]-

g&G 
(P10) £ (n, m) is finite. 

Let m be an integer, m > 1 and G = {g\,g2, ••• ,9m} a set of free 
generators of L(n, m). 

By (P9) we have 
m 

(1) |£(n,m)| = l)fc+1cifc, 
¿=1 

where 
k 

a* = Iflfei«'1]!-
l<il <...<j)t<m t=l 

k 
By the symmetry of the problem, it is sufficient to compute | f | [gi, 1]|. 

¿=1 
k 

Let Gk = {gi,g2, • • • ,gk}, Gm-k = G \ Gk and gl = V gi- Then, the 
¿=i 

k 
verification of Bk = H [<7i> 1] = 1] is simple. Therefore, 

¿=1 

(2) \Z(n,m)\ = p ( - l ) k + 1 ^ \ B k \ . 

On the other hand, it is not difficult to prove that Bk is a finite subalgebra 
of £(n,m) with first element Then by (P4) 

(3) Bk ~ n Bk/D. 
DeM(Bk) 

Let Mi(Bk) = {D 6 M(Bk) : Bk/D ~ Ci+1}, 1 < i < n, 1 < k < m, 
then 
(4) = \Mi(Bk)\. 
From (3), (4) and (P6), we obtain 

(5) i f t i - n e + D * . 
¿=1 



Lukasiewicz BCK-algebras 249 

Prom (2) and (5) 
m / \ n 

(6) |£(n,m)| = E ( " l ) f c + 1 ( r j I f t i + l ) ^ -

By (P5), for every D € Mi(Bk), there exists a unique M 6 M{H{n,m)) 
such that D = M C\ Bk. Then, in order to compute we must determine 
the number of maximal deductive systems M of £(n,m) that satisfy 

(Ml) Bk £ M, 
(M2) if D = M n Bk, then Bk/D ~ Ci+v 

Let 
M"k = {M € M(C(n,m)) : M verifies Ml and M2}. 

In [4] it was shown that for every M G there exists a unique 
h G Horn (£(n, m), Cn+1) that satisfies 
(HO) M = Ker(h), 
(HI) Bk % Ker(h), 
(H2) fc(Bfc) = [a=s, 1], 
(H3) fc(£(n,m)) = [2=i > l ]D[2 t i , l ] . 

In addition, if 
U^k = {h€ Hom(L(n, m), Cn+1) : h verifies HI and H2}, 

then 

(7) Plk = 
and, for each h € the restriction f = h\G verifies 

(Fl) f(Gk) C[0,a=i], 
(F2) there exists g eGk, such that f(g) = 
(F3) [ / ( G ) ] b c k l 5 [ ^ , 1 ] -

Finally, if is the set of functions from G to Cn+\ and 

(8) = if € Cn+i • f satisfies Fl , F2 and F3}, 
then, 
(9) = | ^ f c | . 

3. Calculus of 
Let s be an integer, s > 1 and for every i, 1 < i < s let us consider the 

set 
T i s = { / g : / satisfies F1*,F2* andO e /(G)}, 

where 
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(Fl*) f(Gk) c [ 0 , ^ i ] , 
(F2*) there exists g € Gk, such that f(g) = S — I 

s 

It is well-known that, for every divisor t of s, there exists a unique sub-
algebra S° of C°+ 1 isomorphic to C°+i. Besides, these are all the subalgebras 
of C°s+X. L e t 

(10) S M = { / e C£x : [f(G)]BCKLO = S° }. 

Then, it is clear that 

•̂ "m = U 

t / s 

therefore, 

(11) 1 ^ 1 = E M -t / s 

From the properties of Wajsberg algebras, we conclude that / € is 
such a function that 1] C [f(G)]BCKL if, and only if, [f(G)]BCKLO = 
S°. Then, if we take s = n, all the functions of SS)S verify F l , F2, F3 and, 
besides, 0 e / ( G ) . 

From (11), we obtain the following result 

( 1 2 ) \ s a j = 1^1 - £ |St,s|. 
t / s 
t^s 

On the other hand, for every / e F¡¡)S, let Gl
k = {g 6 Gk : f(g) = 

G% = { g € G k : f ( g ) = 0} and G°m_k = {g e Gm_ f c : f ( g ) = 0}, such that 
their cardinals axe n , r 2 and respectively. 

Then, to calculate the cardinal of we shall distinguish the following 
cases: 

(a) If i = s, then r\ — k = r2, 0 < < m — k and = { / : G —> 
C°+l : f(Gk) = 0}. Therefore, 

(13) | ^ > s | = |C°+ 1
G m- f c | = ( 5 + l )m - f c -

(b) If i ^ s, then, 1 < r\ < k, 0 < r<i < k — r i , 0 < r^ < m — k. 
Therefore, 

I^mI = |{/ e c f + l : / verifies F 1 * and F2* } | -

|{/ G Cf+i • f verifies Fl*, F2* andG£ = G°m_k = 0}| 
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Therefore, 
(14) = ((5 - i + l)fc - ( , - i)k)(s + 1 )m-k 

-((s-i)k -{s-i-l)k)sm-k. 
The following lemma will be useful for the calculus of |St>s|. 

LEMMA 3.1 . Lett, q be positive integers such thatt-q = s. Then the following 
statements are verified: 

( i)S? = { ? -.o<j<t}. 
(ii) ^ 6 S° i f , and only i f , i = (t - j)q, for some j, 0 < j < t. 

(iii) St,s ± 0 if, and only if, s=i g 5t°. 
P r o o f . It is routine. • 

Let p and h be positive integers such that p-h — s and let a±(p) = |SP)S|. h 
In order to calculate a±(p), we must make the following considerations: h 

V— — 
(a) If ^ € 5°, then by Lemma 3.1 (ii), the elements ^ and 

coincide. Besides, a C ° + i t is clear that |Sp^s | = |Sp,p|. Consequently, 
from (12) we obtain 
a s ) i s p , j = 

t/p 
t¥=p 

(b) If $ then by Lemma 3.1 (iii), we can deduce that 
(16 ) a±{p) = 0 . h 

(c) If ^ € S° and, in addition, 
(c.l) s / i , then from (14) and (15) we obtain 

<17) a i ( P ) = ( ( P 4 + i ) ^ ( P 4 ) y + i r - ' - ( ( P - ' y -

t/p 
t¥v tq=p 

(c.2) s = i, then — = p. Then, from (13) and (15) we get 
h 

(18) a p ( P ) = ( p + i r ~ k - £ > ( 0 -
t/p 
tjtp 



252 A. Figallo Jr., M. Figallo, A. Ziliani 

Now we are ready to determine /?ffc. Observe that, from (8), it is simple 
to prove that 

= U { / e Cn+1 ^ / verifies F l , F2, F3 and/x(/(G)) = l ) 
j=o n ) 

and, from (10) we obtain 

(19) j / e C®+1 : / verifies F l , F2, F3 and/¿(/(G)) = ~ K-jtn-y 

Now, taking into account (16), (17), (18) and (19) 

j=o j=0 ]=i 
where 

a¿(s) = 

(s + l)m~k - J2 <*t{t) if t = s, t € Z, 
t/s 
tj=s 

((s - i + l)fc - ( s - i)k)(s + l ) m " f c - ((s - i)k 

-(s-i-l)k)sm-k - ai(t) if 0 < i < s, i E 
t/s 
t^s 
tq—s 

0 otherwise. 
Hence we have shown the main result of this paper which is the following 

THEOREM 3.1. Let L(n,m) be a free BCKLn+i-algebra with m free genera-
tors. Then the cardinal |£(n, m)| can be expressed as the following formula: 

m / \ n 

fc=l t=l 

where = ¿ a¿(s) and 

<*i(s) = 

if i = s, i € Z, ( s + i ) m ~ k - a«(*) 
t/s 
t^s 

( ( s - i + l)k - (a - i)k){s + l)m~k - ((a - i)k 

— (s — i — l) f c)sm _ f c - a±(t) ifO<i<s,i€Z 
t/s q 

tjís 
tq=s 

0 otherwise. 
EXAMPLE 3.1. Now we shall apply the results obtained to determine |k(n, m) | 
for certain values of n. 
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(i) n = 3, 

3=1 

Pik = E a2( j ) = (2fc - l)4m-fc - 2— 
3=2 

Pik = «3(3) = 4m-fc - 2m-fc, 

| £ ( 3 m ) | = f j ( - l ) f c + 1 ^ . 2(3 'c _ 2 f c)4 m~'c . 3 (2 f c - i )4 m - f c -2 m - ' c
 44m-fc_2m-fc 

This formula was obtained by A.V. Figallo in [4]. 
(ii) n = 4, 

# , k = I > i C j ) = ( 4 f c - 3 f c ) 5 m _ f c ' 
j = i 
4 

02,fc = E Q2(i) = (3fc - 2k)5m~k - (2fc - l)3m-fc, 
j=2 

Ptk = E Q3(j) = (2fc - l)5m~fc - 2m~k, 
3=3 

|£(4,rn)| = . 2(4fc-3fc)5m-fc . s(3'£-2fc)5'"-fc-(2fc-l)3"l-'= 

m — fc om—fc — fc 2m ~ k 

(iii) For the sake of brevity, for n = 5 we just give the final formula 
obtained 

m 
| £ ( 5 , m)\ = ¿ ( - l ) f c + i m . 2(5 f c-4 f c)-6-'= . 

fc=l k 

^(3 f c-2 f e)-6m _ f c-2m _ f e —l)-6m_fc—3m_fc g6 m _ f c -2 m _ ' c 
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